Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи

устройство, разновидности, назначение, принцип работы

Аккумулятор представляет собой устройство, которое накапливает энергию в химической форме при подключении к источнику постоянного тока, а затем отдает ее, преобразуя в электричество. Его используют многократно за счет способности к восстановлению и обратимости химических реакций. Разряжается – снова заряжают. Применяются аккумуляторы в качестве автономных и резервных источников питания для электротехнического оборудования и различных устройств.

Устройство аккумулятора

В автомобилях обычно применяют свинцово-кислотные аккумуляторы. Рассмотрим их устройство.

Все элементы располагаются в корпусе, который изготавливают из полипропилена. Корпус состоит из емкости, разделенной на шесть ячеек, и крышки, оснащенной дренажной системой для стравливания давления и отвода газа. На крышку выводится два полюса (клеммы) – положительный и отрицательный.

Содержимое каждой ячейки представляет собой пакет из 16 свинцовых пластин, полярность которых чередуется. Восемь положительных пластин, объединенных бареткой, являются плюсовым электродом (катодом), восемь отрицательных – минусовым (анодом). Каждый электрод выводится к соответствующей клемме аккумулятора.

Пакеты пластин в ячейках погружены в электролит – раствор серной кислоты и воды плотностью 1,28 г/см3.

Между пластинами электродов, для предотвращения замыкания, вставлены сепараторы – пористые пластины, которые не препятствуют циркуляции электролита и не взаимодействуют с ним.

Отдельная пластина электрода – это решетка из металлического свинца, в которую впрессован (намазан) реагент. Активная масса катода – диоксид свинца (PbO2), анода – губчатый свинец.

Принцип действия аккумуляторов

Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Происходит процесс перемещения электронов, который, по сути, и является электротоком.

При разряде аккумулятора (подключении нагрузки) губчатый свинец анода выделяет положительные двухвалентные ионы свинца в электролит. Избыточные электроны перемещаются по внешней замкнутой электрической цепи к катоду, где происходит восстановление четырехвалентных ионов свинца до двухвалентных.

При их соединении с отрицательными ионами серного остатка электролита, образуется сульфат свинца на обоих электродах.

Ионы кислорода от диоксида свинца катода и ионы водорода из электролита соединяются, образуя молекулы воды. Поэтому плотность электролита понижается.

При заряде происходят обратные реакции. Под воздействием внешнего напряжения ионы двухвалентного свинца положительного электрода отдают по два электрона и окисляются в четырехвалентные. Эти электроны движутся к аноду и нейтрализуют ионы двухвалентного свинца, восстанавливая губчатый свинец. На катоде, путем промежуточных реакций, снова образуется двуокись свинца.

Химические реакции в одной ячейке вырабатывают напряжение 2 В, поэтому на клеммах аккумулятора из 6 ячеек и получается 12 В.

Из видео Вы сможете более подробно узнать, как работает аккумулятор:

Читайте также, как правильно выбрать аккумулятор по емкости, особенности литий-ионных и никиль-кадмиевых аккмуляторов

Как работает аккумуляторная батарея

Странно, но факт, что некоторые изобретения человечества были получены очень необычными способами. Однажды, взяв лягушку и подвесив её на верёвочке, учёный по имени Луиджи Гальвани заметил, что если поднести две металлические пластины (из разных металлов) к лягушке и коснуться ими её, то лягушачья лапка начинает дергаться! Невероятный опыт.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи

И не менее фантастическое изобретение было получено, в конце концов. Аккумуляторы — наша новая тема! Расскажу коротко историю развития и современное применение столь нужного устройства!

Аккумулятор — это устройство для накопления энергии. Цель — её дальнейшее использование. Слово «altilium» латинское и переводится как «накопитель». Бывают: электро, тепловые, инерционные, гидравлические и т.д. Наш разговор пойдёт о первом виде. Устройство, накапливающее электрическую энергию.

Схема аккумулятора простая. В электролит погружены электроды с разной полярностью. Анод (положительный) и катод (отрицательный). При подключении к источнику энергии аккумулятор её накапливает в химической форме и отдаёт по мере необходимости, преобразуя в электричество. При разрядке его заряжают заново.

Как всё начиналось

Кстати, пытливый ум учёного Гальвани оказался не прав. Он ошибочно решил, что сама лягушка вырабатывает энергию, и даже успел назвать это не иначе как «животное электричество». На благо человечества был ещё один учёный-физик с фамилией Вольта, который установил ошибочность опыта. Алессандро Вольта доказал, что ток возникает в результате химической реакции между пластинами из разных металлов.

В 1800 году физик Вольта проводил опыты с разными металлами. В качестве положительного электрода использовал олово, цинк, свинец или железо. Отрицательным были — медь, золото и серебро. В итоге сочетание цинк-медь, помещённые в соляной раствор, явили миру первый химический источник тока. Странно, но эффект получения энергии подобным способом назвали «гальванизм». Первая батарейка стала «гальваническим элементом».

Первая серийная батарея была просто «шедевральной». Представьте, деревянная коробка, внутри которой расположены медные и цинковые пластины. Всё это залито морской водой, выступающей в качестве электролита. Ну и последний штрих — сверху вся конструкция плотно упакована в цемент. К сожалению, перезарядка таких устройств не осуществлялась.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи

Первый настоящий аккумулятор был получен лишь в 1859 году. Это модель, принципы которой и сейчас актуальны. Свинцовые пластины, ткань и дерево. В 1899 году был изготовлен первый никель-кадмиевый аккумулятор, а в 1901 году — никель-железный.

Современные реалии

Про сегодняшний мир аккумуляторов я расскажу на примере источников питания мобильных устройств — телефонов, смартфонов, ноутбуков, камер и источников бесперебойного питания. Хотя, если брать последние модели, технология и материалы у всех одни. Коротко о том, где используются, плюсах и минусах.

Современные электрохимические системы подразделяются на:

Свинцово-кислотные, герметичные (SLA)

Применяются такие батареи обычно там, где вес и размеры не имеют значения (или почти не имеют). Это охранные системы, инвалидные коляски, бесперебойники (UPS). Отличаются высокой мощностью и ёмкостью. Использовались в первых моделях мобильных телефонов.

Никель-кадмиевые (Ni-Cd)

Используются эти элементы в медицинском оборудовании, ручном электроинструменте, радиостанциях, в старых моделях сотовых, радиотелефонах, видеокамерах.

Преимущества — быстрый заряд и способность отдавать большой ток. Не нагревается при эксплуатации. Длительный срок службы при правильном использовании. Низкая цена.

Минусы — «эффект памяти» и высокий саморазряд. Приличный вес. Содержание кадмия требует особой утилизации. Но когда это нас пугало.

Никель-металлгидритные (Ni-MH)

Эти системы призваны заменить никель-кадмиевые элементы. Плотность энергии у них больше, тем самым аккумуляторы намного легче. Отсутствует «эффект памяти» (почти), но имеет место нагрев батареи. Экологически безопасны. Если коротко и честно, то минусов больше, чем плюсов. Но маркетологи пытаются рассказать обратное.

Литий-ионные (Li-ion)

Все современные смартфоны, ноутбуки и любые другие гаджеты, используют эту технологию сегодня.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Такие виды батарей вытеснили всех остальных по ряду веских причин.

Плюсы — маленький вес и размер, высокая плотность заряда, отсутствие «памяти». Низкий саморазряд и не надо обслуживать. Встроенная система защиты и схема управления.

Недостатки — высокая цена, «нелюбовь» к полной разрядке, небольшой срок эксплуатации (максимум 2 года).

Литий-полимерные (Li-Pol)

Одна из последних разработок в области сохранения энергии. Вместо электролита тут используется полимер. Имеет все преимущества литий-ионной батареи. Большим плюсом является тот факт, что батарею можно сделать любой толщины и формы. Согласитесь, это круто! Минус — может неплохо бабахнуть при неправильной эксплуатации.

Хочу заметить, что именно в таком порядке смены электрохимических систем развивалась данная технология. Аккумуляторы продолжают совершенствоваться, и, думаю, резкий прорыв не за горами. Также даю несколько нужных советов в использовании ваших устройств, имеющих батареи:

  1. Современные аккумуляторы не надо полностью разряжать и потом заряжать. Лучший период для зарядки — 40-80%.
  2. Больше всех «жрёт» батарею — экран. Хотите сэкономить — убавляйте яркость.
  3. Нельзя оставлять на ночь на зарядке — это миф! Оставляйте смело!
  4. Холод и жара реально вредят батарее. Старайтесь не мыться в бане со своим смартфоном и не забывать его в холодильнике.
  5. Использовать можно любые качественные зарядные устройства для любых гаждетов.
  6. Можно спокойно использовать телефон, когда он на зарядке. Хоть болтать, хоть играть.

Как правильно заряжать аккумулятор? Зарядка аккумулятора | Заряд аккумуляторной батареи герметичной необслуживаемой

Правильная зарядка аккумулятора

Одним из наиболее важных условий корректной работы, хорошей отдачи и длительного срока службы аккумуляторной батареи является её правильный заряд. Это касается абсолютно всех аккумуляторов: будь то мощные промышленные большой емкости, либо же крошечные батарейки в Ваших мобильных.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи К сожалению, далеко не все пользователи знают, что есть правильная зарядка аккумулятора. Данная статья призвана помочь людям в этом вопросе и быть «руководством пользователя» при столкновении с задачей должным образом зарядить АКБ (аккумуляторную батарею).

Существует множество различных видов электрических аккумуляторов – для каждого из них характерны свои правила и особенности заряда. Все они подробно описаны в инструкциях по эксплуатации, обязательным образом поставляемых продавцом (по крайней мере мы так делаем всегда) вместе с аккумуляторной продукцией. Однако, бороздить инструкцию в поиске нужной информации не всегда удобно, да и не всегда, согласитесь, есть к тому желание. Посему, в данной статье мы обрисуем общие правила по правильной зарядке наиболее популярных и часто используемых в бытовых условиях аккумуляторов – свинцово-кислотных необслуживаемых герметичных АКБ (чаще всего это аккумуляторы для ИБП, аккумуляторы для электромобилей, электромоторов, для лодок, эхолотов, для сигнализации и связи и проч.) – AGM и гелевых аккумуляторов. Эти правила кое в чем справедливы и для автомобильных стартерных (обслуживаемых) АКБ, хоть процесс заряда таких аккумуляторов и имеет некоторые особенности.

Как заряжать аккумулятор?

Итак, давайте разберемся, что представляет из себя правильный заряд аккумуляторной батареи. Для начала хотим обратить внимание на одно общее правило, касающееся ВСЕХ БЕЗ ИСКЛЮЧЕНИЯ видов аккумуляторов, известных науке: чем меньше раз разряжается аккумулятор и чем менее глубоким является каждый отдельно взятый его разряд, тем большим будет срок его службы. Все мифы о том, что аккумулятор (какой бы он ни был!),  нужно каждый раз полностью разряжать, а затем полностью заряжать, и только так он прослужит максимально долго, а также утверждения «знатоков», что, мол, надо обязательно периодически разряжать аккумулятор, иначе он испортится – полная чушь! Если Вам предлагают купить аккумулятор и при этом рассказывают подобные «истории» – держитесь от таких продавцов и их продукции подальше.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Для низкокачественных батарей, производимых из «грязного» вторсырья, отсутствие периодической «встряски» в виде разряда-заряда может действительно быть причиной быстрого выхода из строя (из-за того, что пластины данных АКБ чрезмерно загрязнены, и без «встрясок» данная «грязь» быстро обволакивает поверхность пластин и мешает нормальному прохождению процесса электролиза). Но для качественных аккумуляторов наиболее излюбленным является именно режим постоянного (буферного) подзаряда, при котором практически отсутствуют разряды, а сама АКБ постоянно пребывает под правильным напряжением.

Здесь надо учитывать также эффект памяти некоторых аккумуляторных батарей — в настоящий момент под эффектом памяти понимается обратимая потеря ёмкости, имеющая место в некоторых типах электрических аккумуляторов при нарушении рекомендованного режима зарядки, в частности, при подзарядке не полностью разрядившегося аккумулятора. Название связано с внешним проявлением эффекта: аккумулятор как будто «помнит», что в предыдущие циклы работы его ёмкость не была использована полностью, и при разряде отдаёт ток только до «запомненной границы». Никель-металл-гидридный (Ni-MH), Никель-кадмиевый (NiCd), Серебряно-цинковый аккумулятор.

Переходим ближе к делу. Чтобы правильно заряжать аккумулятор нужно понимать, в каком режиме он у Вас эксплуатируется.

Что такое буферный режим работы

Самый яркий пример буферного режима работы аккумулятора – ИБП (источник бесперебойного питания, он же UPS). В ИБП аккумуляторная батарея находится на постоянной подзарядке и отдает энергию лишь тогда, когда пропадает электричество в сети, а как только оно появляется, аккумулятор тут же подзаряжается. Это самый щадящий режим работы и именно в буферном режиме, как мы уже говорили, аккумуляторы служат дольше всего (например, наши батареи EverExceed серии ST, производимые по технологии AGM нового поколения, имеют срок службы в буферном режиме при Т=20оС – 12 лет).

Что такое циклический режим работы

Пример циклического режима использования АКБ – поломоечная машина, детский электромобиль в парке аттракционов, либо же система автономного электропитания с использованием альтернативных источников энергии (солнечных батарей, ветряков и т.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи д.). Аккумуляторы в этих приложениях разряжают-заряжают как минимум 1 раз в сутки. Такой режим  является наиболее суровым, и срок службы АКБ тут уже исчисляется не годами, а количеством циклов разряд-заряда (ну и их глубины, естественно). Упомянутые ранее аккумуляторы EverExceed серии ST могут обеспечить до 600 циклов глубокого 100% разряда (обычные же AGM-аккумуляторы – не более 280). Всегда очень удивляет, когда в приложениях с явно циклическим характером работы (те же системы электропитания на солнечных батареях, либо мобильные кофемашины) некоторые «умельцы» предлагают использование стартерных автомобильных аккумуляторов (аргумент – их дешевизна!). Уведомляем всех, кто столкнулся с подобным предложением: стартерные АКБ имеют тонкие пластины, они рассчитаны лишь на запуск двигателя и дальнейшую подзарядку от генератора, в циклическом же режиме с глубокими разрядами они не прослужат и пары месяцев – их пластины «посыпятся» и на этом эксперемент с «дешевым аналогом» будет завершен.

Как правильно заряжать аккумулятор в буферном режиме:

Всем известно, что номинальное напряжение одного элемента в свинцово-кислотных АКБ = 2 Вольта (отметим, что на практике оно обычно никогда не равняется строго 2 В, но для простоты применяется именно такое число). В быту наиболее часто используются аккумуляторные батареи напряжением 6 Вольт (3 элемента) и 12 Вольт (6 элементов).

В буферном режиме напряжение заряда следует выставить на уровне 2,27 – 2,30 Вольт на элемент (то есть для 12-вольтового аккумулятора это 13,6 – 13,8 В, а для 6-вольтового – 6,8 – 6,9 В). Это подходит как для AGM, так и для гелевых батарей.

Ток заряда должен быть ограничен в величину, равную 30% от номинальной 10-часовой емкости аккумулятора, выраженную в Амперах (для гелевых аккумуляторов – 20%). Например, для батареи с емкостью С­10=100 Ач ограничение тока заряда должно составлять 30 А (для гелевых АКБ – 20 А).

Как правильно заряжать аккумулятор в циклическом режиме:

Напряжение заряда:

2,4 – 2,45 В/эл.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи  (14,4 – 14,7 В на 12-вольтовую батарею или 7,2 – 7,35 В на 6-вольтовую) – для AGM-аккумуляторов;

2,35 В/эл (14,1 В на 12-вольтовую батарею или 7,05 В на 6-вольтовую) – для гелевых аккумуляторов.

Ток заряда:

20% от С10 (для батареи емкостью 100 Ач – это 20 А).

Сколько должен длиться заряд батареи

Продолжительность заряда зависит от изначальной заряженности (разряженности) батареи. Поначалу идет быстрый заряд (бустерный), но по мере насыщения потребляемый ток снижается, доходя до минимума при достижении полной заряженности АКБ. Критерий  полной заряженности – падение тока, который принимает аккумулятор, до  2 – 3 мА на каждый Ач емкости батареи (при буферном заряде). Например, для той же С­10=100 Ач батареи падение тока зарядки до 200 – 300 мА будет означать, что батарея почти полностью заряжена. Чтобы довести уровень заряда АКБ до 100%, следует продолжать зарядку таким милли-током еще около 1 часа. Обычно, полностью разряженная батарея заряжается за 10 часов в циклическом режиме или за 30-48 часов в буферном.

Следует учесть, что для полной зарядки аккумуляторной батареи ей следует сообщить примерно на 20% энергии больше, чем следует из понятия “номинальная емкость”. Это, как говорится, законы природы, и они едины для всех свинцово-кислотных да и других батарей, независимо от вида и производителя. Образно говоря, если батарею не «перенасытить», в ней не завершатся должные электрохимические процессы и дальнейшая отдача будет меньше.

Производить зарядку аккумуляторных батарей желательно при температуре окружающей среды 20 – 25оС.

При меньшей температуре заряжать необходимо более длительное время. Зарядка аккумулятора при температуре менее 0оС становится крайне нежелательной (ибо почти безрезультатна). Желательно также наличие функции термокомпенсации (изменения напряжения заряда в зависимости от температуры окружающей среды) на Вашем зарядном устройстве.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи

Таблица с основными параметрами правильной зарядки аккумуляторной батареи

БУФЕРНЫЙ РЕЖИМ

ЦИКЛИЧЕСКИЙ РЕЖИМ

Напряжение заряда

Для 12-в АКБ: 13,6-13,8 В

Для 6-в АКБ: 6,8-6,9 В

Для 12-в АКБ: 14,4-14,7 В

Для 6-в АКБ: 7,2-7,35 В

Ток заряда (не более!)

30% от емкости C10 (для гелевых АКБ – 20%)

20% от емкости C10

Предположительность заряда

30-48 часов

10-12 часов

Критерий заряженности

Падение потребляемого тока до 2-3 мА/Ач + еще 1 час заряда таким током.

Падение потребляемого тока до 8-10 мА/Ач + еще 1 час заряда таким током

Также даем ответ на вопрос пользователья по поводу режимов заряда «BULK», «ABSORBTION» и «FLOAT«, присутствующих в некоторых ЗУ с интеллектуальной системой заряда:

  • В режиме BULK идет зарядка постоянным током, при этом напряжение на аккумуляторе постоянно растет до значения 2,4-2,45 В/эл;
  • В режиме ABSORPTION достигается максимальное напряжение, которое поддерживается постоянным, в то время как ток зарядки падает;
  • В режиме FLOAT напряжение плавно снижается до буферного (2,27В/эл.), ток остается минимальным. Это есть режим СОДЕРЖАНИЯ аккумулятора.

Выравнивающий заряд применяется, когда есть значительный разброс по напряжению на аккумуляторах (элементах или моноблоках) – более +/- 1%. Но такое бывает редко, по крайней мере для приличных АКБ. Кроме того, если батарея хоть изредка включается на разряд, а потом на заряд, то разброс в какой-то степени сглаживается. Если разброса нету – то и выравнивающий заряд производить нет смысла.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи

Более подробная информация по правильному заряду конкретных видов аккумуляторных батарей содержится в инструкциях по эксплуатации.

Пульсар Лимитед – Энергия для Лучшей Жизни!

Часто задаваемые вопросы по аккумуляторным батареям.

Вопрос: Что означает “эффект памяти”?

        NiCd и NiMH батареи обладают отрицательным свойством, называемым “эффект памяти”. Проявляется он в том, что при неоднократном полном заряде и частичном разряде элементы этих аккумуляторных батарей запоминают этот уровень частичного разряда и он становится для них порогом — уровнем минимального заряда. Выглядит это так, как будто у аккумулятора уменьшилась емкость. Все остальные характеристики батареи при этом не изменяются. Бороться с этим эффектом можно путем проведения периодических (1 раз в 2-3 недели) циклов полный разряд – заряд. В современные Li-Ion и Li-polymer аккумуляторных батареях эта болезнь отсутствует.

Вопрос:  Купил новую аккумуляторную батарею,  но она не заряжена. Это нормально?

        Новые аккумуляторные батареи поставляются в разряженном состоянии. При первом использовании необходимо произвести полную зарядку. Первую зарядку нужно производить в течение продолжительного времени — около 10-12 часов.

Вопрос:  Новая аккумуляторная батарея, по ощущениям, имеет меньшую емкость, чем указано на этикетке. В чем тут дело?

        Перед тем как емкость аккумуляторной батареи достигнет своего максимального значения нужно произвести несколько циклов полного заряда – разряда батареи. Рекомендуется не менее 3-х раз. Ваше устройство может не произвести полную зарядку батареи с первого раза. Возможно, при первых циклах заряда зарядное устройство остановит зарядку, выдав информацию, что батарея полностью заряжена, хотя на самом деле заряд будет не полный. Это нормальное явление. Вам необходимо извлечь батарею из устройства и снова установить ее.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи После этого процесс зарядки продолжится.

Вопрос:  При подборе аккумуляторной батареи для ноутбука обратил внимание на её напряжение. В разных источниках у одной и той же батареи напряжение может быть указано 10,8 вольт или 11,1 вольта. Это разные аккумуляторы?

        Да, действительно, такое очень часто встречается. Одинаковые аккумуляторы для ноутбуков могут иметь на этикетке надпись — 10,8 вольт или 11,1 вольта. Это совершенно идентичные аккумуляторы и Вы можете использовать в своем ноутбуке и тот и другой. Происходит это только из-за того, что при производстве аккумуляторов завод-изготовитель по разному маркирует элементы, из которых состоят все аккумуляторные батареи. Их напряжение может составлять либо 3,6 вольта, либо 3,7 вольта. Разница тут не большая, поэтому эти элементы полностью взаимозаменяемы. Такая же ситуация обстоит и с аккумуляторами, на которых написано напряжение 14,4 вольта или 14,8 вольта и 7,2 вольта или 7,4 вольта.

Вопрос:  Что вы посоветуете при использовании аккумуляторной батареи?

        1. Первоначальный заряд. Новые аккумуляторные батареи поставляются разряженными и не набирают полной емкости при первом заряде. Нужно произвести не менее 3-х полных  циклов заряд – разряд прежде, чем емкость батареи достигнет заявленной емкости.

        2. Борьба с “эффектом памяти”. Для аккумуляторных батарей NiCad и NiMH систем необходимо 1 раз в 2-3 недели производить цикл полного разряда – заряда. Это предотвратит снижение емкости аккумуляторной батареи из-за “эффекта памяти”

        3. Сохраняйте батарею в чистоте. В основном это касается контактов аккумулятора. Периодически протирайте контакты батареи ватной палочкой или щеткой, смоченной в спирте. Это предотвратит накопление на контактах отложений, не проводящих электричество.

       4. Периодически используйте батарею.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Хотя бы раз в 2-3 недели используйте батарею. Если Вы хранили ее длительное время без использования, то Вам, возможно, понадобится процедура “тренировки” как для новой батареи, описанная выше.

       5. Хранение аккумуляторной батареи. Если Вы не планируете использовать батарею длительное время (от месяца и более), то ее следует извлечь из устройства, протереть от грязи контакты и хранить в сухом прохладном месте, удаленном от источников тепла. Все аккумуляторные батареи различных систем подвержены не большому саморазряду. Это необходимо помнить перед продолжением использования аккумуляторной батареи.

       6. Оптимизация энергопотребления. Для увеличения времени автономной работы ноутбука Вам нужно оптимизировать его энергопотребление. Все современные ноутбуки позволяют настраивать функции энергосбережения – снижение частоты процессора во время ожидания, остановку вращения жестких дисков, снижение яркости свечения экрана и т.д. Также нужно помнить, что подключение дополнительных устройств увеличивает энергопотребление. Многие USB-устройства получают питание при подключении к ноутбуку.

Вопрос:  Аккумуляторы увеличенной емкости. В чем плюсы и минусы этих батарей?

Плюсы: 


— так как АКБ немного приподнимает ноутбук примерно на 2 — 2,5 см., то отведение тепла становится существенно лучше, температура снижается на 2 — 4 градуса (проверено неоднократно раз опытным путем),


— работать, печатая на клавиатуре, под углом в 10 -15 градусов несколько приятнее даже на коленках,


— при оптимальных настройках автономная работа от АКБ увеличивается до 8 -12 часов, что в дороге позволяет отказаться от подзарядок в автомобиле через автомобильный адаптер.




Минусы: 


— ноутбук с АКБ повышенной мощности становится несколько тяжелее, так как АКБ в два раза толще стандартной,


— при не правильном подключении АКБ в разьем батареи и не использования обязательно фиксации, АКБ может в любой момент выпасть, но это редкость, кроме этого при транспортировке ноутбука в обязательном порядке требуется снимать АКБ с ноутбука (общие правила).Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи


Внимание! При использовании материалов сайта ссылка на www.MirBatt.ru обязательна.

что это, значение, принцип работы

В автомобилях и мотоциклах аккумулятор используется для запуска двигателя электростартером. Он служит вспомогательным источником электроэнергии при заглушенном двигателе или в случаях, когда генератор на малых оборотах не справляется с нагрузкой.

Что такое аккумуляторная батарея

Аккумулятор — это перезаряжаемый источник электроэнергии, используемый в машинах и мотоциклах. В автомобилях используются свинцово-кислотные аккумуляторные батареи. Этот выбор обоснован тремя качествами:

  • доступная цена;
  • высокая удельная энергоемкость;
  • низкое внутреннее сопротивление (большой пусковой ток).

Принцип действия АКБ (автомобильной кислотной батареи) основан на реакции свинца и его диоксида. При разряде электроэнергия вырабатывается за счет взаимодействия свинца с серной кислотой (образование сульфата). Во время заряда окисляется свинец анода и восстанавливается диоксид свинца на катоде.

Устройства состоят из последовательно соединенных секций («банок») напряжением 2 вольта. Напряжение зависит от сферы применения:

  • 6-вольтовые АКБ применяются на легкой моторной технике;
  • 12-вольтовые — на большинстве мотоциклов, автомобилей, грузовиков и автобусов с бензиновыми моторами;
  • 24-вольтовые — на тяжелых дизельных грузовиках и автобусах, на специальной и армейской технике.

Какие бывают аккумуляторы. Виды аккумуляторов

Аккумуляторные батареи делятся на два типа:

  • Пусковые, главное назначение первых — питание стартера двигателя. Они отличаются большим пусковым током, однако разрушаются при глубоком разряде и не могут долгое время выдавать большой ток. Такие АКБ устанавливаются на технику с двигателями внутреннего сгорания.
  • Тяговые, предназначенные для обеспечения ходовых двигателей электроэнергией.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Они не могут выдать ток в сотни ампер, зато могут без вреда разряжаться «в ноль» — пластины не разрушаются при глубоком разряде. Более толстые прочные пластины кислотных тяговых АКБ увеличивают вес и стоимость устройств. Такие аккумы используются на электромобилях, погрузчиках и прочей технике с электродвигателями.

В зависимости от сплава состава пластин и электролита, автомобильные пусковые АКБ делятся на следующие типы:

  • Сурьмянистые. Самая старая разновидность «аккумов», отличающаяся высоким содержанием сурьмы в свинцовых электродах (более 5%). Сурьма увеличивает прочность пластин, однако усиливает процесс электролиза — вода разлагается на кислород и водород. Такие аккумуляторы требуют постоянного контроля уровня содержимого банок и доливки дистиллированной воды.
  • Малосурьмянистые. АКБ с небольшим содержанием сурьмы (до 5%) медленнее выкипают и не требуют частых проверок уровня электролита. Это позволило создать необслуживаемые батареи, которые практически не требуют вмешательства. В отличие от кальциевых и гелиевых батарей, малосурьмянистые менее требовательны к показателям напряжения бортовой сети. Если напряжение на генераторе превышает норму, АКБ не разрушаются и не теряет емкость.
  • Кальциевые. Более современные модели, в которых свинец пластин содержит кальций вместо сурьмы. Это позволило еще больше снизить интенсивность газовыделения и уменьшить саморазряд. Они хранятся дольше, однако теряют емкость при систематическом перезаряде и резких скачках напряжения бортовой сети. Поэтому для старых отечественных авто с ненадежным электрооборудованием актуальны малосурьмянистые аккумы.
  • Гибридные. Малосурьмянистые аноды и кальциевые катоды таких устройств позволяют совместить положительные качества двух типов батарей. Они имеют средние характеристики: расход воды ниже, чем у сурьмянистых, устойчивость к перезаряду выше, чем у кальциевых.
  • Гелевые и AGM. Электролит в них находится в связанном гелеобразном состоянии.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Это исключает возможность утечки кислоты при повреждении или опрокидывании аккума. AGM-устройства заполнены пористым материалом, предотвращающим осыпание пластин. Высокая цена, резкое падение емкости при низкой температуре и уязвимость к большому току заряда делает их востребованными лишь на дорогих иномарках, оборудованных системами «стоп-старт».

Отдельно стоит отметить два вида батарей, используемых на технике с электроприводом:

  • Щелочные. Никель-железные и никель-кадмиевые аккумы со щелочью вместо кислоты отличаются устойчивостью к глубокому разряду и долговечностью. Однако они обладают высоким внутренним сопротивлением и не могут выдать ток, достаточный для работы стартера.
  • Литий-ионные. Изделия отличаются высокой энергоемкостью и быстрым зарядом. Однако они дорого стоят, чувствительны к температуре и быстро теряют емкость. Их используют на электромобилях типа Tesla, Nissan Leaf.

Щелочные и литиевые батареи не применяются в качестве пусковых.

Из чего состоит аккумулятор автомобиля (конструкция аккумулятора)

12-вольтовая аккумуляторная батарея состоит из корпуса с отделениями для 6 ячеек. В ячейки помещены сборки из положительных и отрицательных электродов, разделенных сепараторами. Перемычки обеспечивают электрический контакт между анодами и катодами соседних банок. К крайнему катоду и аноду подключена отрицательная и положительная клеммы. Банки заполнены электролитом — водным раствором серной кислоты. Для его заливки и контроля уровня в крышке корпуса имеются пробки.

Основные характеристики автомобильного аккумулятора

При выборе аккума для машины следует обратить внимание на такие показатели:

  • Емкость — количество электроэнергии, которую может отдать аккумулятор до момента полного разряда.
  • Напряжение, которое должно соответствовать напряжению бортовой сети.
  • Пусковой ток, определяющий эффективность работы аккумулятора.
  • Полярность — расположение положительной и отрицательной клеммы.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Если расположить АКБ лицевой частью к себе (стороной с клеммами), при прямой полярности плюс находится слева, при обратной — справа. В отечественных авто и большинстве иномарок предусмотрены аккумы с прямой полярностью.
  • Габариты. Слишком большую или маленькую батарею не получится закрепить на штатном месте.

Следует учитывать тип АКБ. Для машин с системами «старт-стоп» нужно покупать гелевые и AGM-системы, а на более простые авто следует ставить кальциевые и гибридные.

какие параметры аккумуляторных батарей нужно проверять и как это сделать?

При использовании аккумуляторных батарей на любых объектах, особенно в системах бесперебойного питания, за их состоянием нужно следить и регулярно проводить проверки. В этом материале мы рассмотрим основные параметры АКБ, а также рассмотрим, какими приборами и как можно провести их контроль и проверку!

Основная задача при проверке состояния любой аккумуляторной батареи – выяснить, обладает ли она достаточной емкостью, может ли обеспечить заявленные производителем характеристики в течение необходимого времени. Однако непосредственно средствами измерения определяются только несколько основных параметров – напряжение, сила тока. В обслуживаемых аккумуляторах можно также замерить плотность электролита. Измерения можно проводить неоднократно, фиксируя изменение значений с течением времени. Все остальные параметры и характеристики не измеряются напрямую, а выводятся по разработанной изготовителем методике, причем она зависит и от типа АКБ, и от рекомендаций производителя, и от вида подключенной нагрузки. При этом необходимо учитывать, что многие зависимости, характеризующие работу АКБ, носят нелинейный характер. Могут сказываться и другие факторы, например, влияние температуры.

При выполнении краткосрочных измерений при использовании даже самых совершенных методик тестирование носит не точный количественный, а качественный характер. Единственный достоверный способ измерения емкости АКБ – его полная разрядка в течение многих часов с тщательной фиксацией параметров в ходе всего процесса.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Но использовать столь продолжительную процедуру на практике можно далеко не всегда, особенно если батарей много. Тем не менее, и краткосрочных оценочных измерений достаточно для того, чтобы отличить работоспособный аккумулятор от изношенного, утратившего емкость, и вовремя произвести замену АКБ.

Способы проверки АКБ

1. Подключение нагрузки

К АКБ на некоторое время подключается рабочая или второстепенная нагрузка той или иной величины. Вольтметром или мультиметром измеряется падение напряжения. Если процедура выполняется несколько раз, между измерениями выжидается определенное время, чтобы батарея восстановилась. Полученные данные сопоставляются с параметрами, заявленными производителем АКБ для данного типа батареи и данной величины нагрузки.

2. Измерения при помощи нагрузочной вилки

Строение простейшей нагрузочной вилки показано на схеме:

Устройство оснащено вольтметром, параллельно которому установлен большой по мощности нагрузочный резистор, и имеет два щупа. В старых моделях вольтметры аналоговые; новые модели, как правило, оснащены ЖК-дисплеем и цифровым вольтметром. Существуют нагрузочные вилки с усложненной схемой, использующие несколько нагрузочных спиралей (сменных сопротивлений), рассчитанные на разные диапазоны измерения напряжений, предназначенные для тестирования кислотных либо щелочных аккумуляторов. Есть даже вилки, которыми тестируют отдельные банки аккумуляторов. В состав продвинутых устройств помимо вольтметра может входить амперметр.

Получаемые при измерениях данные также необходимо сопоставлять с параметрами, заявленными производителями для данного типа батарей и данного сопротивления.

3. Измерения при помощи специальных устройств, тестеров анализаторов АКБ

Приборы Кулон

Принципиальным развитием идеи нагрузочной вилки можно считать семейство цифровых приборов-тестеров Кулон (Кулон-12/6f, Кулон-12m, Кулон-12n и другие) для проверки состояния свинцовых кислотных аккумуляторов, а также другие подобные устройства.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Они позволяют проводить быстрые замеры напряжения, приближенно определять емкость АКБ без контрольного разряда и сохранять в памяти несколько сотен, а иногда и тысяч измерений.

Приборы Кулон питаются от аккумулятора, на котором проводятся измерения. Входящие в комплект провода с разъемами «крокодил» имеют части, изолированные друг от друга, что обеспечивает четырехзажимное подключение к аккумулятору и устраняет влияние на показания прибора сопротивления в точках подключения зажимов. По заявлению разработчика, прибор анализирует отклик аккумулятора на тестовый сигнал специальной формы, при этом измеряемый параметр примерно пропорционален площади активной поверхности пластин аккумулятора и, таким образом, характеризует его емкость. Фактически, точность показаний зависит от достоверности методики, разработанной производителем.

Емкость аккумулятора – электрический заряд, отдаваемый полностью заряженным аккумулятором – измеряется в ампер-часах и представляет собой произведение тока разряда на время. Для точного определения емкости необходимо произвести разряд батареи (процесс длительный, многочасовой), постоянно фиксируя величину заряда, отдаваемого батареей. При этом относительная емкость АКБ в зависимости от времени изменяется нелинейно. Например, для аккумуляторной батареи типа LCL-12V33AP относительная емкость меняется со временем следующим образом:









Время разряда, часыОтносительная емкость, %
0,137
1,348
0,753
1,976
4,284
9,292
20100

Прибор Кулон при помощи быстрого измерения ориентировочно определяет емкость полностью заряженного аккумулятора.Аккумуляторная батарея как работает: Устройство и принцип работы автомобильного аккумулятора | Полезные статьи Он не предназначен для оценки степени заряженности АКБ, все измерения необходимо проводить на полностью заряженной батарее. Устройство кратковременно подает тестовый сигнал, регистрирует отклик от батареи и через несколько секунд выдает ориентировочную емкость АКБ в ампер-часах. Одновременно на экран выводится измеренное напряжение. Полученные значения можно сохранять в памяти прибора.

Производитель подчеркивает, что устройство не является прецизионным измерителем, но позволяет оценочно определять емкость свинцовой кислотной батареи, особенно если пользователь самостоятельно откалибровал прибор при помощи аккумулятора такого же типа, что и тестируемый, но с известной емкостью. Процедура калибровки подробно изложена в инструкции к прибору.

Тестеры PITE

Следующая разновидность устройств для тестирования АКБ – тестеры PITE: модель PITE 3915 для измерения внутреннего сопротивления и модель PITE 3918 для оценки проводимости батарей.

Управление осуществляется при помощи цветного сенсорного экрана, но основные управляющие кнопки вынесены на клавиатуру в нижней части корпуса. Прибором можно тестировать батареи емкостью от 5 до 6000 А·ч, с элементами аккумулятора 1.2 В, 2 В, 6 В и 12 В. Диапазон измерения напряжения – от 0.000 В до 16 В, сопротивления – от 0.00 до 100 мОм. Прибор позволяет задать тип проверяемых батарей, выполнить измерение напряжения и сопротивления (модель 3915) или напряжения и проводимости (модель 3918), и на их основании судить о том, соответствует емкость батареи заявленной производителем или нет. При этом параметр Capacity (емкость батареи) выводится в процентах.

Интерфейс прибора позволяет проводить как одиночные измерения, так и последовательные (до 254 измерений в каждой последовательности, совокупное количество результатов более 3000), что удобно при проверке большого количества однотипных АКБ (в последнем случае результаты сохраняются автоматически, помимо данных в них фиксируется также порядковый номер измерения). В зависимости от настроек прибор может использовать для выдачи результата (статуса Good, Pass, Warning или Failed) собственные критерии либо значения, заданные пользователем. Результаты тестирования через порт USB могут быть перенесены на компьютер для просмотра и последующей подготовки отчетов.

Анализаторы Fluke

Более глубокое развитие той же идеи – приборы Fluke Battery Analyzer серии 500 (BT 510, BT 520, BT 521), которые позволяют измерять и сохранять в памяти напряжение, внутреннее сопротивление стационарной батареи, температуру минусовой клеммы, напряжение при разрядке. При наличии дополнительных аксессуаров можно измерять и сохранять в памяти и другие параметры. Тесты можно проводить как в режиме отдельных измерений, так и в последовательном режиме; используя настраиваемые профили. Есть возможность задать пороговые значения для различных параметров. Встроенный порт USB позволяет передавать собранные записи (до 999 записей каждого типа) на компьютер для подготовки отчетов с помощью программного обеспечения Analyze Software, входящего в комплект поставки.

Щупы прибора имеют специальную конструкцию: внутренний подпружиненный контакт предназначен для измерения тока, внешний – для измерения напряжения. Если на щуп надавить, внутренний наконечник смещается внутрь таким образом, что оба контакта каждого щупа касаются поверхности одновременно. В результате одни и те же щупы позволяют организовать как 2-проводное, так и 4-проводное подключение к полюсам батареи (последнее необходимо для измерения Кельвина).

  • Прибор позволяет измерять следующие параметры:

  • Внутреннее сопротивление батареи (измерение занимает менее 3 с).

  • Напряжение батареи (производится одновременно с измерением внутреннего сопротивления)

  • Температура минусовой клеммы (рядом с черным наконечником на щупе BTL21 Interactive Test Probe предусмотрен ИК-датчик)

  • Напряжение при разрядке (определяется несколько раз в ходе разрядки или во время теста на нагрузку)

Также возможно измерение пульсирующего напряжения, измерение переменного и постоянного тока (при наличии токовых клещей и адаптера), выполнение функций мультиметра. С анализаторами Fluke можно использовать интерактивный тестовый щуп BTL21 Interactive Test Probe со встроенным датчиком температуры. С приборами совместимо большое разнообразие дополнительных аксессуаров (токовые клещи, удлинители разного размера, съемный фонарик и т. п.).



Хотя прибор обладает богатым функционалом, ключевым этапом в определении состояния АКБ остается сопоставление измеренных показателей с расчетными или заданными изготовителем для данного конкретного типа батарей. Устройства Fluke Battery Analyzer серии 500 удобны для массовой инспекции состояния батарей. Последовательный режим и система профилей позволяют выполнять необходимые измерения одно за другим, результаты запоминаются прибором и хранятся в упорядоченной форме, последовательно пронумерованные и разбитые на группы. Но прибор не имеет функции прямого или косвенного измерения емкости АКБ в ампер-часах – хотя бы потому, что для батарей разного типа на сегодняшний день вряд ли возможно разработать единую точную методику такого определения.

Все перечисленные выше устройства, хоть и отличаются друг от друга по размеру, относятся к классу портативных. В отдельную группу можно выделить стационарные комплексы для проверки АКБ, которые могут проводить быстрые испытания с определением внутреннего сопротивления, контролировать все параметры, включая активную и реактивную составляющие сопротивления, управлять процессом разряда/заряда и т. п. Подобные комплексы адресованы скорее исследовательским лабораториям, промышленным производителям АКБ и разработчикам нового оборудования, чем конечным пользователям.

Анализаторы Vencon

Промежуточное положение занимает анализатор Vencon UBA5, предназначенный для работы с аккумуляторными батареями, используемыми в портативных средствах связи (мобильных телефонах, носимых радиостанциях, разнообразных гаджетах и т. п.), портативных инструментах и других устройствах напряжением до 18.5 В, емкостью от 10 мА·ч до 100 А·ч. Анализатор Vencon UBA5 совмещен с зарядным устройством и может использоваться в ремонтных мастерских, центрах обслуживания компьютерной техники, мобильной электроники и других устройств.

Прибор предназначен для различных типов АКБ (никель-кадмиевых, никель-металл-гидридных, литий-ионных, литий-полимерных, свинцовых кислотных и др.), позволяет задавать токи зарядки и разрядки, изменять алгоритмы работы устройства, тестировать емкость батарей при помощи однократных и многократных измерений, сохранять результаты измерений в памяти и выводить их через порт USB, готовить графические отчеты при помощи программного обеспечения.

Характерная особенность устройства – два измерительных канала (по 2 измерительных провода каждый), причем для проведения различных измерений их можно комбинировать, в том числе и от нескольких устройств UBA5. Дополнительно могут заказываться датчики температуры.

Прибор способен генерировать зарядный ток до 2А на каждом канале, ток нагрузки – до 3А (45 Вт) на каждом канале (в комплект входит адаптер питания). Более точные характеристики зависят от конкретной модели устройства – в серию UBA5 входит 5 различных моделей приборов.

В данном типе прибора, как и во всех описанных ранее, ключевым для определения состояния батареи является сопоставление измеренных показателей с параметрами, заявленными производителями АКБ.

4. Полная разрядка/зарядка

На сегодняшний день полная разрядка и зарядка – это единственный прямой и максимально достоверный способ определения емкости АКБ. Специализированные устройства контроля разряда/заряда батареи (УКРЗ) позволяют выполнить глубокую разрядку и последующую полную зарядку батареи с постоянным контролем емкости. Однако эта процедура занимает очень много времени: 15-17-20-24 часа, иногда и более суток, в зависимости от емкости и текущего состояния батареи. Хотя метод дает наиболее точные результаты, из-за временных затрат его применение ограничено.

5. Измерение плотности электролита

В обслуживаемых аккумуляторах для определения их состояния можно измерять плотность электролита, поскольку между этим параметром и емкостью АКБ существует непосредственная зависимость. Плотность электролита может меняться в силу разных причин, которые вдобавок взаимосвязаны (частый глубокий разряд батареи, сульфатация, неоптимальная плотность электролита, испарение и утечка раствора и т. д.). Аккумулятор начинает быстрее разряжаться, отдает меньше заряд. При этом необходимо понимать, что плотность электролита даже в исправном аккумуляторе, находящемся в идеальном состоянии – не константа, она меняется с температурой и степенью зарядки аккумулятора. Более того, для разных регионов рекомендованная плотность электролита отличается в зависимости от типовых климатических условий.

Результаты измерения плотности ареометром можно сопоставить со следующей диаграммой для кислотных аккумуляторов.

В зависимости от того, больше или меньше плотность электролита, чем требуемая (а для батареи вредно отклонение и в ту, и в другую сторону), можно частично или полностью заменить электролит, залить дистиллированную воду или раствор необходимой концентрации, обязательно обеспечив перемешивание. Как и при использовании всех ранее описанных способов проверки состояния АКБ ключевым является сопоставление измеренных значений с рекомендациями производителя батареи и следование всем предусмотренным процедурам обслуживания.

Выводы

Каждый способ определения текущего состояния аккумуляторной батареи имеет свои преимущества и недостатки. Каким из них пользоваться – зависит от ваших задач и возможностей. Сориентироваться вам поможет эта сводная таблица.






Способ определения состояния АКБПреимуществаНедостатки
Подкл ючение нагрузкиДостаточно реалистичные результаты без использования специализированного оборудованияВремязатратность при многократных измерениях Измеренные параметры документируются вручную
Нагрузочная вилка, специализированные анализаторы и тестеры

Портативность устройств


Простота использования


Быстрое проведение измерений, особенно многократных


Некоторые модели способны проводить измерения без выведения АКБ из режима эксплуатации


Специализированные модели позволяют сохранять результаты и переносить их на компьютер для подготовки отчетов

Часть параметров АКБ определяется по косвенным методикам Оценочная точность измерений
Полный разряд/зарядЕдинственный достоверный способ оценки емкости АКБОчень продолжительная процедура – многие часы, иногда сутки
Измерение плотности электролита ρНепосредственное определение состояния батареи по концентрации электролитаСпособ применяется только для обслуживаемых батарей

Материал подготовлен
техническими специалистами компании “СвязКомплект”.

Часто задаваемые вопросы

Какую емкость аккумуляторной батареи выбрать?

     Для автономной системы электроснабжения дома желательно выбирать аккумуляторную батарею такой емкости, чтобы ее можно было зарядить за один день с помощью выбранного Вами оборудования (массив солнечных панелей , МPPT контроллер, инвертор). Если мы говорим о свинцово-кислотных батареях типа AGM и GEL, то они заряжаются токами 0,1 С ( 10% от емкости), но не более 0,2 С или 0,3 С.Кстати говоря , на многих импортных аккумуляторах производитель пишет прямо на корпусе рекомендуемое напряжение заряда, подзаряда и максимальный зарядный ток. Например, если Вы выбрали батарею 100 Ампер-часов, то ее надо заряжать током 10 Ампер (но не более 20 или 30 ампер) в течении нескольких часов, в зависимости от степени разряженности. Если вы не успели зарядить батарею за один хороший яркий солнечный день, то на следующий солнце может скрыться за тучами и выработка существенно снизиться.

     Также емкость батареи подбирается в зависимости от суточного потребления энергии, а также из расчета времени автономии, когда используется только накопленная в аккумуляторах солнечная энергия. Чем больше время автономии и чем более мощные электроприборы Вы используете , тем больше емкость аккумуляторных батарей должна быть  и, соответственно, выше стоимость оборудования (не только аккумуляторов).

Какое количество солнечных панелей мне необходимо?

     Количество солнечных панелей выбирается так, чтобы за один хороший солнечный день можно было бы этим массивом панелей полностью зарядить аккумуляторную батарею, от которой Вы будете питаться ночью, а может быть и следующий день, если он не будет солнечным.

     Надо отметить, что выработка энергии от солнечных панелей существенно снижается, если день облачный, сумрачный, но полностью не прекращается. Лучше всего иметь некоторый запас мощности солнечных батарей (излишек мощности), так как в пасмурный день выработка электроэнергии будет не соответствовать расчетам и ожиданиям. Также количество панелей зависит от конфигурации оборудования (инвертора и МРРТ контроллера).

Что такое технология PERC ?

     Технология PERC ( The Passivated Emitters and Rear Cells ) переводится как пассивирование излучателей на задней стороне ячейки. Надо отметить , что технология PERC касается только технологии изготовления солнечных кремниевых ячеек. И если солнечные панели изготовлены из PERC ячеек , то такие панели можно называть PERC солнечные панели . Технология заключается в том , диэлектрическая пленка на задней поверхности ячейки пассивирована и получается локальный металлический контакт, что значительно снижает скорость рекомбинации поверхности и улучшает отражение света на задней поверхности

     В 2006 году эффект пассивации диэлектрической пленки AlOx на задней панели PERC-батареи P-типа привлек внимание людей, что сделало возможным индустриализацию батареи PERC. Впоследствии, со зрелостью технологий промышленной подготовки и оборудования для осаждения AlOx и внедрения лазерной технологии, технология PERC стала постепенно индустриализироваться. Примерно в 2013 году производитель начал импортировать производственные линии PERC, ячейка PERC в последние годы привлекла все больше внимания отрасли, производство может быть быстро расширено. Ожидается, что глобальные производственные мощности увеличатся на 6,5 ГВт в 2017 году и 2,5 ГВт по сравнению с существующими стандартными линиями батарей. По оценкам, к концу 2017 года глобальная емкость батареи PERC достигнет 20 ГВт. Стоит отметить, что 2017 год, вероятно, стал поворотным годом для клеток PERC и обычных ячеек. С расширением емкости ячейки PERC доля рынка обычных ячеек будет постепенно снижаться.

      Эффективность ячейки PERC

      Всего за несколько лет эффективность массового производства ячейки PERC постоянно растет на большой площади. Эффективность производственной линии монокристаллической ячейки PERC в целом достигла 21-21,5%, а поликристаллическая ячейка PERC достигла 20-20,5%. Максимальная эффективность преобразования промышленно развитых монокристаллических PERC и поликристаллических PERC модулей на большой площади составляла 22,6% (Changzhou Trina solar) и 21,63% (JINKO SOLAR) соответственно.

Могу ли я продавать излишки солнечной энергии в сеть ?

Да можете. Но необходимо несколько условий.

  1. Наличие Федерального закона  РФ, разрешающее это делать. 28 декабря 2019 года  Федеральный закон о внесении изменений в закон » Об электроэнергетике» в части развития микрогенерации  принят , опубликован и вступил в полную силу. Эти изменения к закону «Об электроэнергетике» дают возможность собственникам небольших солнечных ( ветро и гидро)  электростанций  продавать излишки электроэнергии до 15 кВт в сеть. Данная продажа не является предпринимательской деятельностью, а соответственно — не нужно платить никакие налоги. Для того , чтобы продавать в сеть ( в обратную сторону) электроэнергию — необходимо иметь электрический счетчик, который учитывает энергию как в прямом , так и в обратном направлениях. Прежде чем приобретать двунаправленный счетчик , рекомендую согласовать выбранную модель с сетевой компанией. Такой счетчик должен находится в государственном реестре электрических счетчиков. Сам закон можно скачать здесь http://publication.pravo.gov.ru/Document/View/0001201912280019?index=0&rangeSize=1

  2. Наличие двунаправленного электрического счетчика для учета электроэнергии в разных направлениях.                                                                                                                                                                                                   Надо заметить, что не все инверторы могут продавать( отдавать)  электроэнергию в сеть. Это могут делать лишь сетевые инверторы  и те гибридные инверторы, у которых производитель прямо обозначил наличие этой функции.

Чем отличается сетевой инвертор (on grid invertor) от вне сетевого (батарейного) инвертора (off grid invertor)?

     Сетевой инвертор (on grid invertor) работает без использования аккумуляторных батарей. Он сразу преобразует постоянную энергию от солнечных батарей в переменный ток, например 220 вольт. И мы можем сразу пользоваться этой энергией для наших нужд. Есть некоторые ограничения. Сетевой инвертор вырабатывает энергию только днем, когда есть солнце. Естественно ночью никакой выработки энергии нет и нет запасов ее, так как аккумуляторные батареи отсутствуют. Еще одно ограничение – это необходимость наличия питания для сетевого инвертора. Если в общественной сети не будет электроэнергии, соответственно сетевой инвертор не будет работать. Это оборудование как правило в дневное время питает нагрузку в доме, а излишки энергии отдает в сеть, а в вечернее и ночное время электроснабжение дома происходит только от общественной сети.

     Вне сетевой (батарейный) инвертор (off grid invertor) работает в паре с аккумуляторной батареей. Он накапливает энергию солнца за день, а в вечернее и ночное время снабжает дом накопленной энергией, преобразуя постоянный ток аккумулятора в переменный, который нужен нам для потребления. Конечно же в дневное время он также отдает энергию для питания нагрузки в доме.

Я имею свой дом 100 кв.м . Сколько будут стоить ваши солнечные батареи для моего дома?

    Во первых чтобы  было понятно : одни только солнечные батареи не смогут обеспечить Вас электроэнергией.  Комплект оборудования на основе солнечной энергии состоит из нескольких элементов : солнечные батареи ( определенное количество — рассчитывается), инвертор  со встроенным контроллером ( или по раздельности)  и аккумуляторные батареи. Если  Вы используете  сетевой инвертор , то аккумуляторные батареи не нужны , хотя сейчас появляются гибридные модели инверторов , которые работают с аккумуляторами , когда сеть неисправна ,  и в сетевом режиме без них — когда сеть исправна. То есть совмещают режим on grid и off grid.

  Все это оборудование рассчитывается , подбирается и собирается как конструктор. В зависимости от требований заказчика.

 По поводу площади дома. Прямой зависимости стоимости оборудования  от площади дома нет. Понятно , что чем больше площадь дома , тем , возможно , больше электрооборудования в доме , но не обязательно.

  Стоимость ( количество) оборудования зависит в основном от 2-х факторов :

1. Среднесуточное потребление электроэнергии в доме в КВТ-часах. Лучше рассматривать зимний период , когда потребление электроэнергии больше. Хотя  бывает и на оборот : летом больше расход электроэнергии : обычно у кого в летний период работают мощные кондиционеры.

Среднесуточное потребление электроэнергии лучше всего высчитывать по счетчику. Взять разницу показаний за определенный период и разделить на количество дней в этом периоде.  Например : взять  разницу показаний за месяц и разделить на 30 ( 31) день.

2.Пиковая мощность. Это сумма мощностей всех электроприборов , которыми Вы пользуетесь в доме.

Когда будет полная информация по этим двум пунктам , после этого можно приступать  к расчету оборудования и определения стоимости этого  основного оборудования( солнечные батареи , аккумуляторы, инверторы и контроллеры). Надо добавить , что  есть еще дополнительное оборудование , относительно недорогое , которые подбирается индивидуально , по месту : кабель для солнечных батарей, коннекторы МС4, автоматы , УЗИП , а также крепления для солнечных батарей.

Я хочу использовать электроэнергию от солнечных батарей для отопления частного дома при помощи электрического котла.  Могу ли я это делать и сколько будет стоить оборудование ?

Надо отметить , что в зимние месяцы солнечная радиация на всей территории России намного меньше, чем весной и летом и , таким образом, солнечные батареи в зимний период не работают на полную мощность( из-за недостатка солнечной радиации). Сам световой день в декабре очень короткий, около 6 часов. Выработка электроэнергии  от солнечных батарей зимой значительно снижается.

  Но начиная с 15 февраля солнечная радиация начинает значительно увеличиваться. И достигает своего пика в мае, июне и июле. И затем опять идет на уменьшение.

 Именно в зимние месяцы ( ноябрь, декабрь и январь) отдача от солнечной электростанции будет очень слабой ( за исключением региона Сочи или  Забайкальский край , где достаточно солнечной энергии в зимний период). А в остальных регионах России свой эффект солнечная электростанция будет давать  в период с февраля по ноябрь. Понятно, что обогрев дома  требуется и в феврале , и в марте и в апреле, в некоторых регионах и в мае включают теплые полы. ООО «Чистая энергия» рекомендует использовать сетевые солнечные электростанции Энерговольт. Надо понимать , что сетевые солнечные электростанции не имеют аккумуляторов, энергию не накапливают , и вырабатывают только в дневное время, когда светит солнце. По сути , сетевая солнечная электростанция, она не заменяет полностью электрическую сеть , а только лишь в дневное время, помогает сокращать расходы электроэнергии.

  Дополнительный бонус , который имеет сетевая солнечная электростанция , это возможность продавать  излишки энергии в сеть. Огорчает то, что цена покупки у электросетей, не соответствует цене продажи в сеть. Разница может достигать 2-3 раза. В каждом регионе должны утвердить свои нормы. Получается , что надо продать в сеть 2 или 3 кВт*ч излишков электроэнергии от солнца , чтобы затем ночью или в зимний период получить «бесплатно» 1 кВт*ч  электроэнергии от сетевой компании.

Какое количество электроэнергии содержит в себе полностью заряженный аккумулятор на 12 В и емкостью 100 Ач и для каких электроприборов этого достаточно?

    Аккумулятор 12В 100Ач  , содержит в себе около 1000 Втч ( или 1 КВтч) запасенной электроэнергии. Как рассчитывается? 12Вх100 Ач = 1200 Втч. Но учитывая , что при зарядке , при закаченных в него 1200 Втч ( или 1,2 Квтч)  электроэнергии , мы сможем получить обратно на 10-15 процентов меньше. Так устроен АКБ.  Поэтому примерно можно «выкачать» из полностью заряженного аккумулятора указанной емкости и напряжения около 1000 Втч ( или 1Квтч) электроэнергии. На что этого хватит?  Например , одна светодиодная лампочка 10 Ватт на 12 Вольт будет гореть 100 часов подряд. 1000Втч /10Вт = 100 часов. Если мы используем лампочку на 220 Вольт , то за счет потерь на преобразователе ( инверторе )  будет уже не 100 часов , а около 90 часов, учитывая КПД преобразования из постоянного тока в переменный. Если у Вас газовый котел , то его потребление около 100-150Ватт в час. Значит  время работы газового котла ( без других электроприборов) от полностью заряженного  аккумулятора 12В 100 Ач , через инвертор ( преобразователь напряжения) в случае аварийного отключения электричества ,  будет около 6-7 часов. Надо отметить , что часто разряжать аккумулятор в «ноль» , на 100% — не рекомендуется. Это сильно укорачивает срок службы АКБ. К тому же не все аккумуляторы предназначены для циклического режима использования (постоянный ежедневный разряд-заряд) . Из свинцово-кислотных АКБ  для циклического режима пригодны гелевые и OPzV. Также литиевые АКБ. У всех добросовестных производителей АКБ в спецификациях на аккумулятор указано в виде графика : сколько циклов разряда-заряда выдержит  АКБ при  разряде  на  100% емкости, при разряде на 50% , при разряде на 30%. Каждый человек может ознакомится с этой информацией и сделать достойный выбор того или иного аккумулятора.


Наши контакты:

Как работают батарейки?

Как работают батарейки?

Как работают батарейки?

Электричество, как вы, наверное, уже знаете, это поток электронов.
через токопроводящую дорожку, как провод. Этот путь называется цепью .

Батареи

состоят из трех частей: анода (-), катода (+),
и электролит . Катод и анод (положительный и отрицательный
стороны на обоих концах традиционной батареи) подключены к электрическому
схема.

Химические реакции в батарее вызывают накопление электронов.
на аноде. Это приводит к электрической разнице между анодом и
катод. Вы можете думать об этой разнице как о нестабильном накоплении
электроны. Электроны хотят перестроиться, чтобы избавиться от этой разницы.
Но они делают это определенным образом. Электроны отталкиваются друг от друга и пытаются уйти
в место с меньшим количеством электронов.

В батарее единственное место, куда можно подойти, — это катод.Но
электролит не позволяет электронам идти прямо от анода к катоду
внутри батареи. Когда цепь замкнута (провод соединяет катод
и анод) электроны смогут попасть на катод. На картинке
выше электроны проходят по проводу, зажигая лампочку вдоль
путь. Это один из способов описания того, как электрический потенциал вызывает появление электронов.
протекать по контуру.

Однако эти электрохимические процессы изменяют химические вещества.
в аноде и катоде, чтобы они перестали подавать электроны.Итак, есть ограниченное
количество энергии, доступной в батарее.

Когда вы перезаряжаете батарею, вы меняете направление
потока электронов с помощью другого источника энергии, например солнечных батарей. В
электрохимические процессы происходят в обратном порядке, и анод и катод восстанавливаются
в исходное состояние и снова может обеспечить полную мощность.


Что есть
батареи?
Что
это энергия?

Что такое схема?
Что такое электрон?
Что такое поток электронов?
Что такое DS1
срок службы батареи?
Что
значит электрически заряженный?
Как
атомы заряжены?

Где
энергия приходит и уходит?


Как работают аккумуляторы? | Живая наука

Батарейки везде.Современный мир зависит от этих портативных источников энергии, которые можно найти во всем: от мобильных устройств до слуховых аппаратов и автомобилей.

Но, несмотря на то, что они широко используются в повседневной жизни людей, батарейкам часто не уделяют должного внимания. Подумайте об этом: вы действительно знаете, как работает аккумулятор? Не могли бы вы объяснить это кому-нибудь другому?

Вот краткое изложение научных данных об источниках энергии для смартфонов, электромобилей, кардиостимуляторов и многого другого. [Тест: электрические и газовые автомобили]

Анатомия аккумулятора

Большинство аккумуляторов состоят из трех основных частей: электродов, электролита и сепаратора, по словам Энн Мари Састри, соучредителя и генерального директора Sakti3, базирующейся в Мичигане. запуск аккумуляторных технологий.

В каждой батарее по два электрода. Оба изготовлены из токопроводящих материалов, но выполняют разные функции. Один электрод, известный как катод, подключается к положительному концу батареи и является местом, где электрический ток выходит (или электроны входят) в батарею во время разряда, когда батарея используется для питания чего-либо. Другой электрод, известный как анод, подключается к отрицательному полюсу батареи и является местом, где электрический ток входит (или электроны покидают) батарею во время разряда.

Между этими электродами, а также внутри них находится электролит. Это жидкое или гелеобразное вещество, содержащее электрически заряженные частицы или ионы. Ионы соединяются с материалами, из которых состоят электроды, производя химические реакции, которые позволяют батарее генерировать электрический ток. [Взгляд изнутри на работу батарей (инфографика)]

Типичные батареи питаются за счет химической реакции. [См. Полную инфографику] (Изображение предоставлено Карлом Тейтом, художником по инфографике)

Последняя часть батареи, разделитель, довольно проста.Роль сепаратора состоит в том, чтобы удерживать анод и катод отдельно друг от друга внутри батареи. По словам Састри, без разделителя два электрода соприкоснутся, что приведет к короткому замыканию и нарушит нормальную работу батареи.

Как это работает

Чтобы представить себе, как работает батарейка, представьте, как вы вставляете щелочные батарейки, такие как двойные AA, в фонарик. Когда вы вставляете эти батарейки в фонарик, а затем включаете его, на самом деле вы замыкаете цепь.Сохраненная в батарее химическая энергия преобразуется в электрическую, которая выходит из батареи в основание лампы фонарика, заставляя ее загораться. Затем электрический ток снова входит в батарею, но на противоположном конце от того места, где он выходил изначально.

Все части аккумулятора работают вместе, чтобы фонарик загорался. Электроды в батарее содержат атомы определенных проводящих материалов. Например, в щелочной батарее анод обычно изготавливается из цинка, а диоксид марганца действует как катод.Электролит между этими электродами и внутри них содержит ионы. Когда эти ионы встречаются с атомами электродов, между ионами и атомами электродов происходят определенные электрохимические реакции.

Серия химических реакций, протекающих в электродах, вместе известна как окислительно-восстановительные (окислительно-восстановительные) реакции. В батарее катод известен как окислитель, потому что он принимает электроны от анода. Анод известен как восстановитель, потому что он теряет электроны.

В конечном итоге эти реакции приводят к потоку ионов между анодом и катодом, а также к освобождению электронов от атомов электрода, — сказал Састри.

Эти свободные электроны собираются внутри анода (нижняя плоская часть щелочной батареи). В результате два электрода имеют разные заряды: анод становится отрицательно заряженным, когда высвобождаются электроны, а катод становится положительно заряженным, поскольку электроны (которые заряжены отрицательно) потребляются.Эта разница в заряде заставляет электроны двигаться к положительно заряженному катоду. Однако у них нет возможности попасть внутрь батареи, потому что разделитель не позволяет им сделать это.

Когда вы щелкаете выключателем на фонарике, все меняется. У электронов теперь есть путь к катоду. Но сначала они должны пройти через основание лампы фонарика. Схема замыкается, когда электрический ток снова входит в батарею через верхнюю часть батареи у катода.

Перезаряжаемые и неперезаряжаемые

Для первичных батарей, например, в фонарике, реакции, питающие батарею, в конечном итоге прекратятся, а это означает, что электроны, которые обеспечивают батарею ее зарядом, больше не будут создавать электрический ток. Когда это происходит, аккумулятор разряжен или «мертв», — сказал Састри.

Вы должны выбросить такие батареи, потому что электрохимические процессы, которые заставили батарею производить энергию, не могут быть обращены вспять, объяснил Састри.Однако электрохимические процессы, происходящие во вторичных или перезаряжаемых батареях, можно обратить вспять, подав в батарею электрическую энергию. Например, это происходит, когда вы подключаете аккумулятор мобильного телефона к зарядному устройству, подключенному к источнику питания.

Некоторые из наиболее распространенных используемых сегодня вторичных батарей — это литий-ионные (литий-ионные) батареи, от которых питается большинство бытовых электронных устройств. Эти батареи обычно содержат угольный анод, катод из диоксида лития-кобальта и электролит, содержащий соль лития в органическом растворителе.Другие перезаряжаемые батареи включают никель-кадмиевые (NiCd) и никель-металлогидридные (NiMH) батареи, которые можно использовать в таких вещах, как электромобили и беспроводные электроинструменты. Свинцово-кислотные (Pb-кислотные) батареи обычно используются в автомобилях и других транспортных средствах для запуска, освещения и зажигания.

Все эти аккумуляторные батареи работают по одному и тому же принципу, сказал Састри: когда вы подключаете батарею к источнику питания, поток электронов меняет направление, и анод и катод возвращаются в исходное состояние.[10 лучших подрывных технологий]

Battery lingo

Хотя все батареи работают более или менее одинаково, разные типы батарей имеют разные характеристики. Вот несколько терминов, которые часто встречаются при обсуждении батарей:

Напряжение : Когда дело доходит до батарей, напряжение — также известное как номинальное напряжение ячейки — описывает величину электрической силы или давления, при которой свободные электроны — переходите от положительного полюса батареи к отрицательному, — пояснил Састри.В батареях с более низким напряжением ток выходит из батареи медленнее (с меньшей электрической силой), чем в батареях с более высоким напряжением (с большей электрической силой). Батареи в фонарике обычно имеют напряжение 1,5 В. Однако, если фонарик использует две батареи последовательно, эти батареи или элементы имеют общее напряжение 3 вольта.

Свинцово-кислотные батареи, подобные тем, которые используются в большинстве неэлектрических автомобилей, обычно имеют напряжение 2,0 вольт. Но обычно в автомобильном аккумуляторе последовательно соединено шесть таких элементов, поэтому вы, вероятно, слышали, что такие аккумуляторы называются 12-вольтовыми батареями.

Литий-кобальтооксидные батареи — наиболее распространенный тип литий-ионных батарей, используемых в бытовой электронике, — имеют номинальное напряжение около 3,7 вольт, сказал Састри.

Ампер : Ампер или ампер — это мера электрического тока или количества электронов, которые проходят через цепь в течение определенного периода времени.

Емкость : Емкость или емкость элемента измеряется в ампер-часах, то есть количество часов, в течение которых батарея может подавать определенное количество электрического тока, прежде чем ее напряжение упадет ниже определенного порога, согласно сообщению Райса. Кафедра электротехники и вычислительной техники университета.

9-вольтовая щелочная батарея, используемая в портативных радиоприемниках, рассчитана на 1 ампер-час, что означает, что эта батарея может непрерывно обеспечивать один ампер тока в течение 1 часа, прежде чем она достигнет порогового значения напряжения и будет считаться разряженной.

Плотность мощности : Плотность мощности описывает количество энергии, которое батарея может выдать на единицу веса, сказал Састри. По словам Састри, для электромобилей важна плотность мощности, потому что она показывает, насколько быстро автомобиль может разогнаться от 0 до 60 миль в час (97 км / ч).Инженеры постоянно пытаются найти способы уменьшить размеры батарей без уменьшения их удельной мощности.

Плотность энергии : Плотность энергии описывает, сколько энергии способна отдавать батарея, деленное на ее объем или массу, сказал Састри. Это число соответствует вещам, которые имеют большое влияние на пользователей, например, сколько времени вам нужно пройти, прежде чем зарядить свой мобильный телефон, или как далеко вы можете проехать на электромобиле, прежде чем остановиться, чтобы подключить его.

Follow Elizabeth Palermo @ techEpalermo .Следите за Live Science @livescience , Facebook и Google+ .

Дополнительные ресурсы

Что такое аккумулятор? — learn.sparkfun.com

Добавлено в избранное

Любимый

21 год

Введение

Батареи представляют собой совокупность одной или нескольких ячеек, химические реакции которых создают поток электронов в цепи.Все батареи состоят из трех основных компонентов: анода (сторона «-»), катода (сторона «+») и какого-то электролита (вещество, которое химически реагирует с анодом и катодом).

Когда анод и катод батареи подключены к цепи, между анодом и электролитом происходит химическая реакция. Эта реакция заставляет электроны проходить через цепь и обратно к катоду, где происходит другая химическая реакция.Когда материал катода или анода расходуется или больше не может быть использован в реакции, батарея не может производить электричество. В этот момент ваша батарея «разряжена».

Батареи, которые необходимо выбросить после использования, известны как первичные батареи . Батареи, которые можно перезаряжать, называются вторичными батареями .

Литий-полимерные батареи, например, можно заряжать

Без батарей ваш квадрокоптер пришлось бы привязать к стене, вам пришлось бы вручную провернуть машину, а ваш контроллер Xbox должен был бы быть постоянно подключен к розетке (как в старые добрые времена).Батареи позволяют хранить потенциальную электрическую энергию в переносном контейнере.

Батареи бывают разных форм, размеров и химического состава.

Изобретение современной батареи часто приписывают Алессандро Вольта. На самом деле все началось с удивительной аварии, связанной с рассечением лягушки.

Что вы узнаете

В этом руководстве будут подробно рассмотрены следующие темы:

  • Как были изобретены батарейки
  • Из каких частей состоит аккумулятор
  • Как работает аккумулятор
  • Общие термины, используемые для описания батарей
  • Различные способы использования батарей в схемах

Рекомендуемая литература

Есть несколько концепций, с которыми вы, возможно, захотите ознакомиться перед тем, как начать читать это руководство:


Хотите изучить различные батареи?

Мы вас прикрыли!

Щелочная батарея 9 В

В наличии

PRT-10218

Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их с…

1


История

Термин Батарея

Исторически, слово «батарея» использовалось для описания «серии подобных объектов, сгруппированных вместе для выполнения определенной функции», как в артиллерийской батарее. В 1749 году Бенджамин Франклин впервые использовал этот термин для описания серии конденсаторов, которые он соединил вместе для своих экспериментов с электричеством.Позже этот термин будет использоваться для любых электрохимических ячеек, связанных вместе с целью обеспечения электроэнергии.

Батарея «конденсаторов» Лейденской банки, соединенных вместе
(Изображение любезно предоставлено Альвинруном из Wikimedia Commons)

Изобретение батареи

В один роковой день 1780 года итальянский физик, врач, биолог и философ Луиджи Гальвани рассекал лягушку, прикрепленную к медному крючку. Когда он коснулся лягушачьей лапы железным отростком, нога дернулась.Гальвани предположил, что энергия исходит от самой ноги, но его коллега-ученый Алессандро Вольта считал иначе.

Вольта предположил, что импульсы лягушачьей лапки на самом деле вызываются разными металлами, пропитанными жидкостью. Он повторил эксперимент, используя ткань, пропитанную рассолом, вместо трупа лягушки, что привело к аналогичному напряжению. Вольта опубликовал свои открытия в 1791 году, а позже создал первую батарею, гальваническую батарею, в 1800 году.

Гальваническая свая состояла из пакета цинковых и медных пластин, разделенных тканью, пропитанной рассолом

Стопка

Volta страдала от двух основных проблем: вес стопки вызывал утечку электролита из ткани, а особые химические свойства компонентов приводили к очень короткому сроку службы (около часа).Следующие двести лет уйдут на совершенствование конструкции Вольты и решение этих проблем.

Исправления к гальванической свае

Уильям Круикшанк из Шотландии решил проблему утечки, положив гальваническую батарею на бок, чтобы сформировать «желобную батарею».

Лотковая батарея решила проблему утечки гальванической сваи

Вторая проблема, короткий срок службы, была вызвана разложением цинка из-за примесей и скоплением пузырьков водорода на меди.В 1835 году Уильям Стерджен обнаружил, что обработка цинка ртутью предотвратит разложение.

Британский химик Джон Фредерик Дэниелл использовал второй электролит, который вступал в реакцию с водородом, предотвращая накопление на медном катоде. Батарея Даниэля с двумя электролитами, известная как «ячейка Даниэля», станет очень популярным решением для обеспечения энергией зарождающихся телеграфных сетей.

Коллекция клеток Даниэля из 1836 г.

Первая аккумуляторная батарея

В 1859 году французский физик Гастон Планте создал батарею из двух прокатанных листов свинца, погруженных в серную кислоту.Путем реверсирования электрического тока через батарею химия вернется в исходное состояние, создав первую перезаряжаемую батарею.

Позже, в 1881 году, Камилла Альфонса Фор улучшила конструкцию Планте, превратив листы свинца в пластины. Эта новая конструкция упростила производство аккумуляторов, и свинцово-кислотные аккумуляторы получили широкое распространение в автомобилях.

-> Дизайн обычного «автомобильного аккумулятора» существует уже более 100 лет
(Изображение любезно предоставлено Эмилианом Робертом Виколом из Wikimedia Commons) <-

Сухая камера

До конца 1800-х годов электролит в батареях был в жидком состоянии.Это сделало транспортировку аккумуляторов очень осторожным делом, и большинство аккумуляторов никогда не предназначались для перемещения после подключения к цепи.

В 1866 году Жорж Лекланше создал батарею с цинковым анодом, катодом из диоксида марганца и раствором хлорида аммония в качестве электролита. Хотя электролит в элементе Лекланше был все еще жидким, химический состав батареи оказался важным шагом для изобретения сухого элемента.

Карл Гасснер придумал, как создать электролитную пасту из хлорида аммония и гипса.Он запатентовал новую батарею с «сухими элементами» в 1886 году в Германии.

Эти новые сухие элементы, обычно называемые «угольно-цинковыми батареями», производились массово и пользовались огромной популярностью до конца 1950-х годов. Хотя углерод не используется в химической реакции, он играет важную роль в качестве электрического проводника в углеродно-цинковой батарее.

-> Угольно-цинковая батарея 3 В 1960-х годов
(Изображение любезно предоставлено PhFabre из Wikimedia Commons) <-

В 1950-х годах Льюис Урри, Пол Марсал и Карл Кордеш из компании Union Carbide (позже известной как «Eveready», а затем «Energizer») заменили электролит хлористого аммония щелочным веществом на основе химического состава батареи, сформулированного Вальдемаром. Юнгнер в 1899 году.Щелочные батареи с сухими элементами могут содержать больше энергии, чем угольно-цинковые батареи того же размера, и имеют более длительный срок хранения.

Щелочные батареи приобрели популярность в 1960-х годах, обогнали угольно-цинковые батареи и с тех пор стали стандартными первичными элементами для потребительского использования.

-> Щелочные батареи бывают разных форм и размеров
(Изображение любезно предоставлено Aney ~ commonswiki из Wikimedia Commons) <-

Аккумуляторы 20-го века

В 1970-х годах компания COMSAT разработала никель-водородную батарею для использования в спутниках связи.Эти батареи хранят водород в газообразной форме под давлением. Многие искусственные спутники, такие как Международная космическая станция, по-прежнему используют никель-водородные батареи.

Исследования нескольких компаний с конца 1960-х годов привели к созданию никель-металлгидридных (NiMH) аккумуляторов. NiMH батареи были выпущены на потребительский рынок в 1989 году и стали более дешевой альтернативой никель-водородным аккумуляторным элементам меньшего размера.

Asahi Chemical из Японии построила первую литий-ионную батарею в 1985 году, а Sony создала первую коммерческую литий-ионную батарею в 1991 году.В конце 1990-х годов был создан мягкий гибкий корпус для литий-ионных аккумуляторов, в результате чего появилась «литий-полимерная» или «LiPo» батарея.

Химические реакции в литий-полимерной батарее практически такие же, как и в литий-ионной батарее

Очевидно, что было изобретено, произведено и устарело гораздо больше химических элементов батарей. Если вы хотите узнать больше о современных и популярных технологиях аккумуляторов, ознакомьтесь с нашим руководством по технологиям аккумуляторов.

Компоненты

Батареи

состоят из трех основных компонентов: анода , катода и электролита . Сепаратор часто используется для предотвращения соприкосновения анода и катода, если электролита недостаточно. Для хранения этих компонентов аккумуляторы обычно имеют какой-то кожух .

Хорошо, большинство батарей на самом деле не разделены на три равные части, но идею вы поняли.Лучшее поперечное сечение щелочной ячейки можно найти в Википедии.

И анод, и катод относятся к типу электродов . Электроды — это проводники, через которые электричество входит или выходит из компонента в цепи.

Анод

Электроны выходят из анода в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет в анод .

На аккумуляторах анод обозначен как отрицательная (-) клемма

В батарее химическая реакция между анодом и электролитом вызывает накопление электронов на аноде.Эти электроны хотят перейти к катоду, но не могут пройти через электролит или сепаратор.

Катод

Электроны текут в катод в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет из катода.

На аккумуляторах катод помечен как положительный (+) вывод

В батареях в химической реакции внутри катода или вокруг него используются электроны, образующиеся на аноде.Электроны могут попасть на катод только через цепь, внешнюю по отношению к батарее.

Электролит

Электролит — это вещество, часто жидкость или гель, которое способно переносить ионы между химическими реакциями, происходящими на аноде и катоде. Электролит также препятствует потоку электронов между анодом и катодом, так что электроны легче проходят через внешнюю цепь, чем через электролит.

-> В щелочных батареях может протекать электролит, гидроксид калия, если они подвергаются воздействию высоких температур или обратного напряжения
(Изображение любезно предоставлено Вильямом Дэвисом из Wikimedia Commons) <-

Электролит имеет решающее значение в работе аккумулятора.Поскольку электроны не могут проходить через него, они вынуждены проходить через электрические проводники в виде цепи, соединяющей анод с катодом.

Сепаратор

Сепараторы представляют собой пористые материалы, которые предотвращают соприкосновение анода и катода, что может вызвать короткое замыкание в батарее. Сепараторы могут быть изготовлены из различных материалов, включая хлопок, нейлон, полиэстер, картон и синтетические полимерные пленки. Сепараторы не вступают в химическую реакцию ни с анодом, ни с катодом, ни с электролитом.

В гальванической куче использовалась ткань или картон (разделитель), пропитанные солевым раствором (электролитом) для разделения электродов

Ионы в электролите могут быть положительно заряженными, отрицательно заряженными и иметь различные размеры. Могут быть изготовлены специальные сепараторы, которые пропускают одни ионы, но не пропускают другие.

Кожух

Большинству аккумуляторов требуется способ удерживать химические компоненты. Кожухи, также известные как «кожухи» или «оболочки», представляют собой просто механические конструкции, предназначенные для удержания внутренних компонентов батареи.

Свинцово-кислотный аккумулятор в пластиковом корпусе

Корпуса батарей

могут быть сделаны практически из чего угодно: из пластика, стали, пакетов из мягкого полимерного ламината и так далее. В некоторых батареях используется токопроводящий стальной кожух, который электрически соединен с одним из электродов. В случае обычного щелочного элемента AA стальной корпус соединен с катодом.

Эксплуатация

Батареи обычно требуют нескольких химических реакций для работы.По крайней мере, одна реакция происходит внутри или вокруг анода, и одна или несколько реакций происходят внутри или вокруг катода. Во всех случаях реакция на аноде дает дополнительные электроны в процессе, называемом окислением , а реакция на катоде использует дополнительные электроны во время процесса, известного как восстановление .

Когда переключатель замкнут, цепь замыкается, и электроны могут течь от анода к катоду. Эти электроны активируют химические реакции на аноде и катоде.

По сути, мы разделяем определенный вид химической реакции, реакцию окисления-восстановления или окислительно-восстановительную реакцию, на две отдельные части. При переносе электронов между химическими веществами происходят окислительно-восстановительные реакции. Мы можем использовать движение электронов в этой реакции, чтобы они выходили за пределы батареи и питали нашу цепь.

Анодное окисление

Эта первая часть окислительно-восстановительной реакции, окисление, происходит между анодом и электролитом и производит электроны (обозначенные как e ).

В некоторых реакциях окисления образуются ионы, например, в литий-ионной батарее. В других химических реакциях расходуются ионы, как в обычных щелочных батареях. В любом случае ионы могут свободно проходить через электролит, а электроны — нет.

Катодное восстановление

Другая половина окислительно-восстановительной реакции, восстановление, происходит в катоде или рядом с ним. Электроны, образующиеся в результате реакции окисления, расходуются во время восстановления.

В некоторых случаях, например, в литий-ионных батареях, положительно заряженные ионы лития, образующиеся во время реакции окисления, расходуются во время восстановления.В других случаях, например, в щелочных батареях, во время восстановления образуются отрицательно заряженные ионы.

Электронный поток

В большинстве батарей некоторые или все химические реакции могут происходить, даже если батарея не подключена к цепи. Эти реакции могут повлиять на срок годности батареи.

По большей части, реакции будут происходить с полной силой только тогда, когда между анодом и катодом замыкается электропроводящая цепь. Чем меньше сопротивление между анодом и катодом, тем больше электронов может течь и тем быстрее протекают химические реакции.

Короткое замыкание в аккумуляторе (в данном случае даже случайное) может быть опасным. Известно, что литий-ионные батареи перегреваются и даже задымляются или загораются при коротком замыкании.

Мы можем пропустить эти движущиеся электроны через различные электрические компоненты, известные как «нагрузка», для выполнения чего-то полезного. В анимационном ролике в начале этого раздела мы зажигаем виртуальную лампочку движущимися электронами.

Разряженная батарея

Химические вещества в батарее в конечном итоге достигают состояния равновесия. В этом состоянии химические вещества больше не будут реагировать, и в результате аккумулятор больше не будет генерировать электрический ток. На данный момент аккумулятор считается «мертвым».

Первичные элементы необходимо утилизировать, когда батарея разряжена. Вторичные элементы можно перезаряжать, и это достигается путем подачи через батарею обратного электрического тока.Перезарядка происходит, когда химические вещества выполняют еще одну серию реакций, чтобы вернуть их в исходное состояние.

Терминология

Люди часто используют общий набор терминов, говоря о напряжении батареи, емкости, возможности источника тока и так далее.

Ячейка

Элемент относится к одному аноду и катоду, разделенным электролитом, используемым для выработки напряжения и тока. Батарея может состоять из одной или нескольких ячеек.Например, одна батарея AA — это одна ячейка. Автомобильные аккумуляторы содержат шесть ячеек по 2,1 В.

Обычная 9-вольтовая батарея содержит шесть щелочных элементов по 1,5 В, установленных друг на друга

Первичная

Первичные клетки содержат химический состав, который нельзя обратить вспять. В результате аккумулятор необходимо выбрасывать после того, как он разрядился.

Среднее

Вторичные элементы можно перезаряжать, и их химический состав возвращается в исходное состояние.Эти элементы, также известные как «перезаряжаемые батареи», можно использовать много раз.

Номинальное напряжение

Номинальное напряжение аккумулятора — это напряжение, указанное производителем.

Например, щелочные батареи типа AA указаны как имеющие 1,5 В. В этой статье Mad Scientist Hut показано, что их испытанные щелочные батареи начинаются с напряжения около 1,55 В, а затем медленно теряют напряжение по мере разряда. В этом примере номинальное напряжение «1,5 В» относится к максимальному или пусковому напряжению батареи.

Этот аккумулятор Storm для квадрокоптеров показывает кривую разряда для их LiPo-элементов, начиная с 4,2 В и снижаясь до примерно 2,8 В по мере разряда. Номинальное напряжение, указанное для большинства литий-ионных и LiPo-элементов, составляет 3,7 В. В этом случае номинальное напряжение «3,7 В» относится к среднему напряжению аккумулятора в течение его цикла разряда.

Вместимость

Емкость аккумулятора — это величина электрического заряда, который он может доставить при определенном напряжении. Большинство батарей рассчитаны на ампер-часы (Ач) или миллиампер-часы (мАч).

Этот LiPo аккумулятор рассчитан на 1000 мАч, что означает, что он может обеспечить 1 ампер в течение 1 часа, прежде чем он будет считаться разряженным.

Большинство графиков разряда батареи показывают зависимость напряжения батареи от емкости, например, эти тесты батареи AA, проведенные PowerStream. Чтобы выяснить, достаточно ли емкости аккумулятора для питания вашей схемы, найдите самое низкое допустимое напряжение и найдите соответствующий номинал мАч или Ач.

C-Rate

Многие батареи, особенно мощные литий-ионные, обозначают ток разряда как «C-Rate», чтобы более четко определить характеристики батареи.C-Rate — это скорость разряда относительно максимальной емкости аккумулятора.

1С — это количество тока, необходимое для разрядки аккумулятора за 1 час. Например, аккумулятор емкостью 400 мАч, обеспечивающий ток 1С, будет обеспечивать 400 мА. 5С для той же батареи будет 2 А.

Большинство батарей теряют емкость при повышенном потреблении тока. Например, этот график информации о продукте от Chargery показывает, что их LiPo-элемент имеет меньше мАч при более высоких показателях C-Rates.

ПРИМЕЧАНИЕ: Общий совет гласит, что вы должны заряжать LiPo батареи при 1С или меньше.


MIT предлагает фантастическое руководство по спецификациям и терминологии аккумуляторов, которое идет намного дальше этого обзора.

Использование

Однокамерный

Некоторые схемы могут питаться от одного элемента, но убедитесь, что батарея может обеспечивать достаточное напряжение и ток.

Этот Photon Battery Shield питается от одного элемента LiPo

Если напряжение слишком высокое или слишком низкое для вашей схемы, вам, вероятно, понадобится преобразователь постоянного тока в постоянный.

серии

Чтобы увеличить напряжение между выводами батареи, вы можете расположить элементы последовательно. Последовательность означает штабелирование ячеек встык, соединение анода одного с катодом следующего.

Соединяя батареи последовательно, вы увеличиваете общее напряжение. Сложите напряжение всех ячеек, чтобы определить рабочее напряжение. Емкость остается прежней.

В этом примере четыре ячейки 1,5 В соединены последовательно.Напряжение на нагрузке составляет 6 В, а общий набор аккумуляторов имеет емкость 2000 мАч.

В большинстве бытовых электронных устройств, в которых используются щелочные батареи, батареи устанавливаются последовательно. Например, этот держатель батареек 2x AA может поднять номинальное напряжение до 3 В для проекта.

ПРИМЕЧАНИЕ: Если вы заряжаете литий-ионные или литий-полимерные батареи последовательно, вам необходимо обязательно использовать специальные схемы, известные как «балансировщик», чтобы гарантировать равномерное напряжение между элементами.Некоторые зарядные устройства, такие как это, имеют балансиры для безопасной зарядки.

Параллельный

Если напряжение одного элемента соответствует нагрузке, вы можете добавить батареи параллельно, чтобы увеличить емкость. Обратите внимание, что это также означает увеличение доступного тока (C-Rate).

Будьте осторожны при параллельном подключении аккумуляторов! Все элементы должны иметь одинаковое номинальное напряжение и одинаковый уровень заряда. Если есть какие-либо различия в напряжении, может произойти короткое замыкание, что приведет к перегреву и, возможно, возгоранию.

В этом примере четыре ячейки 1,5 В подключены параллельно. Напряжение на нагрузке остается на уровне 1,5 В, но общая емкость увеличивается до 8000 мАч.

Последовательный и параллельный

Если вы хотите увеличить напряжение и емкость, вы можете комбинировать последовательные и параллельные батареи. Еще раз убедитесь, что уровень напряжения одинаков для батарей, включенных параллельно, так как может произойти короткое замыкание.

В этом примере полное напряжение на нагрузке составляет 3 В, а общая емкость аккумуляторов составляет 4000 мАч.

В больших аккумуляторных блоках, особенно литий-ионных, вы часто видите конфигурацию, указанную с использованием «S» и «P» для последовательного и параллельного подключения. Конфигурация для схемы выше — 2S2P. В качестве практического примера современные электромобили используют массивные массивы батарей, соединенных последовательно и параллельно.

Ресурсы и дальнейшее развитие

К настоящему времени вы должны понимать, как были изобретены батареи и как они работают. Батареи — это один из способов обеспечения вашего проекта электроэнергией, и они могут быть невероятно полезны, если вам нужен портативный источник питания.

Если вы хотите больше узнать о батареях, вот еще несколько уроков:

Хотите увидеть аккумуляторы в действии? Взгляните на эти проекты, в которых используются разные батареи в разных конфигурациях:

Simon Splosion Wireless

Это учебное пособие, демонстрирующее один из многих методов «взлома» Саймона Сэйса. Мы выделим технику, чтобы взять ваш Simon Says Wireless.

Батареи, схемы и трансформаторы — U.S. Управление энергетической информации (EIA)

Батареи производят электричество

Электрохимическая батарея вырабатывает электричество из двух разных металлов в химическом веществе, называемом электролитом . Один конец батареи прикреплен к одному из металлов, а другой конец — к другому металлу. Химическая реакция между металлами и электролитом освобождает больше электронов в одном металле, чем в другом.

Источник: адаптировано из Национального проекта развития энергетического образования (общественное достояние)

Металл, который высвобождает больше электронов, приобретает положительный заряд, а другой металл — отрицательный.Если электрический провод , или провод, соединяет один конец батареи с другим, электроны проходят через провод, чтобы сбалансировать электрический заряд.

Электрическая нагрузка — это устройство, которое использует электричество для выполнения работы или выполнения работы. Если электрическая нагрузка — например, лампа накаливания — размещена вдоль провода, электричество может работать, поскольку оно течет через провод и лампочку. Электроны текут от отрицательного конца батареи через провод и лампочку и обратно к положительному концу батареи.

Электроэнергия передается по цепям

Электричество должно пройти полный путь, или электрическая цепь , прежде чем электроны смогут двигаться. Выключатель или кнопка включения-выключения на всех электрических устройствах замыкает (включает) или размыкает (выключает) электрическую цепь в устройстве. Выключение или выключение света размыкает цепь, и электроны не могут проходить через свет. Включение света замыкает цепь, что позволяет электричеству течь от одного электрического провода через лампочку, а затем через другой провод.

Лампа накаливания излучает свет, когда электричество течет через крошечный провод в лампе, который становится очень горячим и светится. Лампа накаливания перегорает, когда крошечный провод внутри лампы обрывается, что приводит к размыканию цепи.

Источник: адаптировано из Национального проекта развития энергетического образования (общественное достояние)

Трансформаторы помогают эффективно перемещать электроэнергию на большие расстояния

Чтобы решить проблему отправки электричества на большие расстояния, Уильям Стэнли разработал устройство под названием трансформатор .Трансформатор изменяет электрическое напряжение в проводнике или линии электропередачи. Линии передачи высокого напряжения, например те, которые проходят между высокими металлическими башнями, переносят электричество на большие расстояния туда, где это необходимо. Электроэнергия более высокого напряжения более эффективна и менее дорога для передачи электроэнергии на большие расстояния. Электричество более низкого напряжения безопаснее для использования в домах и на предприятиях. Трансформаторы повышают (повышают) или снижают (понижают) напряжение по мере того, как электроэнергия перемещается от электростанций в дома и на предприятия.

Последнее обновление: 8 января 2020 г.

Как работают батареи? Детали, типы и терминология (со схемой)

Без батарей не было бы сотовых телефонов, часов, планшетов, слуховых аппаратов, фонарей, электромобилей или спутников связи — и этот список можно продолжить. Первый аккумулятор был изобретен более 200 лет назад, и с тех пор эти гениальные устройства стали незаменимыми в нашей повседневной жизни.

Что такое аккумулятор?

Проще говоря, аккумулятор — это любое устройство, которое может обеспечить переносной временный источник электроэнергии.

В электрической цепи батареи служат источником энергии, создавая разность потенциалов, которая приводит в движение электрический ток. Когда ток проходит по цепи, он передает энергию любым подключенным к ней устройствам. В такой цепи протекает постоянный ток. Другими словами, ток идет в одном непрерывном направлении.

И наоборот, питание от электростанции поступает через розетки в вашем доме и выдается в виде переменного тока.Этот тип тока меняет направление с определенной частотой для питания устройств.

Как работают батареи

Типичная батарея состоит из одной или нескольких ячеек, которые имеют катод (положительный вывод) на одном конце и анод (отрицательный вывод) на другом конце. Химические реакции, содержащиеся внутри, вызывают накопление электрического заряда на клеммах, создавая электрический потенциал через узлы за счет высвобождения химической энергии.

Химические реакции в батарее вызывают накопление электронов на аноде.Это создает электрический потенциал между катодом и анодом. Электроны хотят добраться до катода, чтобы нейтрализовать заряд, но они не могут сделать это, путешествуя через электролитический материал внутри самой батареи. Вместо этого электроны легко проходят через провод, соединяющий анод с катодом.

В конце концов, химические процессы, создающие избыток электронов в аноде, останавливаются, и батарея умирает. Однако с аккумуляторными батареями (также называемыми вторичными батареями) этот процесс можно обратить вспять, подключив батареи к зарядным устройствам после того, как они разрядятся.Перезарядка аккумулятора меняет направление потока электронов на противоположный за счет использования другого источника питания. Химические процессы в батарее могут быть обращены вспять из-за этой дополнительной энергии, и батарея снова сможет питать цепь самостоятельно.

Создайте свою собственную лимонную батарею!

Отличный способ лучше понять, как работает батарея, — это создать свою собственную батарею дома с лимоном, цинковым гвоздем и медной монетой и использовать ее для питания маленькой лампочки.

Вставьте медную монету в одну сторону лимона и вставьте гальванизированный (оцинкованный) гвоздь в другую сторону (убедившись, что два предмета не соприкасаются внутри лимона).Гвоздь будет служить положительным электродом (катодом), а монета — отрицательным электродом (анодом). Лимонный сок служит электролитом. Затем вы можете подключить вольтметр к лимонной батарее, чтобы увидеть, какое напряжение она создает. При необходимости вы можете последовательно подключить несколько лимонных батарей, чтобы создать напряжение, достаточное для питания маленькой лампочки.

Различные типы батарей

Батареи бывают разных форм, размеров, составов и напряжений.Вот некоторые из наиболее распространенных типов:

  • Перезаряжаемые батареи, используемые в обычных бытовых электронных устройствах. К ним относятся литий-ионные батареи, никель-кадмиевые и металлогидридные никель (NiMH). Названия батарей указывают на содержащиеся в них электролиты.
  • Свинцово-кислотные батареи также можно перезаряжать, но они используются для более тяжелых условий эксплуатации (например, в качестве автомобильных аккумуляторов).
  • Батареи, которые обычно не перезаряжаются, включают щелочные батареи или угольно-цинковые батареи с сухими элементами.

Как работает литий-ионная батарея?

Литий-ионные аккумуляторы чрезвычайно популярны и универсальны. Эти аккумуляторные батареи, которые используются в сотовых телефонах, автомобилях, электроинструментах и ​​некоторых других типах электронных устройств, также оказывают влияние на оборудование для погрузочно-разгрузочных работ и наземного обслуживания аэропортов.

Технология, лежащая в основе литий-ионных аккумуляторов, делает их отличным выбором из-за их явных преимуществ и экологических преимуществ.

Но как именно работают литий-ионные аккумуляторы? И что делает их такими популярными во многих приложениях?

Вот что вам нужно знать о компонентах, из которых состоит литий-ионный аккумулятор, и о том, как они работают вместе для создания высокоэффективных и долговечных источников энергии.

Компоненты

Литий-ионные батареи

доступны во многих различных формах и размерах. Однако внутри они обычно выглядят одинаково.Чтобы понять, как работает литий-ионный аккумулятор, важно знать роль, которую играют отдельные части.

The Cell

Литий-ионный аккумулятор состоит из нескольких частей. Элемент, служащий рабочей лошадкой батареи, является наиболее важным компонентом батареи.

Ячейка состоит из следующих материалов батареи:

  • Электроды — это два конца батареи. Один — анод, другой — катод.
  • Анод накапливает литий и обычно изготавливается из углерода.
  • Катод также накапливает литий и сделан из химического соединения, которое представляет собой оксид металла.
  • Сепаратор блокирует поток отрицательных и положительных электронов внутри батареи, но позволяет ионам проходить через нее.
  • Электролит жидкость находится между двумя электродами. Он переносит положительно заряженные ионы лития от анода к катоду и наоборот, в зависимости от того, заряжается батарея или разряжается.
Аккумулятор

Аккумулятор, в котором находятся литий-ионные элементы, работает как компьютер. Он содержит следующее:

  • По крайней мере, один датчик температуры для контроля температуры батареи.
  • Преобразователь напряжения и схема регулятора , которая фокусируется на поддержании напряжения и тока на безопасных уровнях.
  • Разъем евро, который позволяет питанию и информации поступать в аккумуляторную батарею и извлекаться из нее.
  • Элемент отвод , который контролирует напряжения элементов в аккумуляторной батарее.
  • Система мониторинга батареи , небольшой компьютер, который контролирует всю батарею и обеспечивает безопасность пользователя.
Движение в камере

Так как же ячейка обеспечивает питание оборудования?

Когда вы подключаете литий-ионную батарею к устройству или части оборудования, положительно заряженные ионы перемещаются от анода к катоду.В результате катод становится более положительно заряженным, чем анод. Это, в свою очередь, притягивает к катоду отрицательно заряженные электроны.

Сепаратор в ячейке включает электролиты, которые образуют катализатор. Это способствует перемещению ионов между ними. Движение ионов через раствор электролита — это то, что заставляет электроны перемещаться через устройство, в которое вставлен аккумулятор.

Литий-ионные батареи

перезаряжаемые. При перезарядке ионы лития проходят тот же процесс, но в противоположном направлении.Это восстанавливает аккумулятор для дополнительного использования.

Общая конструкция литий-ионной батареи обеспечивает множество преимуществ для пользователей оборудования:

  • Время работы значительно увеличивается с их использованием по сравнению с батареями других типов.
  • Возможности быстрой зарядки сокращают время простоя сменных рабочих и повышают производительность.
  • Они имеют плоские кривые разряда и обеспечивают более высокую постоянную мощность. Это означает, что больше не будет раздражающей медлительности в работе оборудования при снижении уровня заряда аккумулятора.
Система управления батареями (BMS)

Система управления играет важную роль в обеспечении максимальной работы аккумуляторной батареи. Это также влияет на работу аккумулятора, предлагая несколько защит и функций.

Например:

  • BMS поддерживает температуру элементов в идеальном рабочем диапазоне, чтобы предотвратить перегрев или замерзание.
  • BMS контролирует ток и напряжение, чтобы поддерживать их на безопасном уровне.Дендриты начинают формироваться в ячейке, если напряжение падает слишком низко, что может привести к короткому замыканию ячейки, поэтому важно, чтобы литий-ионный аккумулятор имел систему, позволяющую контролировать это.
  • В аккумуляторе нет встроенной «памяти», поэтому частичные разряды не повреждают аккумулятор. Литий-ионные аккумуляторы могут заряжаться и разряжаться в наиболее удобное для оператора оборудования время.
  • Встроенные контроллеры предотвращают перезарядку, чтобы предотвратить образование, которое может привести к значительному повреждению литий-ионных аккумуляторов.
  • Балансировка ячеек отслеживается, поэтому выравнивающие заряды никогда не требуются. Поскольку литий-ионные батареи не нуждаются в уравнительном заряде, они не выделяют опасные газы.
  • Система управления батареями также позволяет менеджерам отслеживать состояние батареи своего флота с помощью бортовых компьютеров, которые отправляют жизненно важные данные через облачные сервисы.

Литий-ионные батареи содержат несколько элементов передовых технологий, которые работают вместе, чтобы обеспечить пользователям явные преимущества.

Вы можете узнать о том, почему литий-ионные батареи являются лучшим вариантом, чем свинцово-кислотные, в нашей статье Литий-ионные батареи для вилочных погрузчиков лучше, чем свинцово-кислотные?

Принцип работы батареи: как работает батарея?

Принцип работы аккумулятора

Аккумулятор работает по реакции окисления и восстановления электролита с металлами. Когда два разнородных металлических вещества, называемые электродом, помещаются в разбавленный электролит, в электродах происходят реакции окисления и восстановления, соответственно, в зависимости от сродства к электрону металла электродов.В результате реакции окисления один электрод получает отрицательный заряд, называемый катодом, а из-за реакции восстановления другой электрод получает положительный заряд, называемый анодом.

Катод образует отрицательную клемму, а анод — положительную клемму батареи. Чтобы правильно понять основной принцип батареи , во-первых, мы должны иметь некоторую базовую концепцию сродства электролитов и электронов. Фактически, когда два разнородных металла погружаются в электролит, между этими металлами возникает разность потенциалов.

Было обнаружено, что при добавлении в воду определенных соединений они растворяются и образуют отрицательные и положительные ионы. Этот тип соединения называется электролитом. Популярными примерами электролитов являются почти все виды солей, кислот, оснований и т. Д. Энергия, выделяемая при приеме электрона нейтральным атомом, известна как сродство к электрону. Поскольку атомная структура для разных материалов различна, сродство к электрону разных материалов будет отличаться.

Если два разных типа металлов погрузить в один и тот же раствор электролита, один из них получит электроны, а другой — высвободит электроны.Какой металл (или металлическое соединение) получит электроны, а какой потеряет электроны, зависит от сродства этих металлов к электрону. Металл с низким сродством к электрону будет получать электроны от отрицательных ионов раствора электролита.

С другой стороны, металл с высоким сродством к электрону высвобождает электроны, и эти электроны выходят в раствор электролита и добавляются к положительным ионам раствора. Таким образом, один из этих металлов приобретает электроны, а другой теряет электроны.В результате между этими двумя металлами будет разница в концентрации электронов.

Эта разница в концентрации электронов вызывает разность электрических потенциалов между металлами. Эта разность электрических потенциалов или ЭДС может использоваться в качестве источника напряжения в любой электронике или электрической цепи. Это общий и основной принцип батареи , и это принцип работы батареи .

Все элементы аккумуляторов основаны только на этом основном принципе.Давайте обсудим по порядку. Как мы уже говорили ранее, Алессандро Вольта разработал первый элемент батареи, и этот элемент широко известен как простой гальванический элемент. Этот тип простой ячейки можно создать очень легко. Возьмите одну емкость и наполните ее разбавленной серной кислотой в качестве электролита. Теперь погружаем один цинковый и один медный стержень в раствор и подключаем их снаружи с помощью электрической нагрузки. Теперь ваш простой гальванический элемент готов. Ток начнет течь через внешнюю нагрузку.
Цинк в разбавленной серной кислоте отдает электроны, как показано ниже:

Эти ионы Zn + + переходят в электролит, и каждый из ионов Zn + + оставляет два электрона в стержне.В результате вышеуказанной реакции окисления цинковый электрод остается заряженным отрицательно и, следовательно, действует как катод. Следовательно, концентрация ионов Zn + + вблизи катода в электролите увеличивается.

В соответствии со свойством электролита разбавленная серная кислота и вода уже диссоциировали на положительные ионы гидроксония и отрицательные ионы сульфата, как указано ниже:

Из-за высокой концентрации ионов Zn + + возле катода, H 3 O + ионы отталкиваются к медному электроду и разряжаются, поглощая электроны от атомов медного стержня.На аноде происходит следующая реакция:

В результате реакции восстановления, протекающей на медном электроде, медный стержень получает положительный заряд и, следовательно, действует как анод.

Ячейка Даниэля

Ячейка Даниэля состоит из медного сосуда, содержащего раствор сульфата меди. Сам медный сосуд действует как положительный электрод. В медный сосуд помещают пористую емкость с разбавленной серной кислотой. Амальгамированный цинковый стержень, погруженный в серную кислоту, действует как отрицательный электрод.

Разбавленная серная кислота в пористой емкости вступает в реакцию с цинком, в результате чего образуется водород. Реакция протекает следующим образом:

Образование ZnSO 4 в пористой емкости не влияет на работу ячейки до тех пор, пока не осаждаются кристаллы ZnSO 4 . Газообразный водород проходит через пористый резервуар и вступает в реакцию с раствором CuSO 4 , как показано ниже:

Образованная таким образом медь осаждается на медном резервуаре.

История батареи

В 1936 году в середине лета при строительстве новой железнодорожной линии недалеко от города Багдад в Ираке была обнаружена древняя гробница.Возраст реликвий, найденных в гробнице, составляет около 2000 лет. Среди этих реликвий было несколько глиняных сосудов, запечатанных сверху смолой. Железный стержень, окруженный цилиндрической трубкой, сделанной из обернутого медного листа, выступал из этой герметичной вершины.

Когда первооткрыватели наполнили эти горшки кислой жидкостью, они обнаружили разницу потенциалов между железом и медью около 2 вольт. Предположительно, в этих глиняных сосудах использовались батарейные элементы возрастом 2000 лет. Горшок они назвали Парфянская батарея .

В 1786 году итальянский анатом и физиолог Луиджи Гальвани был удивлен, увидев, что, когда он касался лап мертвой лягушки двумя разными металлами, мышцы ног сокращались.

Он не мог понять истинную причину, иначе он был бы известен как первый изобретатель элемента батареи. Он подумал, что реакция могла быть вызвана каким-то свойством тканей.

После этого Алессандро Вольта реализовал то же явление на картоне, пропитанном соленой водой, вместо лягушачьих лапок.Он зажал между ними медный и цинковый диск с куском картона, смоченным в соленой воде, и обнаружил разность потенциалов между медью и цинком.

После этого в 1800 году он разработал первый гальванический элемент (батарею), состоящий из чередующихся медных и цинковых дисков с кусками картона, пропитанными рассолом между ними. Эта система может производить измеримый ток. Мы рассматриваем вольтовую батарею Алессандро Вольта как первый «мокрый аккумуляторный элемент». Так началась история батареи .С того времени и до сегодняшнего дня аккумулятор остается предпочтительным источником электричества во многих наших повседневных применениях.

Основная проблема сваи Voltaic заключалась в том, что она долгое время не могла подавать ток. Британский изобретатель Джон Ф. Даниэлл решил эту проблему в 1836 году. Он изобрел более развитую версию аккумуляторной ячейки, которая известна как ячейка Даниэля. Джон Ф. Даниэлл погрузил один цинковый стержень в сульфат цинка в один контейнер и один медный стержень в сульфат меди (II) в другой контейнер.

П-образный солевой мостик соединяет решения этих двух контейнеров. Элемент Даниэля мог производить 1,1 В, и этот тип батареи прослужил намного дольше, чем батарея Вольта. В 1839 году сэр Уильям Роберт Гроув, первооткрыватель и ученый, сконструировал топливный элемент. Он смешал водород и кислород в растворе электролита и создал электричество и воду. Топливный элемент не обеспечивает достаточной мощности, но это полезно. Бунзен (1842) и Гроув (1839) усовершенствовали аккумулятор, в котором для подачи электричества использовались жидкие электроды.

В 1859 году Гастон Планте; впервые разработал свинцово-кислотный аккумулятор. Свинцово-кислотная батарея была первой формой перезаряжаемой вторичной батареи. Свинцово-кислотная батарея до сих пор используется во многих промышленных целях. Он по-прежнему наиболее популярен в качестве автомобильного аккумулятора. В 1866 году французский инженер Жорж Лекланш разработал батарею нового типа.