Что такое термопара как она работает: устройство и принцип работы простым языком, типы

Термопара — принцип работы | Сиб Контролс

Принцип работы термопар

Если два провода из разнородных металлов соединены друг с другом на одном конце, на другом конце данной конструкции, за счет контактной разницы потенциалов, появляется напряжение (ЭДС), которое зависит от температуры. Иными словами, соединение двух разных металлов ведет себя как гальванический элемент, чувствительный к изменению температуры. Такой вид температурного сенсора называется термопарой:

 

Данное явление предоставляет нам простой путь для нахождения электрического эквивалента температуры: необходимо просто измерить напряжение и Вы можете определить температуру этого места соединения двух металлов. И это было бы просто, если бы не следующее условие: когда Вы присоедините любой вид измерительного прибора к проводам термопары, то неизбежно сделаете второе место соединения разнородных металлов.

Следующая схема показывает, что железо — медное соединение J1 обязательно дополняется вторым железо — медным соединением J2 противоположной полярности:

Соединение J1 железа и меди (двух разнородных металлов) будет генерировать напряжение, зависящее от измеряемой температуры.Что такое термопара как она работает: устройство и принцип работы простым языком, типы Соединение J2, которое фактически необходимо , что мы каким-то образом подключили наши медные входные провода вольтметра к железной проволоке термопары, также соединение разнородных металлов, которое тоже будет генерировать напряжение, зависящее от температуры. Далее необходимо отметить, что полярность соединения J2 противоположна полярности соединения J1 (железный провод положительный; медный — отрицательный). В данное схеме имеется так же третье соединение (J3), но оно не оказавает влияние, потому что это соединение двух идентичных металлов, которое не создает ЭДС. Генерация второго напряжения соединением J2 помогает объяснить, почему вольтметр регистрирует 0 вольт, когда вся система будет при комнатной температуре: любые напряжения созданные точками соединения разнородных металлов будут равны по величине и противоположны по полярности, что и приведет к нулевым показаниям. Только тогда, когда два соединения J1 и J2 находятся при разных температурах, вольтметр зарегистрирует какое-то напряжение.Что такое термопара как она работает: устройство и принцип работы простым языком, типы

Мы можем выразить эту связь математически следующим образом:

Vmeter = VJ1 − VJ2

Понятно, что вольтметр «видит» только разницу между этими двумя напряжениями, генерируемыми в точках соединения.

Таким образом, термопары – это исключительно дифференциальные температурные сенсоры. Они формируют электрический сигнал, пропорциональный разнице температур между двумя различными точками. Поэтому, место соединения (спай), которое мы используем,чтобы измерить необходимую температуру, называют «горячим» спаем, в то время как другое место соединения (от которого мы никак не можем избежать) называется «холодным» спаем. Такое название произошло от того, что обычно, измеряемая температура выше температуры, в которой находится измерительный прибор. Большая часть сложностей применения термопар связана с именно напряжением «холодного» спая и необходимости иметь дело с этим (нежелательным) потенциалом. Для большинства применений необходимо измерять температуру в одной определённой точке, а не разницу температур между двумя точками, что делает термопара по определению.Что такое термопара как она работает: устройство и принцип работы простым языком, типы

Существует несколько методов, чтобы заставить датчик температуры на базе термопары измерять температуру в нужной точке, и они будут рассмотрены ниже.

Студенты и профессионалы очень часто находят общий принцип влияния «холодного» спая и его эффектов невероятно запутанным. Чтобы разобраться в данном вопросе, необходимо вернуться к простому контуру с железо — медными проводами, показанному ранее как «отправная точка», а затем вывести поведение данного контура, применяя первый закон Кирхгоффа: алгебраическая сумма напряжений в любом контуре должна быть равна нулю. Мы знаем, что соединение разнородных металлов создает напряжение, если его температура выше абсолютного нуля. Мы также знаем, что с тем, чтобы сделать полный контур из железного и медного провода, мы должны сформировать второе соединение железа и меди, полярность напряжения этого второго соединения будет обязательно противоположной полярности первого. Если мы обозначим первое соединение железа и меди как J1, а J2 второе, мы абсолютно уверенны в том, что напряжение, измеренное вольтметром в этой схеме, будет VJ1 − VJ2.Что такое термопара как она работает: устройство и принцип работы простым языком, типы

Все контуры термопары – независимо от того, простые они или сложные – демонстрируют эту фундаментальную особенность. Необходимо мысленно представить простой контур из двух разнородных металлических проводов и затем, выполняя «мысленный эксперимент», определить, как этот контур будет вести себя в местах соединения при одинаковой температуре и при различных температурах. Это — лучший способ для любого человека понять, как работают термопары.

Что такое термопара и как она работает?: ТЕРМОЭЛЕМЕНТ


Если вы хотите измерить температуру чего-то столь же горячего, как вулкан, обычный бытовой ртутный термометр абсолютно бесполезен. Воткните колбу ртутного термометра в вулканическую лаву (температура которой может быть намного выше 1000), и вы получите сюрприз: ртуть внутри мгновенно закипит (она превращается из жидкости в газ всего лишь при 674 ° F), а само стекло может даже расплавиться (если лава действительно горячая). Попробуйте измерить что-нибудь очень холодное (например, жидкий азот) с помощью ртутного термометра, и у вас возникнет обратная проблема: при температурах ниже -38 ° C ртуть представляет собой твердый кусок металла.Что такое термопара как она работает: устройство и принцип работы простым языком, типы  Так как же измерить действительно горячие или холодные предметы? С хитрой парой электрических кабелей под названием термопара. Давайте подробнее разберемся, как это работает!

Какая связь между электричеством и теплом?


Вы заметили, что, когда мы говорим о проводимости в физике, мы можем иметь в виду две вещи? Иногда мы имеем в виду тепло, а иногда — электричество. Металл, такой как железо или золото, действительно хорошо проводит тепло и электричество; такой материал, как пластик, не очень хорошо проводит ни одно из них. 


Между тем, как металл проводит тепло, и тем, как он проводит электричество, существует прямая связь. 


Электрический ток проходит через металлы крошечными заряженными частицами внутри атомов, называемыми электронами. Когда электроны «маршируют» через материал, они уносят с собой электричество, как муравьи, несущие листья. Если электроны могут переносить электрическую энергию через металл, они также могут переносить тепловую энергию — и поэтому металлы, которые хорошо проводят электричество, также являются хорошими проводниками тепла.Что такое термопара как она работает: устройство и принцип работы простым языком, типы  (Однако с неметаллами все не так просто, потому что тепло проходит через них другими, более сложными способами. Но для понимания термопар нам нужно учитывать только металлы.)


Томас Зеебек и термоэлектрический эффект


Предположим, вы воткнете железный пруток в огонь. Вы поймете, что нужно отпустить его довольно быстро, потому что тепло будет подниматься по металлу от огня к вашим пальцам. Но знаете ли вы, что электричество тоже идет по нагретому прутку? Первым, кто правильно подхватил эту идею, был немецкий физик Томас Зеебек (1770–1831), который обнаружил, что если два конца металла будут иметь разную температуру, через них будет протекать электрический ток. Это один из способов обозначить то, что сейчас известно как эффект Зеебека или термоэлектрический эффект. По мере дальнейшего исследования Зеебек обнаружил, что все еще интереснее. Если он соединял два конца металла вместе, ток не протекал; аналогично, если два конца металла имели одинаковую температуру, ток не протекал.Что такое термопара как она работает: устройство и принцип работы простым языком, типы


Основная идея термопары: два разнородных металла (серые кривые) соединены на двух концах. Если один конец термопары поместить на что-то горячее (горячий спай), а другой конец на что-то холодное (холодный спай), возникает напряжение (разность потенциалов). Вы можете измерить его, поместив вольтметр (V) через два соединения.


Зеебек повторил эксперимент с другими металлами, а затем попытался использовать вместе два разных металла. Теперь, если способ протекания электричества или тепла через металл зависит от внутренней структуры материала, вы, вероятно, можете увидеть, что два разных металла будут производить разное количество электричества, когда они нагреваются до одной температуры. Так что, если вы возьмете полосу одинаковой длины из двух разных металлов и соедините их вместе двумя концами, чтобы получилась петля. Затем окуните один конец (одно из двух стыков) во что-нибудь горячее (например, стакан с кипящей водой), а другой конец (другой стык) во что-то холодное.Что такое термопара как она работает: устройство и принцип работы простым языком, типы  Тогда вы обнаружите, что электрический ток течет через петлю (которая фактически представляет собой электрическую цепь), и величина этого тока напрямую связана с разницей в температуре между двумя переходами.


Ключевой момент, который следует помнить об эффекте Зеебека, заключается в том, что величина создаваемого напряжения или тока зависит только от типа металла (или металлов), а также от разницы температур. Для создания эффекта Зеебека не нужно соединение между разными металлами: только разница температур. Однако на практике в термопарах используются металлические переходы.


Почему возникает эффект Зеебека?


Как мы уже видели, существует тесная связь между тем, насколько хорошо электричество течет в материале (электропроводность) и насколько хорошо течет тепло (теплопроводность). Мы можем думать об электронах в металле как о молекулах в газе, которые колеблются с кинетической энергией. Чем горячее газ, тем больше кинетической энергии у каждой молекулы в среднем и тем быстрее она колеблется.Что такое термопара как она работает: устройство и принцип работы простым языком, типы  Подобно тому, как молекулы газа движутся быстрее, когда вы их нагреваете, электроны имеют тенденцию «диффундировать» больше, когда металл более горячий. Если вы нагреете один конец металлического стержня, электроны будут двигаться там быстрее и создадут чистый поток к более холодному концу. Это делает более горячий конец слегка положительно заряженным, а более холодный конец слегка отрицательно заряженным, создавая разницу напряжений — эффект Зеебека.


А как насчет эффекта Зеебека в соединении двух разных металлов? В одних материалах электроны движутся более свободно, чем в других. В этом основная разница между проводниками и изоляторами, а также между хорошими проводниками и плохими. Если вы соедините два разных металла вместе, свободные электроны будут перемещаться из одного материала в другой посредством своего рода диффузии. Так, например, если вы соедините кусок меди с куском железа, электроны имеют тенденцию перемещаться от железа к меди, в результате чего медь заряжается более отрицательно, а железо — более положительно.Что такое термопара как она работает: устройство и принцип работы простым языком, типы  Если железо и медь соединены в петлю с двумя переходами, один из переходов получит положительное напряжение, а другой — равное и противоположное отрицательное напряжение, не создавая напряжения в целом. Но если один из стыков горячее другого, электроны будут легче диффундировать между металлами. Это означает, что напряжение на двух переходах будет отличаться на величину, которая зависит от разницы их температур. Это эффект Зеебека — и это основа работы большинства термопар.


Измерение температуры с помощью термопары


Если вы измеряете несколько известных температур с помощью этого устройства с металлическим спаем, вы можете выяснить формулу — математическое соотношение, — которое связывает ток и температуру. Это называется калибровкой: это как разметка шкалы на термометре. После калибровки у вас есть инструмент, который можно использовать для измерения температуры всего, что вам нравится.


Просто поместите один из металлических концов в ванну со льдом (или что-нибудь еще с точно известной температурой).Что такое термопара как она работает: устройство и принцип работы простым языком, типы  Поместите другой металлический стык на предмет, температуру которого вы хотите узнать. Теперь измерьте происходящее изменение напряжения и, используя формулу, которую вы вычислили ранее, вы можете точно рассчитать температуру вашего объекта. Гениально! У нас есть пара металлов, которые соединены для измерения тепла (что по-гречески называлось «термос»). Вот почему это называется термопарой.


Что такое термопары на практике?


Для различных применений доступен широкий спектр различных термопар на основе металлов с высокой проводимостью, таких как железо, никель, медь, хром, алюминий, платина, родий и их сплавы . Иногда конкретная термопара выбирается исключительно потому, что она точно работает в определенном диапазоне температур, но условия, в которых она работает, также могут влиять на выбор (например, материалы в термопаре могут быть немагнитными , некоррозионными или стойкими к атакам. отдельными химическими веществами).


Для чего используются термопары?


Термопары широко используются в науке и промышленности, потому что они, как правило, очень точны и могут работать в огромном диапазоне действительно высоких и низких температур.Что такое термопара как она работает: устройство и принцип работы простым языком, типы  Поскольку они генерируют электрические токи, они также полезны для автоматизированных измерений: гораздо проще получить электронную схему или компьютер для измерения температуры термопары через определенные промежутки времени, чем делать это самостоятельно с помощью термометра. Поскольку в них нет ничего особенного, кроме пары металлических полос, термопары также относительно недороги и (при условии, что используемые металлы имеют достаточно высокую температуру плавления) достаточно долговечны, чтобы работать в довольно суровых условиях.


Для нагревательных систем термопары являются незаменимым инструментом, который позволяет измерять показатели температуры системы, нагревательных элементов, обрабатываемых материалов. К примеру, на экструзионных линиях термопары устанавливаются на каждый кольцевой нагреватель, греющий цилиндр экструдера, в каждую зону нагрева для измерения температуры расплава, в фильеру для определения температуры на выходе.


В компании Элемаг вы можете купить различные типы термопар таких пар металлов, как хромель-алюмель (тип К), железо-константан (тип J) и хромель-копель (тип L).Что такое термопара как она работает: устройство и принцип работы простым языком, типы

классификация, как работает, особенности применения

Термопа́ра — устройство основанное на преобразовании электрического сигнала в показатель температуры при изменении физических параметров веществ, из которых состоит прибор. Термопары широко распространены в промышленности, коммунальном хозяйстве, используются в массе бытовых приборов и автомобилях. От самых простых приборов (которые можно встретить в обычных утюгах) до сложных и дорогих (жаростойкие термопластины для измерения температуры на газовых турбинах) их можно встретить везде, где стоит задача измерения температуры.

Как работает термопара?

Термопара состоит из пары проводников из отличающихся материалов, соединенных между собой только с одной стороны.

Регистрирующие приборы (аналоговые, цифровые) измеряют разницу термо-ЭДС возникающих в местах спайки и на концах проводников.

Действие прибора построено на эффекте Зеебека(термоэлектрической эффект).Что такое термопара как она работает: устройство и принцип работы простым языком, типы Представьте две проволоки соединенные между собой двумя спайками. Если нагревать/охлаждать одну спайку, то по кольцу потечет ток. Его вызывает термо-ЭДС, которая возникает за счет разности потенциалов между спайками.

Интересное видео о термопарах от НИЯУ МИФИ смотрите ниже:

При одинаковой температуре спаек сума токов в цепи равна нулю – ток не течет. При отличающихся температурах возникает разность потенциалов между спайками. От интенсивности нагревания/охлаждения зависит и разность потенциалов.

Термо-ЭДС можно измерить. Она пропорциональна изменению разности температур на спайках. Самый простой способ измерения параметров тока в таких условиях – гальванометр (применяется для демонстрации эффекта Зеебека).

В современных сложных термопарах применяются электронные средства преобразования сигнала.

Особенности работы с термопарами для точных и высокоточных измерений

  1. Недостаток большинства термопар – это необходимость градуировки каждого прибора в отдельности.Что такое термопара как она работает: устройство и принцип работы простым языком, типы

    Для точных измерений на предприятиях-изготовителях каждая термопара проходит отдельные испытания.

  2. Необходимо вносить поправку на температуру среды измерительных устройств.
  3. Термопара должна находиться в одинаковых условиях по всей длине измерительного участка.
  4. Для определения наиболее точного результата можно использовать рядом с основной термопарой контрольные термопары.
  5. Для точных измерений используют провода с экранами, для уменьшения наводок: токи, вызываемые термо-ЭДС, незначительны по своей величине.

Ещё одно интересное видео о термопарах смотрите ниже:

Классификация термопар, их свойства и сферы применения

В российском ГОСТе применяется трехбуквенное обозначение кириллицей групп термопар, в международной классификации (МЭК) приняты латинские однобуквенные обозначения.

В большинстве случаев группы термопар соответствуют обеим системам классификации.Что такое термопара как она работает: устройство и принцип работы простым языком, типы

В таблице даны обозначения по ГОСТу, в скобках приведены аналоги по МЭК:

Тип термопарыМатериалСвойства
ТХА (К)Вольфрам + родийДля работы в нещелочных средах. Измеряет в пределах −250…+2500°С
ТНН (N)Никросил+ нисилДиапазон температур — 0…1230°С, относится к группе универсальных термопар
ТЖК (J)Железо + константан-200 до +750°С дешевый и надежный вариант для промышленности.
ТМК (Т)Медь + константан-250…+ 400°Снедорогие термопары
ТХК (L)Хромель+ копельнаибольшая чувствительностью, но ограничены по диапазону измерений – до 600 °С и очень хрупкие.Что такое термопара как она работает: устройство и принцип работы простым языком, типы
ТПП (R, S)Платинородий + платинаДля работы в газовых средах, окисленных средах. Недостаток – чувствительны к примесям, нагарам, требуют стерильных условий производства.
ТВР (А-1, А-2, А-3)Вольфрам + ренийДиапазон измерений -22О0°С в нормальных средах. Сложны в производстве и эксплуатации.

В таблице приведены наиболее часто встречаемые в сети интернет термопары.

Также существуют другие виды термопар для редких условий работы. Как правило, это штучные приборы, разрабатываемые только под заказ.

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью.Что такое термопара как она работает: устройство и принцип работы простым языком, типы Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара

Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.Что такое термопара как она работает: устройство и принцип работы простым языком, типы

Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально.Что такое термопара как она работает: устройство и принцип работы простым языком, типы Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится.Что такое термопара как она работает: устройство и принцип работы простым языком, типы В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными.
Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр

Принцип действия термопар

Термопары самое известное средство измерения для многих сфер деятельности, таких как, промышленность, медицинские лаборатории, жилые дома и научные лаборатории. Применяются они для измерения температуры. Это связано с тем, что термопары имеют высоким диапазон измерения(от -270 до + 2500С), отличную точность, высокую надежность, низкую цену и свободную заменяемость. Для корректного применения нужно понимать ее принцип действия и структуру.

Принцип действия и структура термопар

Состоит термопара из двух проводников и трубки, которая служит защитой для термоэлектродов. Термоэлектроды состоят из неблагородных и благородных металлов, чаще всего из сплавов, закрепленные друг с другом на одном конце(рабочий конец или горячий спай), таким образом они образуют одну из частей устройства. Другие концы термопары (свободные концы или холодный спай) соединены с прибором измерения напряжения. Посередине двух несоединенными выводами возникает ЭДС, величина зависит от температуры рабочего конца.

Одинаковые термопреобразователи объединенные параллельно замыкают цепь, по правилу Зеебека, мы рассмотрим далее это правило, между ними образуется контактная разность потенциалов или термоэлектрический эффект, при соприкосновении на проводниках появляются электрические заряды, между их свободными концами возникает различие потенциалов, и он зависит от разности температур. Только тогда, когда температура между термоэлектродами одинакова, разница потенциалов приравнивается к нулю.

Например: Помещая спай с различными от нуля коэффициентами, в две кипящие кастрюли с жидкостью, температура первой 50, а второй 45, то разность потенциалов будет равна 5.

Разность потенциалов определяется разностью температур источников. Так же зависит материал из которого сделаны электроды термопары. Пример: У термопары Хромель-Алюмель температурный коэффициент равен 41, а у Хромель-Константан коэффициент равен 68.

Явление Зеебека

Состоит в следующем. Если в замкнутом контуре из двух разнородных проводников, а лучше полупроводников так, как эффект сильнее выражен для полупроводников, поддерживать места соединения этих проводников, обще принято называть, спаи, при разных температурах, то в такой цепи пойдет ток. Направление тока зависит от того какая из температур, какого спая выше. При одной разности в одном направлении, при другой разности в другом.

Это устройство, будучи разрезанным в одном из мест используется в качестве термопары, датчика температуры. В схеме 2, далее, будет показано спай 1, мы будем нагревать или охлаждать, а другой спай внутри гальванометра, который находится при комнатной температуре. В зависимости от того какая будет температура спая Т1 выше комнатной или ниже, стрелка гальванометра, будет отклоняться либо в одну, либо в другую сторону.

Если в цепи термопары обе проволоки из одного материала то ничего происходить не будет. Проверить это очень просто, возьмите две медные проволоки с изоляцией, меры безопасности никто не отменял, подсоедините их одними концами к гальванометру, а другими скрутите вместе (но лучше спаять), и начните нагревать, так же можно опустить в воду с кусочками льда. Если вы взяли одинаковые проволоки, то стрелка прибора останется на нуле. Но если вы возьмете разные проволоки и точно так же подсоедините их к прибору, а другие концы скрутите. И после этого будете нагревать или охлаждать, оголенные концы проводов, то вы сможете наблюдать, как и в какую сторону будет отклоняться стрелка гальванометра.

Методы подключения

Есть несколько методов включения преобразователя, но мы рассмотрим самые распространенные: простой и дифференциальный. Простой — измерительный прибор включается напрямую к двум термопарам. Дифференцированный — применяются проводники с разными соотношениями термо-ЭДС, соединённые в двух концах, а измерительный прибор подключается в разрыв одного из проводников.

Во время дистанционного включения, ставятся удлинительные либо компенсационные провода. Удлинительные провода создаются из тех же металлов, что и термоэлектроды, но с разными размерами. Компенсационные — изготовляются из благородных металлов, но их состав, отличается от состава термоэлектродов.

Термопара. Виды, устройство, монтаж термопар.

1. Термопары

Термопара (ТП) — это термоэлектрическое устройство замкнутой цепи, чувствительное к температуре, которое состоит из двух проводников, выполненных из разнородных металлов, которые соединены на обоих концах. Электрический ток создается, когда температура на одном конце или спае, отличается от температуры на другом конце. Это явление носит название эффекта Зеебека, который является основой измерения температуры с помощью термопар.

Один конец называется горячим спаем, а другой конец называется холодным спаем. Измерительный элемент с горячим спаем помещается внутрь оболочки первичного преобразователя, и на него воздействует температура технологического процесса. Холодный спай или опорный спай — это точка подключения вне технологического процесса, где температура известна и где измеряется напряжение. (например, в измерительном преобразователе, на входной плате системы управления или в устройстве формирования сигналов.)

В соответствии с эффектом Зеебека, напряжение, измеряемое на холодном спае, пропорционально разнице температур горячего и холодного спаев. Это напряжение может называться напряжением Зеебека, термоэлектрическим напряжением или термоэлектрической э.д.с. По мере роста температуры горячего спая напряжение, наблюдаемое на холодном спае, также возрастает нелинейно в зависимости от роста температуры. Линейность кривой «температура-напряжение» зависит от сочетания металлов, образующих термопару.

2. Компенсация температуры холодного спая (КХС)

Напряжение, измеряемое на холодном спае, зависит от разницы температур горячего и холодного спаев; поэтому, необходимо знать температуру холодного спая, чтобы рассчитать температуру горячего спая. Этот процесс называется «компенсацией холодного спая» (КХС). КХС выполняется управления, устройством аварийных отключений или другим устройством формирования сигнала. В идеале измерение КХС выполняется как можно ближе к точке измерения, потому что длинные провода термопары очень чувствительны к электрическим помехам, и сигнал в них ухудшается.

Рисунок 2a — Компенсация холодного спая

Точное проведение КХС имеет решающее значение для точности измерения температуры. Точность КХС зависит от двух факторов: точности измерения эталонной температуры и близости точки эталонного измерения к холодному спаю. Во многих измерительных преобразователях используется изотермическая клеммная колодка (часто выполненная из меди) со встроенным прецизионным термистором, ТС или транзистором для измерения температуры колодки.

СОВЕТ: Следует использовать полевые измерительные преобразователи, а не преобразователи с подключением проводами напрямую к диспетчерской.

3. Изготовление термопар

Процесс начинается с выбора высококачественной проволоки из материала, который требуется для термопары изготавливаемого типа. Проволоки соединяются различными способами, включая скручивание, сжатие, пайку, в т.ч. и высокотемпературную, а также различные виды сварки (например, сварка узким швом и сварка встык). Чтобы получить наилучшие рабочие характеристики горячий спай должен быть механически прочным, электрически непрерывным, не загрязнен никакими химическими примесями материалов, использующихся при сварке или пайке. При изготовлении высококачественных термопар большое внимание уделяется выбору марки проволоки и контролю процесса изготовления.

См. рисунок 3a.

Совет: Спай, полученный путем скручивания проволок, очень быстро теряет свои свойства, и использовать такой способ получения спая не рекомендуется.

Рисунок 3a — Способы изготовления горячего спая

 

3.1 Типы спаев

Спаи термопар изготавливаются в различных конфигурациях, каждая из которых имеет свои преимущества для применения в определенных системах. Спаи могут быть заземленными или незаземленными, а двухэлементные термопары могут быть изолированными или неизолированными. См. рисунок 3.1a.

Рисунок 3.1a — Конфигурации горячих спаев

Заземленные спаи термопар образуются, если спай термопары соединяется с оболочкой первичного преобразователя. Заземленные спаи обладают лучшей теплопроводностью, что, в свою очередь, повышает быстродействие. Однако заземление также делает цепи термопар более подверженными влиянию электрических шумов, которые могут искажать сигнал напряжения термопары, если контрольно-измерительный прибор не обеспечивает развязку. (Все высококачественные измерительные преобразователи и платы ввода/ вывода предусматривают электрическую развязку в стандартной комплектации). Заземленный спай также в большей степени подвержен загрязнению химическими примесями со временем.

Незаземленные спаи получаются тогда, когда элементы термопары не соединяются с оболочкой первичного преобразователя, а окружены изолирующим порошком. Незаземленные спаи имеют несколько меньшее быстродействие, чем заземленные спаи, но менее чувствительны к электрическим шумам.

Термопары с открытым спаем имеют горячий спай, выступающий из загерметизированного конца оболочки, обеспечивая высокое быстродействие. Герметизация препятствует попаданию влаги или других загрязнений внутрь оболочки. Обычно такие термопары применяются только в некоррозионных газах, например, в воздуховодах.

3.2 Термопары с двумя чувствительными элементами

Термопары с двумя чувствительными элементами бывают трех разных видов. См. рисунок 3.1a.

Изолированные конструкции имеют место в тех случаях, когда два независимых спая термопары размещаются в одной оболочке. Изолированные спаи могут давать неодинаковые показания температуры, но могут выявлять дрейф показаний вследствие загрязнения одного из элементов химическими примесями. Если один из спаев выходит из строя, это не обязательно влияет на второй спай.

Неизолированные конструкции имеют место, когда два спая термопары помещаются в одну оболочку и все четыре проволоки термопары физически соединяются. Неизолированные спаи дают одинаковые показания температуры для повышения достоверности измерения в данной точке. Однако если один из спаев выходит из строя, это вероятнее всего означает, оба спая отказали одновременно.

4. Типы термопар

Существует много типов термопар, в которых используются различные сочетания металлов. Эти сочетания имеют разные выходные характеристики, которые определяют диапазон температур, в котором можно применять ту или иную термопару, и соответствующий выходной сигнал напряжения. См. рисунок 4a и таблицу 4b. Чем больше амплитуда напряжения на выходе, тем выше разрешение измерения, что повышает повторяемость и точность результатов. Существуют соотношения между разрешением измерения и диапазоном температур, которые делают отдельные типы термопар подходящими для определенных диапазонов и применений.

Рисунок 4a — Зависимости э.д.с. термопары от температуры для широко используемых типов термопар

Таблица 4b — Подробная таблица термопар

нсх

Термоэлектрод

Сочетание металлов

Максимальная температура применения

Возможный диапазон температур

°C

°F

B

р

N

платинородий

платинородий

1825

3320

от 0 до 1820°С от 32 до 3308°F

Е

Р

N

хромель

константан

1220

2230

от-270 до 1 000°С от-454 до 1832Т

J

Р

N

Железо

Константан

1220

2230

от-200 до 1200°С от -328 до 2192Т

К

Р

N

Хромель

алюмель

1400

2550

от-270 до 1372°С от-454 ДО2501Т

N

Р

N

Нихросил

нисил

1340

2440

от -270 до 1300°С от-454 до 2372Т

R

Р

N

платинородий

платина

1770

3215

от-50 до 1768°С от -58 до 3214°F

S

Р

N

платинородий

платина

1770

3215

от-50 до 1768°С от -58 до 3214°F

Т

Р

N

медь

константан

1080

1980

от-270 до 400°С от-454 до 752°F

 

КАКОВЫ ДИАПАЗОНЫ ИЗМЕРЯЕМЫХ ТЕМПЕРАТУР ДЛЯ ТЕРМОПАР?

Существует много типов термопар, в которых используются различные сочетания металлов. Эти сочетания имеют разные выходные характеристики, которые определяют диапазон температур, в котором можно применять ту или иную термопару, и соответствующий выходной сигнал напряжения. Чем больше амплитуда напряжения на выходе, тем выше разрешающая способность измерения, что повышает повторяемость и точность результатов. Существуют соотношения между разрешением измерения и диапазоном температур, которые делают отдельные типы термопар подходящими для определенных диапазонов и применений.

Есть типы термопар, которые способны измерять очень низкие температуры, до — 270°C (-464°F), и другие типы, способные измерять температуры до 1768°C (3214°F).

 

4.1 Термопары типа K, хромель — алюмель

• Хромель (Chromel®) — это сплав, состоящий на 90% из никеля и на 10% из хрома, а Алюмель (Alumel®) — это сплав, содержащий 95% никеля, 2% марганца, 2% алюминия и 1% кремния.

• Термопары типа K — одни из самых распространенных термопар общего назначения, имеющие чувствительность приблизительно 41 мВ/ °C. 

• Термоэлектрод из сплава Chromel® имеет положительный потенциал относительно термоэлектрода из сплава Alumel®.

• Это недорогие термопары, их диапазон измеряемых температур составляет от -270°C до +1372°C (от -454°F до +2501°F) и характеристика относительно линейна.

• Содержание никеля делает сплав магнитным и, как и в случае других магнитных металлов, выходной сигнал термопары отклоняется, когда материал достигает своей температуры Кюри, которая составляет примерно 350°C (662°F) для термопар типа K. Температура Кюри — это температура, при которой магнитный материал претерпевает серьезное изменение своих магнитных свойств, что вызывает существенное смещение выходного сигнала.

• Такие термопары можно использовать в постоянно окислительных или нейтральных средах.

• В основном они используются при температурах выше 538°C (1000°F)

• Воздействие серы приводит к преждевременному отказу термопар.

• Эксплуатация при определенных низких концентрациях кислорода вызывает отклонение

в работе, которое называется преимущественным окислением хрома в положительном термоэлектроде, что приводит к состоянию, которое принято называть “зеленой гнилью” и которое вызывает большой отрицательный уход калибровки, наиболее серьезно проявляющийся в диапазоне 816 — 1038 °C (1500 — 1900°F). Это состояние можно предотвратить / уменьшить с помощью вентиляции или инертного уплотнения защитной трубки.

• Не рекомендуется подвергать термопару воздействию температур, циклически меняющихся так, что они становятся выше и ниже 1000 °C (1800 °F), потому что в этом случае выходной сигнал меняется из-за эффектов гистерезиса.

СОВЕТ: Исторически сложилось так, что термопары типа K предлагается использовать всегда, если только нет причин для применения других типов термопар.

4.2 Термопара типа J, железо — константан

• Диапазон измеряемых температур термопар типа J уже, чем у термопар типа К, от -200 до +1200 °C (от 346 до 2193 °F), но у них выше чувствительность, которая составляет порядка 50 мкВ/ °C.

• Они имеют очень близкую к линейной характеристику в диапазоне от 149 до 427 °C (от 300 до 800 °F), а при температуре ниже 0 °C (32 °F) становятся хрупкими

• При температуре Кюри железа, которая составляет 770 °C (1418 °F), происходит резкое и имеющее постоянный характер измерение выходной характеристики, которое определяет практически достижимый верхний предел температуры.

• Железо подвержено окислению при температурах выше 538 °C (1000 °F), что отрицательно влияет

на точность термопар. В таких условиях следует использовать только проволоку крупного диаметра.

• Термопары типа J подходят для применения в вакууме, в восстановительной или инертной среде.

 

• При использовании в окислительной среде срок службы термопар сокращается.

• Оголенные элементы не должны подвергаться воздействию сред, в которых присутствует сера, при температурах выше 538°C (1000°F)

4.3 Термопары типа E, хромель — константан)

• Хромель — это сплав, состоящий из 90% никеля и 10% хрома, и из него изготавливается положительный термоэлектрод

• Константан — это сплав, обычно состоящий из 55% меди и 45% никеля

• Термопары типа E имеют диапазон измеряемых температур от -270 до 1000°C (от -454°F до 1832°F)

• Это немагнитные термопары, и они имеют наибольшее изменение выходного напряжения в зависимости от температуры среди всех стандартных типов термопар (68 мкВ/ °C)

• Они также имеют большую тенденцию к дрейфу показаний по сравнению с другими типами.

• Такие термопары рекомендуется использовать в постоянно окислительных или инертных средах.

• Пределы их погрешностей при использовании при температурах ниже нуля не установлены.

4.4 Термопары типа T, медь — константан

• Термопары типа T имеют чувствительность 38 мкВ/

°C и диапазон измеряемых температур от -270°C до 400°C (от -454°F до 752°F)

• Их можно использовать в окислительных, восстановительных или инертных средах, а также в вакууме

• Они имеют высокую стойкость к коррозии во влажной среде.

• Такие термопары демонстрируют хорошую линейность характеристики и обычно используются при температурах от очень низких (криогенных) до средних.

4.5 Термопары типа N, нихросил — нисил

• Нихросил — это никелевый сплав, содержащий 14,4% хрома, 1,4% кремния и 0,1% магния, и являющийся положительным плечом в термопаре

• Нисил — это сплав никеля и 4,4% кремния

• Термопара типа N — это самая новая конструкция, одобренная международными стандартами, и ее применение во всем мире растет.

• Эти сплавы позволяют термопарам типа N достигать значительно более высокой термоэлектрической стабильности, чем у термопар из основных металлов типа E, J, K и T.

• Термопары типа N имеют чувствительность 39 мкВ/

°C и возможный диапазон температур от -270°C до 1300Т(от -454 °F до 2372 °F)

• Термопары типа N надежно эксплуатировались в течение продолжительного времени при температурах по крайней мере до 1200 °C (2192 °F)

• Некоторые исследования показали, что в окислительных средах термоэлектрическая стабильность термопар типа N примерно такая же, как у термопар из благородных металлов типа R и S при температурах примерно до 1200 °С (2192 °F)

• Термопары типа N не следует использовать в вакууме или восстановительных средах, или в средах которые меняются с восстановительных на окислительные.

4.6 Термопары типов R и S, платинородий-платина

• Термопары типа R (платина-13% родия / платина) и типа S (платина-10% родия / платина) имеют возможный температурный диапазон от -50 до 1768°C (от 58°F до 3214°F)

• Оба эти типа имеют чувствительность порядка 10 мкВ/ °C и таким образом не подходят для применения при низких температурах, где лучше использовать другие типы.

• Поскольку они изготавливаются из платинового сплава, они достаточно дорогие и обычно используются при очень высоких температурах, где другие термопары работают плохо.

• Благодаря высокой стабильности, термопары типа S используются для определения Международной температурной шкалы между точкой замерзания сурьмы (630,5°C / 1166,9°F) и точкой плавления золота (1064,43°C (1945,4°F))

• Для правильной установки требуется, чтобы термопара была защищена неметаллической защитной трубкой и керамическими изоляторами.

• Длительное воздействие высоких температур вызывает рост зерен металла и может привести

к механическому отказу и отрицательному уходу показаний из-за диффузии родия в термоэлектрод из чистой платины, а также из-за улетучивания родия.

• Вообще термопары типа R используются в промышленности, а термопары типа S в основном используются в лабораториях.

4.7 Термопары типа B, платинородий — платинородий

• Термопары типа B (платина-30% родия / платина-6% родия) имеют возможный диапазон температур примерно от 0 °C до 1820 °C (от 32 °F до 3308 °F).

• Термопары типа B обычно размещаются в чистом воздухе / окислительных средах, но не должны подвергаться воздействию восстановительных сред.

• Повышенное содержание родия в термопарах типа B помогает уменьшить рост зерна, позволяя несколько увеличить температурный диапазон по сравнению с термопарами типа R и S..

5. Стандарты на цвета проводников термопар

Проводники термопар состоят из двух отдельных термоэлектродов (положительного и отрицательного), имеющих цветную изоляцию. Ввиду эффекта Зеебека провода термопар имеют определенную полярность, поэтому положительные и отрицательные провода необходимо подключать к правильным клеммам. Имеются разнообразные стандарты на цвета изоляции проводников для идентификации каждого типа

термопар. См. таблицу 5a В разных стандартах используются уникальные цвета проводов, чтобы отличать положительные и отрицательные выводы. В Северной Америке обычно отрицательный вывод имеет красную изоляцию в соответствии со стандартом ASTM E230. Но самым широко используемым в мире стандартом на провода термопар является IEC 60584, согласно которому отрицательный провод обычно белый. Ясно, что стандарты, согласно которым термопара изготовлена, должны быть известны, чтобы правильно подключать провода по их цветам. Существуют другие стандарты, используемые в различных странах, включая BS1843 (Великобритания и Чешская республика), DIN43710 (Германия), JIS-C1610 (Япония) и NFC 42-324 (Франция). См. таблицу 5a.

СОВЕТ: Пользователь должен проверить, какой стандарт используется на его предприятии, и убедиться в том, что цветовая кодировка доведена до сведения персонала, занимающегося установкой, пусконаладкой и техническим обслуживанием.

6. Удлинительные провода

Удлинительные провода используются либо для связи термопар с системой управления / контроля, либо для соединения их с удаленным измерительным преобразователем. Удлинительные провода термопар, за очень редким исключением, выполняются из того же металла, что и провода термопар. Если металлы не соответствуют друг другу, на каждом конце удлинительного провода создаются дополнительные холодные спаи, которые существенно влияют на измерение температуры. На рисунке 6a видно, что если медные провода используются для подключения термопары, создается «предварительный холодный спай», который может вызывать значительную погрешность, существенно варьирующуюся с изменением температуры окружающей среды вокруг спая 1. Измеряемое напряжение термопары с медными удлинительными проводами не равно измеряемому напряжению термопары с правильными удлинительными проводами. Фактически, если используются медные удлинительные провода, почти невозможно получить какую-либо температуру технологического процесса с приемлемой точностью по измеряемому напряжению.

Рисунок 6a — Несколько спаев, появляющихся при использовании разнородных удлинительных проводов

 

Таблица 5a — Международная кодировка цветов изоляции термопар

Тип термопары

Североамериканский стандарт ASTM Е230

Международный стандарт IEC 60584

Стандарт Великобритании BS 1843

Немецкий стандарт DIN 43710

Японский стандарт JIS С1610

Французский стандарт NFC 42-324

Цвет проводов термопары

Цвет удлинительных проводов

В

не применяется

не применяется

не применяется

— Проводник: Красный

+ Проводник: Серый

Оболочка: Серый

— Проводник: Белый

+ Проводник: Серый

Оболочка: Серый

не применяется

не применяется

не применяется

— Проводник: Серый

+ Проводник: Красный

Оболочка: Серый

— Проводник: Серый

+ Проводник: Красный

Оболочка: Серый

не применяется

не применяется

не применяется

Е

— Проводник:Красный

+ Проводник: Пурпурный

Оболочка: Коричневый

— Проводник: Красный

+ Проводник: Пурпурный

Оболочка: Пурпурный

— Проводник: Белый

+ Проводник: Пурпурный

Оболочка: Пурпурный

— Проводник: Синий

+ Проводник: Коричневый

Оболочка: Коричневый

— Проводник: Чёрный

+ Проводник: Красный

Оболочка: Чёрный

— Проводник: Белый

+ Проводник: Красный

Оболочка: Пурпурный

— Проводник: Пурпурный

+ Проводник: Желтый

Оболочка: Пурпурный

J

— Проводник:Красный

+ Проводник: Белый

Оболочка: Коричневый

— Проводник: Красный

+ Проводник: Белый

Оболочка: Чёрный

— Проводник: Белый

+ Проводник: Чёрный

Оболочка: Чёрный

— Проводник: Синий

+ Проводник: Желтый

Оболочка: Чёрный

— Проводник: Синий

+ Проводник: Красный

Оболочка: Синий

— Проводник: Белый

+ Проводник: Красный

Оболочка: Желтый

— Проводник: Чёрный

+ Проводник: Желтый

Оболочка: Чёрный

К

— Проводник:Красный

+ Проводник: Желтый

Оболочка: Коричневый

— Проводник: Красный

+ Проводник: Желтый

Оболочка: Желтый

— Проводник: Белый

+ Проводник: Зеленый

Оболочка: Зеленый

— Проводник: Синий

+ Проводник: Коричневый

Оболочка: Красный

— Проводник: Зелёный

+ Проводник: Красный

Оболочка: Зелёный

— Проводник: Белый

+ Проводник: Красный

Оболочка: Синий

— Проводник: Пурпурный

+ Проводник: Желтый

Оболочка: Желтый

N

— Проводник:Красный

+ Проводник: Оранжевый

Оболочка: Коричневый

— Проводник: Красный

+ Проводник: Оранжевый

Оболочка: Оранжевый

— Проводник: Белый

+ Проводник: Розовый

Оболочка: Розовый

— Проводник: Синий

+ Проводник: Оранжевый

Оболочка: Оранжевый

не применяется

не применяется

не применяется

не применяется

не применяется

не применяется

не применяется

не применяется

не применяется

R

не применяется

не применяется

не применяется

— Проводник: Красный

+ Проводник: Чёрный

Оболочка: Зелёный

— Проводник: Белый

+ Проводник: Оранжевый

Оболочка: Оранжевый

— Проводник: Синий

+ Проводник: Белый

Оболочка: Зелёный

— Проводник: Белый

+ Проводник: Красный

Оболочка: Белый

— Проводник: Белый

+ Проводник: Красный

Оболочка: Чёрный

— Проводник:Зелёный

+ Проводник: Желтый

Оболочка: Зелёный

S

не применяется

не применяется

не применяется

— Проводник: Красный

+ Проводник: Чёрный

Оболочка: Зелёный

— Проводник: Белый

+ Проводник: Оранжевый

Оболочка: Оранжевый

— Проводник: Синий

+ Проводник: Белый

Оболочка: Зелёный

— Проводник: Белый

+ Проводник: Красный

Оболочка: Белый

— Проводник: Белый

+ Проводник: Красный

Оболочка: Чёрный

— Проводник:Зелёный

+ Проводник: Желтый

Оболочка: Зелёный

Т

— Проводник:Красный

+ Проводник:Синий

Оболочка: Коричневый

— Проводник: Красный

+ Проводник: Синий

Оболочка: Синий

— Проводник: Белый

+ Проводник: Коричневый

Оболочка: Коричневый

— Проводник: Синий

+ Проводник: Белый

Оболочка: Синий

— Проводник: Коричневый

+ Проводник: Красный

Оболочка: Коричневый

— Проводник: Белый

+ Проводник: Красный

Оболочка: Коричневый

— Проводник: Синий

+ Проводник: Желтый

Оболочка: Синий

 

В некоторых случаях, когда экономические соображения могут не позволять использовать дорогостоящие удлинительные провода из редких металлов, таких как платиновые сплавы, используемые в термопарах типа R, S и B, можно использовать в узком диапазоне менее дорогие медные сплавы, которые имеют э.д.с., похожую на э.д.с. самой термопары. Такие выводы называются «компенсационными проводами» и они несколько снижают вышеуказанную погрешность.

Совет: Имеется множество факторов, отрицательно влияющих на измерения с помощью дистанционно смонтированных термопар, включая

— возможные погрешности, которые могут вноситься в измерение с помощью термопар из-за ЭМП и РЧП при применении удлинительных проводов или компенсационных проводов,

— стоимость специальных проводов,

— стоимость замены удлинительных проводов термопар на регулярной основе

— возможность ошибок при подключении проводов из-за несоблюдения цветовой кодировки.

Учитывая все это, настоятельно рекомендуется применять измерительные преобразователи, монтируемые непосредственно на первичный преобразователь, везде, где это возможно.

7. Способы монтажа

Так как термопары изготавливаются с использованием таких же размеров , что и ТС, описанные выше способы монтажа применимы и к термопарам. См. п. 3.2.3.3 выше в разделе, посвященном ТС.

8. Точность термопар

На точность термопар влияют несколько факторов, включая тип термопары, ее диапазон измеряемых температур, чистоту

материала, электрические шумы (ЭМП и РЧП), коррозию, ухудшение свойств спая и процесс изготовления. Термопары выпускаются со стандартным классом допуска или специальным классом допуска, которые называются классом 2 и классом 1, соответственно. Наиболее часто применяемым международным стандартом является IEC-60584-2. В США чаще всего применяется стандарт ASTM E230. Каждый стандарт устанавливает пределы допусков, которым должны соответствовать изделия. См. таблицу 8a и таблицу 8b.

Таблица 8a — Требования к допускам термопар для обеспечения соответствия стандарту IEC 60584-2

Типы

Класс точности 1

Класс точности 2

Класс точи ости 3 1)

Тип Т

Температурный диапазон

-40 °С до +125 °С

-40 °С до+133 °С

-67 °С до +40 °С

Точность

±0.5° С

±1 °С

±1 °С

Температурный диапазон

125 °С до 350 °С

133 °С до 350 °С

-200 °С до -67 °С

Точность

±0.004 • | t |

±0.0075 • | t |

±0.015- | t |

Тип Е

Температурный диапазон

-40 °С до +375 °С

-40 °С до +333 °С

-167 °С до +40 °С

Точность

±1.5 °С

±2.5 °С

±2.5 °С

Температурный диапазон

375 °С до 800 °С

333 °С до 900 °С

-200 °С до-167 °С

Точность

±0.004 • | t |

±0.0075 • | t |

±0.015- | t |

Тип J

Температурный диапазон

-40 °С до +375 °С

-40 °С до +333 °С

Значение допуска

±1.5 °С

±2.5 °С

Температурный диапазон

375 °С до 750 °С

333 °С до 750 °С

Значение допуска

±0.004 • | t |

±0.0075 • | t |

Тип К,

Тип N

Температурный диапазон

0°С до 1100 °С

-40 °С до +333 °С

-167 °С до +40 °С

Точность

±1 °С

±2.5 °С

±2.5 °С

Температурный диапазон

1100°С до 1600°С

333 °С до 1200 °С

-200 °С до-167 °С

Точность

±[1 +0,003 (t-1100)] °с

±0.0075 • | t |

±0.015- | t |

Тип R,

тип S

Температурный диапазон

0°С ДО 1100 °С

0 °С до +600 °С

Точность

±1 °с

±1.5 °С

Температурный диапазон

1100°С до 1600°С

600 °С до 1600 °С

Точность

±[1 +0,003 (t-1100)] °с

±0.0025 • | t |

Тип В

Температурный диапазон

600 °С до 800 °С

Точность

+4 °С

Температурный диапазон

600 °С до 1700 °С

800 °С до 1700 °С

Точность

±0.0025 • | t |

±0.005- | t |

1) Материалы термопар обычно поставляются таким образом, чтобы они отвечали производственным допускам, указанным в таблице для температур выше -40 °C. Однако эти материалы могут не укладываться в производственные допуски при низких температурах, указанных в колонке класса 3 для термопар типа T, E, K и N . Если требуется, чтобы термопары соответствовали предельным значениям класса 3, а также класса 1 или 2, заказчик должен указать это, поскольку в этом случае обычно требуется выбирать материалы

 

Допуски на значения э.д.с. в зависимости от температуры для термопар

ПРИМЕЧАНИЕ 1 — Допуски в этой таблице применяются к новым, практически однородным проводам термопар, обычно имеющим диаметр в диапазоне 0,25 — 3 мм и используемым при температуре, не превышающей рекомендуемые предельные значения таблицы 6 . Если изделия используются при более высоких температурах, эти допуски могут оказаться неприменимы.

ПРИМЕЧАНИЕ 2 — При данной температуре, указанной в градусах °C, точность, указанная в °F, в 1,8 раза больше, чем точность, указанная в °C. В тех случаях, когда точность указывается в процентах, значение в процентах применяется к измеряемой температуре, выражаемой в градусах Цельсия. Чтобы определить точность в градусах Фаренгейта, умножьте точность в градусах Цельсия на 9/5.

ПРИМЕЧАНИЕ 3 — Внимание: Пользователи должны иметь информацию об определенных характеристиках материалов термопар, включая то, что зависимость э.д.с. от температуры может меняться со временем; следовательно, результаты испытаний и эксплуатационные характеристики, полученные на момент изготовления, не обязательно могут оставаться постоянными в течение всего продолжительного периода эксплуатации. Точности, указанные в этой таблице, применимы только к новым проводам, поставленным пользователю, и не учитывают изменений характеристик в ходе эксплуатации. Величина такого изменения будет зависеть от таких факторов, как размер термоэлектрода, температура, время воздействия и окружающая среда. Кроме того, следует заметить, что ввиду возможных изменений однородности, попытка повторной калибровки бывших в эксплуатации термопар вероятнее всего даст неправильные результаты, и проводить ее не рекомендуется. Но может оказаться целесообразным сравнение бывшей в употреблении термопары на месте с новыми или гарантированно обладающими хорошими точностными характеристиками термопарами, чтобы убедиться в ее пригодности для дальнейшей эксплуатации в условиях, в которых проводилось сравнение.

Таблица 8a — Требования к допускам термопар для обеспечения соответствия стандарту ASTM E230-11

 

Температурный диапазон

Точность- эталонный спай при 0 °С [ 32 °F ]

Тип термопары

°С

°F

Допустимое отклонение

Специальные допуски

°С (в зависимости от того, что больше)

°F

°С (в зависимости от того, что больше)

°F

T

J

К или N

R или S

В

от 0 до 370

от 32 до 700

±1,0 или ±0,75%

Примечание 2

±0,5 или ±0,4%

Примечание 2

от 0 до 760

от 32 до 1400

±2,2 или ±0,75%

±1,1 или ±0,4%

от 0 до 870

от 32 до 1600

±1,7 или ±0,5%

±0,01 °С или ±0.,4%

От 0 до 1260

от 32 до 2300

±2,2 °С или ±0,75%

±1,1 Тили ±0,4%

от 0 до 1480

от 32 до 2700

±1,5 °С или ±0,25%

±0,6 °С или ±0,1%

от 870 до 1700

от 1600 до 3100

±0,5%

±0,25%

С

От 0 до 2315

от 32 до 4200

±4,4 или 1%

Примечание 2

Применимо примечание

 

ТA

*EA

КA

от -200 до 0

от -328 до 32

±1,0 или ±1.5%

 

В

 

от -200 до 0

от -328 до 32

±1,7 или ±1%

В

от -200 до 0

от -328 до 32

±2,2 или ±2%

В

* Указанные стандартные допуски не применимы к термопарам типа E с минеральной изоляцией, с металлической оболочкой (MIMS). Стандартные допуски для термопар MIMS типа E соответствуют большему из значений ±2,2 °C или ±0,75% в диапазоне от 0 до 870 °C и большему из значений ±2,2 °C или ±2% в диапазоне от -200 до 0 °C.

A Термопары и материалы термопар обычно поставляются таким образом, чтобы они соответствовали допустимым отклонениям, указанным в таблице для температур выше 0 °C. Однако эти же материалы могут не укладываться в допуски при температурах ниже 0 °C во второй части таблицы. Если требуется, чтобы материалы соответствовали допускам, указанным для температур ниже 0° C, покупатель должен указать это при оформлении заказа. Обычно в этом случае требуется подбор материалов.

B Специальные допуски для температур ниже 0 °C трудно подтвердить ввиду ограниченного объема имеющейся информации.

Тем не менее, при обсуждении поставки между покупателем и поставщиком рекомендуется руководствоваться следующими значениями для термопар типа E и T :

Тип E, от -200 до 0 °C, ±1,0 °C или ±0,5% (в зависимости от того, что больше)

Тип Т, от -200 до 0 °C, ±0,5 °C или ±0,8% (в зависимости от того, что больше)

Начальные значения допуска для термопар типа J при температурах ниже 0 °C и специальных допусков для термопар типа K при температурах ниже 0 °C не указаны из-за характеристик материалов. Данных по термопарам типа N при температурах ниже 0 °C в настоящее время нет.

Быстродействие измерения

Динамическое быстродействие первичного преобразователя может быть важно, если температура технологического процесса меняется быстро и в систему управления необходимо подавать быстро меняющиеся входные сигналы. Первичный преобразователь, установленный непосредственно в технологическую линию, будет иметь большее быстродействие, чем первичный преобразователь с защитной гильзой.

Важно отметить, что если никакой защитной гильзы не применяется, чувствительный элемент подвергается воздействию среды технологического процесса и его невозможно заменить, не прерывая потока, для чего часто требуется останавливать технологический процесс и опорожнять технологическую систему. Указания по проектированию на большинстве производств не позволяют использовать первичные преобразователи без защитных гильз. Такие установки гораздо менее безопасны с точки зрения возможной разгерметизации технологических установок, в них возможны более частые выходы из строя первичных преобразователей из-за воздействия неблагоприятных условий технологического процесса, и они часто требуют дорогостоящих остановок технологического процесса для замены отказавшего первичного преобразователя. Применение защитных гильз решает эту проблему.

Но если используется защитная гильза, очевидно, что время реакции увеличивается (быстродействие уменьшается) из-за возрастания тепловой массы узла. Ключом к оптимизации быстродействия является уменьшение массы при сохранении достаточной физической прочности, чтобы узел выдерживал давление технологического процесса и силы, создаваемые потоком среды. Защитные гильзы меньшего диаметра обеспечивают более высокое быстродействие, так как требуется нагревать и охлаждать меньшее количество материала. Также важно правильно установить первичный преобразователь, чтобы добиться высокого быстродействия. Первичный преобразователь должен быть достаточно длинным, чтобы его конец касался дна защитной гильзы для обеспечения хорошей теплопроводности. Диаметр первичного преобразователя также должен быть таким, чтобы он плотно входил в защитную гильзу и воздушный зазор между первичным преобразователем и защитной гильзой был минимален. Кроме того, быстродействие улучшается путем использования подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем. Характеристики измеряемой среды также влияют на быстродействие, особенно ее скорость потока и плотность. Быстро движущаяся среда передает тепло и меняющуюся температуру лучше, чем медленно движущаяся, а более плотные среды (жидкости) являются лучшими проводниками тепла, чем среды с малой плотностью (газы).

Сравнение быстродействия систем измерения температуры, использующих термопару без защитной гильзы или ТС без защитной гильзы в системе с текущей водой показало, что заземленный конец термопары имеет быстродействие примерно в 2 раза выше, чем подпружиненный датчик ТС. При измерениях в потоке воздуха ТС работает несколько быстрее, чем термопара.

Однако эти преимущества существенно нивелируются, если не исчезают полностью, когда первичный преобразователь устанавливается в защитную гильзу. Масса защитной гильзы настолько велика по сравнению с массой первичного преобразователя, что она очевидно оказывает доминирующее влияние на быстродействие системы.

При использовании первичного преобразователя диаметром 6 мм (1/4 дюйма) в системе измерения температуры воды, быстродействие термопары и ТС примерно одинаковое, а при использовании первичного преобразователя диаметром 3 мм, термопара несколько быстрее, чем ТС. При измерении температуры воздуха быстродействие термопар и ТС примерно одинаковое при использовании как 3-миллиметровых (1/8 дюйма), так и 6-миллиметровых первичных преобразователей.

Поскольку в очень малом количестве технологических процессов используются для измерения первичные преобразователи без защитных гильз, изначально присущее термопарам преимущество в быстродействии значительно нивелируется. Вдумчивый разработчик выбирает наилучший первичный преобразователь для данной системы, основываясь на множестве других факторов, и не руководствуется вводящими в заблуждение утверждениями, которые можно слышать так часто: «термопары всегда быстрее, чем ТС».

Многоточечные первичные преобразователи и первичные преобразователи для измерения температурного профиля

Многоточечные первичные преобразователи температуры для измерения температурного профиля измеряют температуры в различных точках вдоль линии. Они нашли широкое применение в химической и нефтехимической отраслях для снятия распределения температур в баках, реакторах, установках каталитического крекинга и дистилляционных установках или колоннах фракционирования. Многоточечные первичные преобразователи температуры для снятия распределения температуры обеспечивают экономичное, легко устанавливаемое и обслуживаемое решение сбора данных.

Эти первичные преобразователи для снятия распределения температуры способны обеспечивать измерение в нескольких точках, от 2 до 60, в одной защитной трубке с одной точкой ввода в установку. Первичными преобразователями могут быть либо датчики ТС, либо термопары, в зависимости от требований конкретной системы. Полные данные см. в листах технических данных поставщиков, а также см. главу 9, где приведены некоторые примеры применения таких первичных преобразователей.

Заключение

В этой главе мы подробно рассмотрели теорию, расчет, конструкцию, установку и эксплуатацию двух первичных преобразователей температуры, наиболее широко применяемых в промышленных технологических процессах — термопреобразователей сопротивления и термопар. Из сказанного выше о точности и эксплуатационных характеристиках каждого из типов первичных преобразователей можно сделать вывод, что существует множество факторов, влияющих на принятие решения, которые необходимо учитывать при выборе правильного первичного преобразователя для конкретной системы.

В некоторых системах с высокими температурами термопары являются единственным возможным решением, а в других системах могут работать любые первичные преобразователи. При принятии решения следует руководствоваться и другими соображениями, включая требуемую точность системы измерения, эксплуатационные характеристики при длительной эксплуатации и стоимость эксплуатации.

Публикации

«Термоэлектрическая термометрия. Основы, проблемы, развитие».

Ж-л «Мир измерений», № 1, 2002 г. Каржавин А.В., Улановский А.А.

Из теории термоэлектричества

Температура — один из важнейших контролируемых параметров технологических процессов практически во всех отраслях народного хозяйства. Большая часть всех температурных измерений приходится на долю термоэлектрических преобразователей [1, с.8], принцип действия которых основан на явлении Зеебека.

В 1821 году немецкий ученый, уроженец г. Ревеля (ныне Таллин), Т. Й. Зеебек (1770-1831) обнаружил, что если спаи двух разнородных металлов, образующих замкнутую электрическую цепь, имеют неодинаковую температуру, то в цепи протекает электрический ток. Изменение знака у разности температур спаев сопровождается изменением направления тока.

Этот факт послужил основой для создания устройства, чувствительным элементом которого является термопара — два проводника из разнородных материалов, соединенных между собой на одном (рабочем) конце, другие два (свободные) конца проводников подключаются в измерительную цепь или непосредственно к измерительному прибору, причем температура свободных концов заранее известна. Термопара образует устройство (или его часть), использующее термоэлектрический эффект для измерения температуры. Под термоэлектрическим эффектом понимается генерирование термоэлектродвижущей силы (термоЭДС), возникающей из-за разности температур между двумя соединениями различных металлов и сплавов (рис. 1), образующих часть одной и той же цепи.

Рис. 1 Идеальная термопара

Для бесконечно малой разности температур спаев термопары, состоящей из проводников А и В, ее термоЭДС определяется зависимостью ЕАВ = еАВ*dТ,где еАВ — дифференциальная термоЭДС пары АВ. Величину еАВ называют также коэффициентом термоЭДС, коэффициентом Зеебека или чувствительностью термопары.

ТермоЭДС термопары обусловлена тремя причинами [2]. Первая заключается в зависимости уровня Ферми энергии электронов в проводнике от температуры, что приводит к неодинаковым скачкам потенциала при переходе из одного металла в другой с спаях термопары, находящихся при разных температурах. Во-вторых, при наличии градиента температуры электроны в области горячего конца проводника приобретают более высокие энергии и подвижность. Вдоль проводника возникнет градиент концентрации электронов с повышенными значениями энергии, что повлечет за собой диффузию более быстрых электронов к холодному концу, а более медленных к горячему. Но диффузионный поток быстрых электронов будет больше. Кроме того, при наличии градиента температуры вдоль проводника возникает дрейф фононов — квантов энергии колебаний кристаллической решетки. Сталкиваясь с электронами, фононы сообщают им направленное движение от более нагретого конца проводника к более холодному. Последние два процесса приводят к избытку электронов вблизи холодного конца и недостатку их вблизи горячего конца. В результате внутри проводника возникает электрическое поле, направленное навстречу градиенту температуры. Таким образом, термоЭДС термопары возникает только из-за наличия продольного градиента температуры в проводниках, составляющих пару.

Дифференциальная термо-ЭДС (чувствительность) термопары eAB представляет собой разность абсолютных удельных коэффициентов термо-ЭДС A и B каждого проводника термопары:

eAB = dEAB / dT = AB ,

которую можно считать постоянной только в узком диапазоне температур. Абсолютный коэффициент термо-ЭДС данного проводника можно определить по измеренной теплоте Пельтье или Томсона. Явление Пельтье (1834 г.) заключается в том, что при протекании электрического тока через цепь, составленную из разнородных проводников, в месте контакта проводников происходит выделение или поглощение тепла в зависимости от направления тока. Количество выделившегося или поглотившегося в спае тепла QAB пропорционально заряду q, прошедшему через спай: QAB = AB*q = AB*I*t, где: AB — коэффициент Пельтье, В; I — сила тока, А; t —время, с.

Явление Томсона (1856 г.) заключается в том, что при прохождении электрического тока по однородному проводнику, вдоль которого имеется градиент температуры, в проводнике выделяется или поглощается тепло в зависимости от направления тока. Эта теплота выделяется(поглощается) в дополнение к выделяющейся теплоте Джоуля-Ленца (резистивный нагрев). Теплота Томсона пропорциональна силе тока I и градиенту температуры T:,где — коэффициент Томсона, В/К-1. Теплота Томсона является характеристикой материала проводника подобно удельному электросопротивлению и коэффициенту теплопроводности. Применив к трем указанным термоэлектрическим явлениям законы термодинамики, Томсон вывел следующие соотношения, позволяющие определять коэффициенты Пельтье и Зеебека (коэффициент термо-ЭДС):

Наличие информации об абсолютном коэффициенте термоЭДС хотя бы для материала одного проводника дает возможность определения абсолютных коэффициентов всех проводников по результатам измерений термоЭДС относительно этого проводника. В качестве такого эталона при низких температурах принимается свинец, а при средних и высоких температурах — платина.

Для большинства термопар дифференциальная термо-ЭДС существенно зависит от температуры и зависимость термо-ЭДС от температуры быть представлена в интегральном виде как: , которая, в свою очередь, может быть с заданной точностью аппроксимирована в рабочем диапазоне температур (Т1 … Т2) в виде полинома n-ой степени:

Широкому применению в промышленности термопары обязаны в первую очередь своей простоте, удобству монтажа, возможности измерения локальной температуры. К числу достоинств термопар относятся также широкий диапазон измеряемых температур, малая инерционность, возможность измерения малых разностей температур. Термопары могут обеспечивать высокую точность измерения температуры на уровне ±0.01°С.

Термоэлектрические преобразователи, основные типы и области применения

Согласно ГОСТ 6616-94 в странах СНГ стандартизованы типы термопар, наиболее распространенные из которых представлены в табл. 1.

Таблица 1













Тип термопарыОбозначение МЭКБукв. обозн. НСХХимический состав термоэлектродов, мас. %Пределы измеряемых температур
положительныйотрицательныйнижнийверхнийКратко-

временно
Медь — константановая ТМКнCu-CuNiTCuCu + (40-45)Ni + 1.0Mn + 0.7Fe-200350400
Хромель-копелевая ТХКLNi + 9.5 CrCu + (42-44)Ni + 0.5Mn + 0.1Fe-200600800
Хромель — константановая ТХКнNiCr-CuNiENi + 9.5 CrCu + (40-45)Ni + 1.0Mn + 0.7Fe-200700900
Железо — константановая ТЖКFe-CuNiJFeCu + (40-45)Ni + 1.0Mn + 0.7Fe-200750900
Хромель-алюмелевая ТХАNiCr-NiAlKNi + 9.5 CrNi + 1Si + 2Al + 2.5Mn-20012001300
Нихросил-нисиловая ТННNiCrSi-NiSiNNi + 14.2Cr + 1.4SiNi + 4.4Si + 0.1Mg-27012001300
Платинородий-платиновые ТПП13RPt + 13RhPt013001600
Платинородий-платиновые ТПП10SPt + 10RhPt013001600
Платинородий-платинородиеваяBPt + 30RhPt + 6Rh6001700
Вольфрамрений-вольфрамрениевые (А-1; А-2; А-3)W + 5%ReW + 20%Re022002500

Примечания:

1. Указанные буквенные обозначения номинальной статической характеристики (НСХ) термопар соответствуют обозначениям стандарта МЭК 584-1, кроме термопары хромель-копель (L), не нормируемой данным стандартом.

2. По стандарту ФРГ DIN 43710 тип L соответствует термопаре Fe-CuNi (железо-медьникель), отрицательный термоэлектрод которой ближе по составу к копелю и термопара развивает немного большую термо-ЭДС, чем термопара железо-константан (J).

3. Термоэлектродные материалы обычно поставляются в соответствии с пределами допускаемых отклонений, нормированных для температур выше -40°С. Для измерения низких температур при заказе термоэлектродных материалов должны быть оговорены требования на допускаемые отклонения, соответствующие, как правило, 3 классу.

4. Рабочий диапазон термопреобразователя может находиться внутри диапазона измеряемых температур.

Верхний предел рабочего диапазона температур считается максимальной температурой длительного применения (1000 ч) термопреобразователя. За этот срок изменение статической характеристики термопары по отношению к номинальной не должно превышать 1%. Кратковременным применением считается работа термопреобразователя длительностью до 100 ч. За это время статическая характеристика термопары также не должна измениться больше, чем на 1% [3, с.83].

В таблице 2 приведены рекомендуемые рабочие атмосферы для применения приведенных выше типов термопар, а также их дифференциальная чувствительность в указанных диапазонах температур [1, с.34].

Из таблицы 2 видно, что универсальными термопарами являются две: медь-константановая и железо-константановая. Первая не нашла широкого применения в промышленности из-за узкого диапазона температур в области выше 0°С. Она используется, в основном, для измерения низких температур. Термопара типа J широко используется на Западе, но в России также не нашла широкого применения, по-видимому, из-за отсутствия производства высокочистого термоэлектродного железа. Кроме того, к недостаткам термопары можно отнести плохую коррозионную стойкость железного электрода и высокую чувствительность к деформации.

Таблица 2












Тип термопарыРабочие атмосферыЧувствительность в диапазоне температур
окислительнаявосстановительнаяинертнаявакуумдиапазон, °СdE/dT, мкВ/°С
ТМКн (Т)+++++0-40040-60
ТХК++++0-60064-88
ТХКн (E)++++0-60059-81
ТЖК (J)++++++0-80050-64
ТХА (K)++++0-130035-42
ТНН (N)++++0-130026-36
ТПП (R, S)++++600-160010-14
ТПР (B)++++1000-18008-12
ТВРH2 ++++++1300-250014-7

Примечания:

1. ++ рекомендуемая атмосфера; + эксплуатация в данной атмосфере возможна; — не рекомендуемая атмосфера.

2. Под окислительной атмосферой обычно подразумевается воздух (21% об. О2) или смеси газов при избытке кислорода, в которой происходит окисление вещества (потеря атомами и ионами электронов). Присоединение атомами кислорода (образование оксида) — частный случай реакций окисления. Слабоокислительная атмосфера содержит О2 в смеси газов на уровне 2-3%. В восстановительной атмосфере идут химические реакции, в которых атомы и ионы присоединяют электроны. При этом происходит понижение валентности элемента. Примеры восстановительных сред — сухой H2, CO, углеродсодержащие газовые среды, эндогаз, экзогаз, диссоциированный аммиак, выхлопные газы камер сгорания. Инертная атмосфера существует в газах N2, Ar, He.

В качестве основных термопар металлургического производства в диапазоне 1100-1600°С являются платинородий-платиновые термопары ТПП10 и ТПР, модификация ТПП13 широко применяется на Западе. Термопары ТПП10 используются также и в качестве эталонных средств измерения температуры. По совокупности свойств платина и платинородиевые сплавы являются уникальными материалами для термопар. Их основное свойство — хорошее сопротивление газовой коррозии, особенно на воздухе при высоких температурах. Указанное свойство в сочетании с высокой температурой плавления и достаточно большой термо-ЭДС, хорошей совместимостью со многими изолирующими и защитными материалами, а также с хорошей технологичностью и воспроизводимостью метрологических свойств, делает из незаменимыми для изготовления электродов термопар, измеряющих высокие температуры в окислительных средах. Эти сплавы устойчивы в аргоне и гелии, не растворяют азота и водорода и не образуют нитридов и гидридов, не взаимодействуют с СО и СО2. Тем не менее, применять платинородий-платиновые термопары в восстановительных атмосферах не рекомендуется, т.к. в этом случае происходит загрязнение платины и платинородия элементами, восстановленными из защитной или изолирующей керамики (обычно оксидной). До 1200°С платина и ее сплавы с родием практически не взаимодействует с огнеупорными материалами. При более высоких температурах контакт с SiO2 ведет к изменению термоЭДС, который в восстановительной атмосфере уже при температуре выше 1100°С ведет к разрушению платины из-за образования силицидов Pt5Si2 и легкоплавкой (830°С) эвтектики Pt-Pt5Si2, отлагающейся по границам зерен. Эта реакция возможна только в присутствии углерода и серы и осуществляется путем восстановления SiO2 до Si, который в присутствии СО соединяется с серой, образуя газообразный SiS2, последний реагирует с платиной. Таким образом реакция протекает через газовую фазу и не требует обязательного контакта термоэлектродов с кварцем. SiO2 может быть также восстановлен водородом до SiO (газ), который также реагирует с платиной. Вообще, кремний — основная причина охрупчивания и разрушения термопар. Он, как и некоторые другие элементы: Zn, Sn, Sb, Pb, As, Bi, P, В, S — относятся к платиновым ядам [4]. Сера и углерод обычно присутствуют в остатках смазочных масел и охлаждающих эмульсий (использованных при изготовлении металлической защитной арматуры чехла). Пары железа, хрома и марганца также представляют опасность для платиновых термоэлектродов, особенно в вакууме. Взаимодействие с парами металлов приводит к сильному дрейфу термоЭДС и преждевременному разрушению термопары. По этой причине платиновые термопары никогда не устанавливают непосредственно в металлические чехлы. Верхний температурный предел длительного применения термопары ТПП10, равный 1300°С, лимитируется катастрофическим ростом зерна платинового электрода при температурах выше 1400°С. В этом диапазоне используется термопара ТПР, с меньшей дифференциальной чувствительностью, но с верхним пределом рабочих температур до 1600°С. Эта термопара механически более прочна, менее склонна к росту зерна и охрупчиванию, менее чувствительна к загрязнениям. Кроме того, малая чувствительность термопары в диапазоне 0-100°С делает возможным применение термопары с медными удлинительными проводами.

Для устойчивой работы термопар из платины и ее сплавов необходима надежная изоляция термоэлектродов высокочистой оксидной керамикой, а также защита корундовыми (Al2O3) чехлами хорошего качества. Однако газоплотный корундовый чехол с минимальным содержанием примесей имеет сравнительно невысокую термостойкость. Хорошую стойкость к термоударам демонстрирует (скачок температуры не менее 250°С) керамика c невысоким содержанием Al2O3(70-80%) и пористостью 5-10%. Поэтому западные и некоторые российские производители выпускают платиновые термопреобразователи в двойных защитных чехлах: наружный — термостойкий из пористой керамики с содержанием Al2O3 на уровне 80% и внутренний — газоплотный из высокочистой керамики (99,5% Al2O3). При наличии в рабочей среде абразивных частиц наружный чехол может быть выполнен из самосвязанного карбида кремния, также обладающего высокой термостойкостью. Подробная информация по защите термопар при высоких температурах изложена в [5, с. 252-261 и 350-357].

К недостаткам термопар из драгоценных металлов можно отнести уже упоминавшуюся высокую чувствительность термоэлектродов к любым загрязнениям, появившимся при изготовлении, монтаже или эксплуатации термопар, а также их высокая стоимость.

Термопары вольфрам-рениевые ТВР имеют самый высокий предел длительного применения 2200°С, но только в неокислительных средах, т.к. катастрофическое окисление и разрушение термоэлектродов происходит уже при температуре 600°С. Термопара устойчива в аргоне, гелии, сухом водороде и азоте, а также в вакууме. Основной недостаток — плохая воспроизводимость термо-ЭДС, вынуждающая группировать термоэлектродные пары по группам с номинальными статическими характеристиками А-1, А-2, А-3.

Наиболее массовыми типами термопар в промышленности России являются термопара хромель-копель (на Западе применяется похожая термопара хромель-константан, тип Е) с температурой длительного применения до 600°С и термопара хромель-алюмель (тип К) с температурой длительного применения до 1200°С(см. табл. 1).

Термопара хромель-копель обладает наибольшей дифференциальной чувствительностью из всех промышленных термопар, применяется для проведения точных измерений температуры, а также для измерения малых разностей температур. Термопарам свойственна исключительно высокая термоэлектрическая стабильность при температурах до 600°С, обусловленная тем, что изменения термо-ЭДС хромелевого и копелевого термоэлектродов направлены в одну и ту же сторону и компенсируют друг друга. Технический ресурс термопар составляет несколько десятков тысяч часов. Недостаток — высокая чувствительность к деформации.

Термопара хромель-алюмель — самая распространенная в промышленности и научных исследованиях термопара с температурой длительного применения 1200°С. В стандарте РФ ГОСТР 50431-92 и более ранних стандартах указана температура длительной эксплуатации 1000°С. Исходя из многочисленных экспериментальных данных, величина 1200°С представляется несколько завышенной.

Термопары хромель-алюмель и хромель-копель предназначены для измерения температуры в окислительных и инертных средах. Содержание кислорода в окислительной атмосфере должно быть не менее нескольких процентов или его присутствие должно быть практически исключено. В атмосфере, содержащей менее 2-3% (объемн.) кислорода в хромеле резко усиливается селективное окисление хрома, что ведет к существенному уменьшению термоЭДС хромеля, а интеркристаллитный характер коррозии — к охрупчиванию (“зеленая гниль”). Длительное пребывание в вакууме при высоких температурах сильно уменьшает термо-ЭДС хромеля вследствие испарения хрома. В атмосфере, содержащей серу, интеркристаллитная коррозия охрупчивает термоэлектроды, в первую очередь алюмель. Кроме того, SO2 сильно окисляет хромель и является поэтому причиной большого отрицательного дрейфа термоЭДС. Рабочий ресурс термопар ТХА при температуре менее 850°С лимитируется только величиной дрейфа термо-ЭДС, а при 1000-1200°С — жаростойкостью термоэлектродов.

Термопара ТХА имеет широкий диапазон измеряемых температур, но применять ее во всем диапазоне нецелесообразно, т.к. это ухудшает точность измерений. Термопарой, которой пользуются для точного измерения температур до 500°С, не следует измерять более высокие температуры и, наоборот, термопарой, использовавшейся при температурах выше 900°С, нельзя измерять температуры 300-600°С. При высоких температурах в термоэлектродах образуются локальные неоднородности, происходит дрейф термоЭДС. Поэтому нельзя уменьшать глубину погружения термопары в рабочую среду, т.к. возникшие локальные неоднородности могут попасть в зону градиента температур и приведут к дополнительной ошибке измерений. Увеличение глубины погружения не вызывает дополнительной погрешности.

В термопарах ТХА наблюдаются два вида нестабильности термоЭДС: необратимая нестабильность, постепенно накапливающаяся со временем и обратимая циклическая нестабильность. Первый вид нестабильности обусловлен взаимодействием термоэлектродов с окружающей средой. Дрейф термоЭДС в градусах составляет не более 1% от измеряемой температуры на уровне 1000°Сза 1000-4000 часов при диаметре термоэлектродов более 1 мм [1,с.81]. Второй вид нестабильности обусловлен протеканием в хромеле превращений по типу ближнего упорядочения магнитных ячеек структуры сплава в интервале 250-550°С. В результате этих превращений термопары ТХА в состоянии поставки после нагрева при 250-550°С увеличивают термоЭДС относительно номинальных значений. Этот рост исчезает (магнитная структура разупорядочивается) после нагрева при более высоких температурах. Величина обратимого дрейфа термоЭДС зависит от предыдущей истории термоэлектродов, температур градуировки, скорости охлаждения, а также от градиента температурного поля, в котором находится термопара. Дрейф может достигать 3-4°С. Для уменьшения обратимого дрейфа полезно использовать хромель, подвергнутый предварительной термообработке “на упорядочение” при 425-475°Св течение 6 ч [1,с.89], однако исключить его полностью не представляется возможным, если термопарой измеряют температуру в широком диапазоне. Вот почему фирма ABB Automation Products (ФРГ) поставляет свои термоэлектродные материалы для термопар типа К только после дополнительного “отжига на упорядочение”. Магнитная структура хромелевого электрода в этом случае уже упорядочена, и после установки термопары на термометрируемый объект на участке термоэлектродов с градиентом температуры 250-550°С этот процесс уже не проявляется.

Все эти проблемы с термопарой ТХА инициировали разработку и стандартизацию ведущими промышленными странами термопары нихросил-нисил, созданной лабораторией материаловедения министерства обороны Австралии в 60-х годах. Материалы термоэлектродов нихросил и нисил демонстрируют существенно лучшую стабильность термоЭДС по сравнению с термопарой ТХА. Это достигнуто увеличением концентрации хрома и кремния в никеле, а также введением в нисил магния, которые перевели процесс окисления материала термоэлектродов из внутреннего межкристаллитного в поверхностный. При этом на термоэлектродах образуется защитная пленка окислов, подавляющих дальнейшее окисление. Увеличение содержания хрома в нихросиле до 14.2% фактически устранило обратимую нестабильность, характерную для хромеля. Новые сплавы показали также высокую радиационную стойкость, т.к. в них отсутствуют активирующиеся примеси Mn, Co, Fe. Дрейф термопары ТНН с термоэлектродами диаметром 3.2 мм за 1100 ч на воздухе при температуре 1200°С не превышает 100 мкВ, тогда как дрейф такой же термопары ТХА за 300 ч достиг 300 мкВ [6]. Эти данные также свидетельствуют о завышенном значении температуры длительного применения 1200°С для термопары ТХА. В работе [6] делается вывод о существенной необратимой нестабильности термопары ТХА при температурах выше 1050°С. Напротив, термопара ТНН при диаметре термоэлектродов не менее 2.5 мм и температуре до 1200°С демонстрирует дрейф термо-ЭДС, не превышающий дрейф термопар из драгоценных металлов (ТПП, ТПР). Показана перспективность применения термопары ТНН в качестве универсального средства измерения температур в диапазоне температур 0-1230°С, это повысит точность промышленных измерений, качество конечного продукта и, в конечном счете, эффективность всего производства.

Защитные чехлы термопреобразователей

Защитные газоплотные чехлы термопреобразователей существенно расширяют диапазон применения термопар в агрессивных средах и увеличивают их ресурс [5, c 345-349]. Для температур до 800°С применяются чехлы из нержавеющей стали типа Х18Н10Т или 10Х17Н13М2Т (повышенная устойчивость к межкристаллитной коррозии), при более высоких температурах использовалась, в основном, ферритная сталь 15Х25Т с температурой интенсивного окалинообразования 1050°С, которая имеет ограниченную свариваемость и склонна к охрупчиванию в диапазоне 450-850°С [7, c.353]. В настоящее время производятся также термопары ТХА в защитных чехлах из жаростойкой аустенитной стали типа Х23Н18, с такой же жаростойкостью в сочетании с хорошей свариваемостью. Для работы при температурах выше 1000°С потребителю предлагаются термопары ТХА в чехлах из сплавов ХН78Т и ХН45Ю на никелевой и железо-никелевой основах, соответственно. По ГОСТ 5632-72 температура интенсивного окалинообразования сплава ХН78Т составляет 1150°С, рекомендуемая максимальная температура длительного применения сплава ХН45Ю на воздухе 1250-1300°С, т.е. она перекрывает весь диапазон измеряемых температур термопары ТХА. Необходимо только учитывать, что сплав ХН78Т особенно чувствителен к содержанию серы в рабочей среде из-за высокого содержания никеля в сплаве. Образование легкоплавких соединений сернистого никеля приводит к разрушению чехла. Сплав ХН45Ю обладает отличной жаростойкостью, сохраняя хорошую коррозионную стойкость благодаря включению в сплав 3.4% Al, который образует на поверхности сплава тугоплавкую окисную пленку и препятствует развитию коррозионного процесса. Скорости коррозии этих сплавов в 7-10 раз меньше, чем стали 15Х25Т при тех же условиях эксплуатации.

Необходимо отметить, что в России недостаточно производится термопар в защитных чехлах, предназначенных для специальных областей применения. Универсальные чехлы не могут решить проблему защиты термопар во многих агрессивных средах.

Кабельные термоэлектрические преобразователи

В настоящее время широкое распространение в мире, в т.ч. и в России, получили термопарные кабели, представляющие собой пару термоэлектродов помещенную внутрь металлической трубки и изолированную от нее уплотненным плавленым порошком MgO-периклазом (см. рис. 2).

Рис. 2 Заготовка из термопарного кабеля с одной или двумя парами термоэлектродов

В России выпускают термопарный кабель двух типов КТМС-ХА и КТМС-ХК диаметров от 1 до 7.2 ммпо ТУ 16-505.757-75. Оболочка кабеля изготовлена из нержавеющей стали или жаростойкой стали или сплава. Общий вид кабельной термопары представлен на рис. 3. Термоэлектроды термопары со стороны рабочего торца сварены между собой лазерной сваркой, образуя рабочий спай внутри стальной оболочки термопарного кабеля. Рабочий торец заглушен приваренной стальной пробкой. Свободные концы термоэлектродов подключаются к клеммам головки термопреобразователя или компенсационным проводам.

Рис. 3 Общий вид кабельной термопары

Применение кабельных термопреобразователей позволяет достичь существенных преимуществ по сравнению с термопарами традиционного исполнения, таких как:

 

  • повышенные в 2-3 раза термоэлектрическая стабильность и рабочий ресурс при сравнимых рабочих условиях;
  • возможность изгибать, укладывать в труднодоступные места, в кабельные каналы, приваривать, припаивать или просто прижимать к поверхности для измерения ее температуры, при этом монтажная длина может достигать 60-100 метров;
  • малый показатель тепловой инерции, позволяющий применять их при регистрации быстропротекающих процессов;
  • блочно-модульное исполнение термопреобразователей в защитных чехлах, обеспечивающее дополнительную защиту термоэлектродов от воздействия рабочей среды и возможность оперативной замены чувствительного элемента;
  • универсальность применения в различных условиях эксплуатации, хорошая технологичность, малая материалоемкость.

 

Сравнительные испытания термопар показали, что дрейф термо-э.д.с. кабельной термопары КТХА наружным диаметром 3 мм (диаметр термоэлектродов 0.65 мм) при температуре 800°Сза 10 000 часов составляет примерно 100 мкВ, тогда как у обычной термопары ТХА с термоэлектродами диаметром 3.2 мм дрейф достигает 120 мкВ, а при диаметре электродов 0.7 мм он превышает 200-250 мкВ при тех же условиях. Дрейф термоЭДС кабельных термопар в оболочке из высоконикелевых сплавов при 980°С также вдвое меньше, чем дрейф показаний обычной термопары при той же температуре за 5000 ч [1, c. 83-84]. По данным [6] дрейф проволочной термопары ТХА с электродами диаметром 3.2 мм достигает 300 мкВ за 800 ч при температуре 1077°С, а при 1200°С —за 300 ч. Повышенная стабильность кабельных термопар объясняется затруднением окисления термоэлектродов из-за ограниченного количества кислорода внутри кабеля, а также дополнительной защитой термоэлектродов от воздействия рабочей среды с помощью металлической оболочки и оксида магния.

При работе в потоках жидкости или газа, двигающихся с большой скоростью, а также при высоких давлениях и температурах, в агрессивных средах, кабельные термопреобразователи помещаются в защитные чехлы (гильзы), предохраняющие их от изгибов и разрушений, и служат в качестве сменных чувствительных элементов. Защитные чехлы имеют типовые габаритные размеры. Внешний вид преобразователя аналогичен традиционному внешнему виду промышленных термопар (рис.4).

Рис. 4. Кабельный термопреобразователь блочно-модульного исполнения.

При этом термопреобразователи блочно-модульного исполнения, сохраняя все преимущества кабельных, приобретают такие достоинства, как:

 

  • возможность оперативной замены чувствительного элемента без демонтажа защитного чехла с объекта;
  • возможность одновременной поверки большого числа преобразователей вследствие малогабаритности демонтируемых кабельных чувствительных элементов;
  • удешевление последующих поставок, так как, при необходимости, заменять можно только наружный чехол или только чувствительный элемент.

 

Чехлы для термопреобразователей высокотемпературного исполнения для работы при температурах до 1100°С изготавливаются из жаростойких сталей и сплавов. Рабочий ресурс высокотемпературных кабельных термопреобразователей блочно-модульного исполнения также превосходит ресурс термопреобразователей с проволочным чувствительным элементом, хотя диаметр термоэлектродов в кабеле не превышает 1 мм, тогда как проволочные термоэлектроды высокотемпературного исполнения обычно имеют диаметр 3.2 мм. Авторы имеют много положительных отзывов о работе таких термопреобразователей при высоких температурах. Например, кабельные термопреобразователи в жаростойких защитных чехлах из сплава ХН78Т, установленные на кауперах (воздухоподогревателях) доменной печи ОАО “Чусовской металлургический завод”, безотказно работали в течение 14 месяцев (циклическое изменение температуры воздуха в каупере 800-1150 °С), в то время как ресурс проволочных (Ж3.2 мм) термопар в чехлах из стали 15Х25Т не превышал 6-8 месяцев.

Определяющим фактором для обеспечения рабочего ресурса кабельного термопреобразователя блочно-модульного исполнения является полная герметичность и высокая жаростойкость защитного чехла. В этом случае имеющийся внутри чехла кислород “выгорает” в течение первых часов эксплуатации, далее кабельный чувствительный элемент работает в газовой среде, близкой к инертной, что резко тормозит процесс диффузии кислорода через оболочку кабеля к термоэлектродам. Термоэлектроды в этом случае защищены от воздействия рабочей среды двойной оболочкой — кабеля и защитного чехла.

По этому пути производства термопреобразователей пошли ведущие мировые производители: ABB Automation Products (ФРГ), JUMO (ФРГ), Auxitroll (Франция), OMEGA Engineering (США), ARi Industries (США), OKAZAKI Manufacturing (Япония) и др.

Кабельное исполнение термопары хромель-алюмель позволяют уменьшить недостатки присущие электродам этой термопары. Использование же термопары нихросил-нисил в качестве чувствительного элемента кабеля с жаростойкой оболочкой приводит к появлению термопреобразователя с качественно новыми свойствами. В работе [8] приводятся данные по уникальной стабильности кабельной термопары ТНН в оболочке из модифицированного сплава никросил наружным диаметром кабеля 3 ммв течение 2200 ч при температуре 1100°С. Дрейф термоЭДС не превысил 4°С. Авторами настоящей статьи также получены данные [9] о высокой стабильности кабельной термопары ТНН в оболочке из сплава Инконель 600 наружным диаметром 3 мм при термоциклировании в диапазоне температур 20-1100°С. Дрейф термоЭДС не превысил 2,1°Сза 50 термоциклов.

Эти результаты и данные дополнительных исследований позволят действительно рекомендовать кабельную термопару ТНН в качестве эталонного и универсального средства измерений температуры и поддержать уже упоминавшиеся выводы работы [6].

К сожалению, десятилетие известных экономических трудностей задержали развитие термоэлектрической термометрии в России. Мы отстаем в производстве современных и высокоточных термоэлектродных материалов, в обеспечении термоэлектрических термометров надежными защитными материалами, свернуты многие работы по термометрии. Но начавшийся рост промышленного производства позволяет надеяться, что потребности промышленности в повышении точности контроля технологических процессов, заметный рост конкуренции на рынке средств измерений приведут не только к количественному росту, но и к качественно другим конструкциям первичных датчиков, отвечающим современным метрологическим требованиям, а также потребуют новых решений в области термоэлектрической термометрии. Первые результаты в этом направлении уже представлены в материалах Всероссийской конференции “Температура-2001”, состоявшаяся в ноябре 2001 годав г. Подольске. Важнейшее значение для законодательной метрологии, стандартизации средств измерений, несомненно, будет иметь 8-ой международный симпозиум по температуре, проводящийся раз в 10 лет, который состоится в ноябре 2002 годав Чикаго, США.

Список использованной литературы:

  1. И. Л. Рогельберг, В. М. Бейлин. Сплавы для термопар. Справочник, М., Металлургия, 1983.
  2. И. В. Савельев. Курс общей физики, т.3, М., Наука, 1979, с.213.
  3. А. Н. Гордов, О. М. Жагулло, А. Г. Иванова. Основы температурных измерений. М., Энергоатомиздат, 1992, с.69.
  4. Свойства элементов. Справочник под.ред. М. Е. Дрица, книга 2, М., Металлургия, 1997, с.253.
  5. О. А. Геращенко, А. Н. Гордов, А. К. Еремина, В. И. Лах, Я. Т. Луцик и др. Температурные измерения. Справочник, Киев, Наукова Думка, 1989.
  6. N. A. Burley Nicrosil\Nisil type N Thermocouple, Measurements & Control, April 1989, pp.130-133.
  7. С. Б. Масленков, Е. А. Масленкова Стали и сплавы для высоких температур. Справочник, кн.1, М., Металлургия, 1991 .
  8. H. L. Daneman The Choice of sheathing for mineral insulated thermocouples. Measurements&Control, June 1988, pp 242-243.
  9. А. В. Каржавин, С. В. Коломбет, А. А. Улановский Новые методы и средства поверки термоэлектрических термометров в диапазоне температур 300-1100°С. Сборник докладов 1-ой Всероссийской конференции “Температура-2001”,г. Подольск,13-15 ноября 2001 г.

Как работают термопары? Краткое руководство

Термопары — это надежные датчики температуры, которые используются во многих промышленных приложениях. Узнайте, что такое термопары, как они работают и почему они так популярны.

Термопары — это электрические устройства, используемые для измерения температуры. Их точность, быстрое время реакции и способность выдерживать сильные вибрации, высокое давление и экстремальные температуры делают их идеальными для широкого спектра применений. Но как работает термопара?

Принцип работы термопары

Принцип работы термопары основан на эффекте Зеебека или термоэлектрическом эффекте, который относится к процессу преобразования тепловой энергии в электрическую.Эффект описывает электрическое напряжение, возникающее при соединении двух разных проводников, и то, как создаваемое напряжение изменяется в зависимости от температуры.

Базовая конструкция термопары состоит из двух разнородных металлических проводов, каждая из которых имеет разные электрические свойства при разных температурах. Два металла находятся в контакте — касаются друг друга, скручены или сварены — на одном конце; это точка измерения . На другом конце находится точка подключения , названная так потому, что она подключается к считывателю напряжения.Когда температура изменяется в точке измерения, изменяется и электронная плотность каждой металлической проволоки. Эта изменяющаяся электронная плотность составляет напряжение , которое измеряется в точке подключения.

Обратите внимание, что термопары фактически не измеряют абсолютную температуру. Вместо этого они измеряют разность температур между точкой измерения и точкой подключения. Вот почему термопарам также требуется компенсация холодного спая , которая гарантирует, что температура окружающей среды на соединительных выводах холодного спая не влияет на результат измерения, что позволяет получать более точные показания.

Металлические пары в термопарах

Для того, чтобы термопара работала хорошо, два ее провода должны обеспечивать как можно больший контраст в индивидуальных электроотрицательностях. Это сделано для того, чтобы устройство считывания напряжения могло обнаружить наибольшую разницу термоэлектрических напряжений.

Термопары из недрагоценных металлов , известные как типы J, T, K, E и N, производят более высокие термоэлектрические напряжения, чем более дорогие благородные металлы, известные как типы R, S и B. выдерживает температуру до 3092 ° F (1700 ° C) или даже выше.Некоторые из обычных пар металлов — это железо и медь-никель (тип J), медь и медь-никель (тип T), а также никель-хром и никель-алюминий (тип K). Термопары из благородных металлов обычно изготавливаются из платины и родия (типы S, R и B).

WIKA USA производит широкий спектр высококачественных термопар с различными температурными диапазонами, конфигурациями и материалами. Для получения дополнительной информации о том, как работает термопара, посмотрите это короткое видео или свяжитесь с нашими специалистами по измерению температуры.

Что такое термопара и как она работает? Принцип работы термопары

Термопара состоит как минимум из двух металлов, соединенных вместе, чтобы образовать два спая. Один связан с телом, температуру которого нужно измерить; это горячий или измерительный спай. Другой переход связан с телом известной температуры; это холодный или опорный спай. Поэтому термопара измеряет неизвестную температуру тела относительно известной температуры другого тела.

Принцип работы

Принцип работы термопары основан на трех эффектах, открытых Зеебеком, Пельтье и Томсоном. Они следующие:

1) Эффект Зеебека. Эффект Зеебека утверждает, что когда два разных или непохожих металла соединяются вместе в двух стыках, на двух стыках создается электродвижущая сила (ЭДС). Количество генерируемой ЭДС различается для разных комбинаций металлов.

2) Эффект Пельтье: Согласно эффекту Пельтье, когда два разнородных металла соединяются вместе, образуя два перехода, в цепи генерируется ЭДС из-за разной температуры двух переходов цепи.

3) Эффект Томсона: Согласно эффекту Томсона, когда два разных металла соединяются вместе, образуя два соединения, в цепи существует потенциал из-за градиента температуры по всей длине проводников в цепи.

В большинстве случаев ЭДС, предполагаемая эффектом Томсона, очень мала, и ею можно пренебречь, правильно подобрав металлы. Эффект Пельтье играет важную роль в принципе работы термопары.

Диаграммы

Как это работает

Общая схема работы термопары показана на рисунке 1 выше.Он состоит из двух разнородных металлов, A и B. Они соединены вместе, образуя два перехода, p и q, которые поддерживаются при температурах T1 и T2 соответственно. Помните, что термопара не может образоваться, если не будет двух спаев. Поскольку два перехода поддерживаются при разных температурах, в цепи генерируется ЭДС Пельтье, которая является функцией температур двух переходов.

Если температура обоих переходов одинакова, на обоих переходах будет генерироваться равная и противоположная ЭДС, а общий ток, протекающий через переход, равен нулю.Если поддерживать разные температуры в переходах, ЭДС не станет равной нулю, и по цепи будет протекать чистый ток. Полная ЭДС, протекающая через этот контур, зависит от металлов, используемых в контуре, а также от температуры двух переходов. Полная ЭДС или ток, протекающий по цепи, можно легко измерить с помощью подходящего устройства.

Устройство для измерения тока или ЭДС включается в цепь термопары.Он измеряет количество ЭДС, протекающей через цепь из-за двух стыков двух разнородных металлов, поддерживаемых при разных температурах. На рисунке 2 показаны два спая термопары и устройство, используемое для измерения ЭДС (потенциометр).

Теперь температура эталонных спаев уже известна, а температура измерительного спая неизвестна. Выходной сигнал цепи термопары калибруется непосредственно по неизвестной температуре.Таким образом, выходное напряжение или ток, полученные от цепи термопары, напрямую дает значение неизвестной температуры.

Устройства, используемые для измерения ЭДС

Величина ЭДС, развиваемая в цепи термопары, очень мала, обычно в милливольтах, поэтому для измерения ЭДС, генерируемой в цепи термопары, следует использовать высокочувствительные приборы. Обычно используются два устройства: обычный гальванометр и потенциометр для выравнивания напряжения. Из этих двух чаще всего используется балансирующий потенциометр вручную или автоматически.

На рисунке 2 показан потенциометр, подключенный к цепи термопары. Переход p соединен с телом, температуру которого необходимо измерить. Спай q является эталонным спаем, температуру которого можно измерить термометром. В некоторых случаях эталонные спаи также можно поддерживать при температуре льда, подключив их к ледяной бане (см. Рисунок 3). Это устройство может быть откалибровано с точки зрения входной температуры, так что его шкала может давать значение непосредственно с точки зрения температуры.

Ссылка

Книга: Механические измерения Томаса Г. Беквита и Н. Льюиса Бака

Изображения предоставлены

  1. Книга: Механические измерения Томаса Г. Беквита и Н. Льюиса Бака

  2. https: // www .tpub.com / content / doe / h2013v1 / css / h2013v1_24.htm

Этот пост является частью серии: Что такое термопары? Как работают термопары?

Это серия статей, описывающих, что такое термопары, как работают термопары, материалы, используемые для термопар, а также различные формы и формы термопар.

  1. Что такое термопара и как она работает?
  2. Материалы, используемые для термопар и их формы

Как работает термопара и какие типы термопар?

Для многих из нас, кто работает в области автоматизации, особенно в области автоматизации процессов, такие вопросы, как что такое термопара, как работает термопара или какие типы термопар могут показаться очень простыми вопросами. Большинство из них просто скажут, что это градусник, и оставят все как есть.

Когда мы спрашиваем о термодинамике, лежащей в основе этого, люди на самом деле не говорят об этом. В статье вы узнаете, что такое термопара, и все остальное, что вам нужно знать о термопарах.

Чтобы узнать больше о разнице между RTD, термопарами и термисторами, вы можете прочитать нашу статью о RTD, термопаре и термисторе

Что такое термопара?

Термопары — это электрические устройства, состоящие из двух разнородных электрических проводников, образующих разные электрические соединения при различных температурах.

Основываясь на термоэлектрическом эффекте, термопара вырабатывает зависящее от температуры напряжение, которое можно использовать для измерения температуры.

Помимо термопар, на рынке представлен широкий спектр датчиков температуры — резистивные датчики температуры (RTD), инфракрасные датчики, термисторы, кремниевые диоды — и это лишь некоторые из них. Плюсы и минусы каждого из них делают их более подходящими для одних приложений и менее идеальными для других.

Чтобы узнать больше о датчиках температуры, вы можете ознакомиться с нашей статьей о типах и применении датчиков температуры

Но прежде чем мы начнем говорить о различных типах термопар, давайте разберемся, как именно они работают.

Как работает термопара?

Принцип работы термопары основан на законе физики. Мы называем это эффектом Зеебека в честь Томаса Иоганна Зеебека. Этот французский ученый обнаружил, что если мы соединим два разных металла и нагреем их на одном конце, разница температур между двумя концами создаст электродвижущую силу (ЭДС). Давайте посмотрим на картинку ниже, чтобы лучше понять это:

Предоставлено termopares.com.br

Эта ЭДС зависит от типа используемых металлов и температуры.Следовательно, если мы знаем характеристики обоих металлов, мы можем рассчитать изменение температуры, измерив создаваемое милливольтное напряжение. Чтобы связать напряжение с изменением температуры, нам понадобится таблица термопар.

Чтобы узнать больше о таблице термопар, вы можете прочитать нашу статью о чтении таблицы термопар

Для каждого типа термопары будет своя справочная таблица, которая подводит нас к следующей теме. В следующем разделе обсуждаются типы термопар, доступных на рынке.

Типы термопар

Термопара состоит из двух металлов, которые создают ЭДС, когда один конец испытывает изменение температуры. Однако одна термопара не может работать во всех диапазонах температур, поэтому мы используем разные металлы для измерения всех необходимых нам диапазонов. Типы термопар можно отличить по цветам кабелей.

Но нужно быть осторожным, потому что эти цвета меняются в зависимости от страны и стандарта. Эта таблица даст вам представление о наиболее распространенных типах термопар, их диапазонах температур в некоторых из наиболее распространенных стандартов.

Схема подключения термопары

Предоставлено температурными датчиками

Замена термопары

Термопары

имеют очень широкий диапазон температур, поэтому их часто используют в экстремальных условиях. Это делает замену термопары ключевым аспектом технического обслуживания. К счастью, интеллектуальные передатчики могут отслеживать состояние вашего основного элемента, а также его собственное здоровье. Эти устройства могут предоставить вам достаточно данных о вашем процессе для планирования профилактического обслуживания на основе прогнозного анализа.

Кроме того, они также могут предоставить вам данные о производительности различных датчиков, чтобы вы могли выбрать датчики с лучшими характеристиками и сроком службы для вашего процесса.

Если вам нужна помощь в выборе подходящего датчика температуры для вашего приложения, обратите внимание на наш новый интеллектуальный помощник по температуре.

Найдите и купите термопару, подходящую для вашего применения

Чтобы узнать больше о термопарах и измерении температуры, вы можете посмотреть наше видео по измерению температуры или связаться с нашими инженерами!

Что такое термопара и как она работает?

Термопары — это датчики, используемые для измерения температуры.Это устройство, используемое внутри газовой печи в Канзасе, чтобы помочь запальному свету поддерживать вашу печь в рабочем состоянии и в безопасности. Он работает скорее как отказоустойчивый, чтобы не дать несгоревшему газу накапливаться и гореть, взорваться или вызвать другой вид риска для здоровья.

Термопара состоит из двух проводов или проволочных ножек, изготовленных из разных металлов. Ножки свариваются на одном конце в стык, где измеряется температура. Напряжение создается, когда соединение ощущает изменение температуры.Затем напряжение можно интерпретировать с помощью справочных таблиц термопар для расчета температуры.

Существует много типов термопар. Разные типы лучше всего подходят для разных приложений. Обычно их выбирают на основе температурного диапазона и необходимой чувствительности. Термопары доступны в различных комбинациях металлов или калибровок: термопары из недрагоценных металлов типов J, K, T, E и N являются наиболее распространенными; Термопары из благородного металла типов R, S, C и GB проходят высокотемпературную калибровку.Если у вас возникнут вопросы о термопарах, позвоните в B&C Mechanical. Наши опытные специалисты обладают необходимыми знаниями и подготовкой, чтобы ответить на ваши вопросы.

Каждая калибровка имеет различную среду и диапазон температур, хотя максимальная температура зависит от диаметра используемого провода термопары. Следовательно, очень тонкая термопара может не достичь полного диапазона температур. Из-за низкой стоимости и диапазона температур термопара типа K известна как термопара общего назначения.

Из-за того, что термопары измеряют в широком диапазоне температур и сравнительно прочны, они часто используются в промышленности. При выборе термопары для достижения наилучшего результата необходимо учитывать следующие факторы:

  • Определите область применения, в которой будет использоваться термопара.
  • Проанализируйте диапазоны температур воздействия термопары.
  • Оцените любую химическую стойкость, необходимую для материала термопары или оболочки.
  • Оценить потребность в стойкости к истиранию и вибрации.
  • Перечислите все требования для установки, если таковые имеются.

Термопары обычно выбираются на основе их пределов высоких температур, широкого диапазона температур, низкой стоимости и долговечности. Они используются в широком спектре процессов измерения температуры, как правило, в науке, промышленности и OEM-приложениях. Термопары используются почти на всех промышленных рынках, таких как цемент, нефть / газ, электроэнергетика, биотехнологии, а также бумага и целлюлоза. Они также используются в бытовых приборах Канзаса, таких как печи, тостеры и плиты.

Запросите услугу онлайн сегодня. Компания B&C Mechanical предоставляет услуги по коммерческому ремонту, замене, установке и техническому обслуживанию жителям Канзаса и Миссури. От Олате до Канзас-Сити, от Блю-Спрингс до Рейтауна — мы занимаем первое место в области HVAC. Посетите страницу нашей зоны обслуживания, чтобы просмотреть список обслуживаемых нами сообществ. Мы также обслуживаем жителей в районах, прилегающих к этим городам. Если вы не видите свой город в списке, позвоните нам по телефону 913-681-0088 и узнайте, что мы можем для вас сделать.

Основы термопар

Что такое термопара?

Термопара — это датчик, используемый для измерения температуры. Термопары широко используются во многих промышленных и научных приложениях из-за их низкой стоимости, широкого диапазона температур, пределов высоких температур и доступности во многих типах и размерах. Они присутствуют почти на всех промышленных рынках, включая электроэнергетику, нефть и газ, аэрокосмическую промышленность, полупроводники, фармацевтику, биотехнологии, пищевую промышленность и металлы.

Существует несколько сотен типов термопар, изготовленных из различных комбинаций чистых металлов и сплавов со своими уникальными характеристиками и пригодностью для применения. Для обозначения различных типов термопар даны буквенные обозначения. Типы E, J, K, N и T представляют собой термопары из «недрагоценных металлов», наиболее распространенные типы, в которых используются материалы из железа, константана, никросила, меди, хромеля и алюмеля. Термопары типов B, R и S представляют собой термопары из «благородных металлов» (в основном из платины и родия), которые более дороги и используются в высокотемпературных приложениях.

Как работает термопара?

В 1820-х годах эстонско-немецкий физик Томас Иоганн Зеебек обнаружил, что при разнице температур между двумя разнородными электрическими проводниками возникает соответствующая разница напряжений. Это явление теперь известно как термоэлектрический эффект, или термоэлектрический эффект. «Эффект Зеебека» отвечает за поведение термопар.

На рисунке 1 показан пример конструкции термопары. Термопара состоит из двух разнородных проводов термоэлементов A и B, соединенных одним концом T1 («горячий» спай).Провода изолированы друг от друга по длине. На другом конце T2 («холодный» спай) поддерживается постоянная эталонная температура (обычно точка плавления льда). Холодный спай — это место, где провод термопары переходит в медный провод для подключения к счетчику. Провод термопары можно подключить непосредственно к счетчику или считывающему устройству, оборудованному внутренней схемой холодного спая. Эта конфигурация обычно менее точна, чем при использовании внешнего холодного спая, поддерживаемого при температуре плавления ледяной ванны.Разница между фактической температурой T1 и эталонной температурой T2 корректируется электронным способом в приборе, измеряющем термопару, для отображения фактической температуры T1. Эта регулировка называется компенсацией холодного спая (CJC).

Рисунок 1. Конструкция термопары

Напряжение (термоэлектрическая сила) создается между проводами холодного спая (T2), когда горячий спай (T1) подвергается воздействию температуры, отличной от температуры холодного спая.Прибор, подключенный к выводным проводам от холодного спая, используется для считывания напряжения термопары.

Теоретически это измерение напряжения зависит только от разницы температур (T1 — T2). При изменении T1 выходное напряжение термопары изменяется пропорционально изменению температуры, но не линейно. Выходное напряжение составляет от -10 до 77 мВ (в зависимости от типа термопары и температуры измерения). Корреляция температуры и напряжения устанавливает взаимосвязь, уникальную для различных типов термопар.Эти соотношения суммированы в справочных таблицах, которые служат основой для калибровки термопары.

Почему необходимо калибровать термопары?

Важно отметить, что напряжение термопары генерируется не в «горячем спайе», где соединяются два металла (T1), а скорее по всей длине (от T1 до T2), на которую провода подвергаются при температуре градиент. Разница температур спаев и измерительное напряжение является правильным только в том случае, если каждый провод термопары однороден (однороден по составу).Поскольку термопара используется в промышленных условиях, проводящие провода могут терять однородность из-за нагрева, химического воздействия или механических повреждений (например, изгиб провода при перепаде температур). Если неоднородный участок цепи термопары подвергается воздействию температурного градиента, измеренное напряжение будет отличаться, что приведет к ошибке. Поэтому термопары необходимо периодически проверять и калибровать, чтобы гарантировать правильность их измерения.

Термопары из недрагоценных металлов (типы E, J, K, N и T) часто создают «неоднородности» при использовании выше 200 ºC.Нагревание этих термопар в печи приведет к дальнейшему изменению проволоки, или их перемещение изменит температурный градиент. Оба приведут к ошибкам калибровки. В этих случаях требуется калибровка «на месте» (на месте). Это делается путем вставки эталонного термометра рядом с калибруемой термопарой и сравнения показаний.

Термопары из благородных металлов (типы B, R и S) также могут иметь неоднородности, но их влияние невелико (около 0,3 ºC), поэтому их можно эффективно откалибровать.Термопары из недрагоценных металлов, используемые только при температурах ниже 200 ° C (тип K ниже 120 ° C), как правило, не имеют больших неоднородностей и могут быть откалиброваны за пределами предприятия.1

1 Дополнительные советы по неоднородности термопар см. В техническом руководстве Новой Зеландии «Определение термопар».

См. Другие примечания к приложению в этой серии термопар:

2 из 4: Как выбрать оборудование для калибровки термопар

3 из 4: Расчет погрешностей в системе калибровки термопар

4 из 4: Калибровка термопары

Рекомендованные товары:

5649/5650 Стандарты термопар типов R и S

9118 Калибровочная печь для термопар

Как работает термопара?

Термопара — это тип датчика температуры.По сути, термопара работает, создавая электрический ток, который используется для измерения температуры.

Что такое термопара?

Чтобы иметь полное представление о том, как работает термопара, важно знать, что такое термопара. Термопара — это тип датчика температуры, который состоит из двух проводов из разнородных металлов. Он измеряет температуру с помощью эффекта Зеебека.

Существует множество различных типов термопар, каждая из которых имеет свои уникальные характеристики в отношении диапазона температур, вибростойкости, долговечности, химической стойкости и совместимости с областями применения.Типы J, K, T и E известны как термопары из основного металла, которые являются наиболее распространенными типами термопар. Термопары типов R, S и B являются термопарами из «благородных металлов», они обычно используются в высокотемпературных приложениях.

Как работает термопара? Подробнее

Когда металл вступает в контакт с теплом, тепло передается через металл заряженными атомами — электронами. Томас Зеебек, немецкий физик, обнаружил, что когда металл нагревается, и температура передается от одного конца к другому, электричество также генерируется и проводится.Однако создать электрическую цепь из этого электричества невозможно. Как только металл соединяется в петлю, металл становится той же температуры, теряя электрический ток.

Разные металлы проводят тепло и электричество с разной скоростью и производят разные токи друг от друга при нагревании до одинаковой температуры. Взяв две полосы разнородных металлов одинакового размера и соединив их на каждом конце, создается петля. Если сделать одно соединение в металле очень горячим, а другое — очень холодным, электрический ток будет течь через петлю, создавая электрическую цепь.

Величина тока зависит от разницы температур между двумя концами. Поэтому можно создать формулу, которая преобразует ток в показания температуры.

Так работает термопара. Каждый тип содержит два разных металла и измеряет температуру чего-либо, вычисляя электрический ток, который затем вводится в формулу.

Зачем нужна термопара?

Термопара может измерять как более высокие, так и более низкие температуры, чем стандартный датчик температуры.Как правило, они дешевы и долговечны, что делает их хорошо подходящими для промышленных применений, включая OEM, нефть и газ, биотехнологии, фармацевтику и многие другие. Они также присутствуют во многих бытовых приборах, таких как тостеры, плиты и печи.

Мы можем предложить широкий выбор термопар для многих областей применения. Взгляните на наши универсальные термопары , миниатюрные термопары и термопары с минеральной изоляцией . Если вам нужна дополнительная информация, свяжитесь с нами, используя указанную выше информацию.

Что такое датчик термопары и как он работает

В этой статье мы обсудим, как сегодня измеряется температура с помощью термопар, достаточно подробно, чтобы вы:

  • Узнайте, что такое термопары и как они работают
  • Узнайте об основных типах имеющихся термопар и их использовании
  • Узнайте, как термопары могут быть связаны с вашей системой сбора данных

Готовы начать? Пошли!

Введение

Знаете ли вы, что температура — САМЫЙ часто регистрируемый физический показатель? Знание температуры имеет решающее значение для правильной работы всего, от человеческого тела до автомобильного двигателя, и всего, что между ними.

Температура измеряется одним или несколькими типами датчиков температуры. Сегодня на рынке доступно несколько:

  • Датчики термопары [данная статья]
  • Датчики RTD
  • Термисторные датчики
  • Инфракрасные датчики температуры

В этой статье речь пойдет о термопарах. Вы также можете сразу перейти к сравнению различных типов датчиков температуры.

Что такое термопара?

Термопара — это датчик, который используется для измерения температуры.Термопара — очень популярный датчик благодаря своей относительно низкой стоимости, взаимозаменяемости, широкому диапазону измерения и надежности.

Типовой датчик термопары
Хартке, Wikimedia Commons, общественное достояние

Термопары

широко используются во всех отраслях, от автоматизации производства и управления технологическими процессами до автомобилестроения, авиакосмической, военной, энергетической, металлургической, медицинской и многих других отраслей.

Они имеют стандартные типы разъемов, что делает их взаимозаменяемыми и простыми в использовании.На измерительной стороне датчика они могут быть такими же простыми, как два металла, скрученных вместе, или они могут быть заключены в прочный зонд для использования в тяжелых промышленных условиях.

Длинный зонд термопары, подключенный к измерителю
Harke / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

Хотя термопары довольно популярны, с их помощью нелегко достичь точности, намного превышающей 1 ° C. Но, несмотря на это, благодаря своим многочисленным преимуществам, они остаются самым популярным типом датчиков, используемых сегодня для промышленных измерений.

Типы термопар

Сопряжение различных металлов дает нам множество диапазонов измерения. Это так называемые «типы термопар», и нам известно несколько из них:

  • Термопара типа K: соединяет хром и алюминиевые элементы, что дает широкий диапазон измерений от -200 ° C до +1350 ° C (от -330 ° F до +2460 ° F).
  • Термопара типа J
  • Термопара типа Т
  • Термопара типа E
  • Термопара типа R
  • Термопара типа S
  • Термопара типа B
  • Термопара типа N
  • Термопара типа C

Термопары типов J, K, T и E также известны как термопары из недрагоценных металлов.Термопары типов R, S и B известны как термопары из благородных металлов, которые используются в высокотемпературных приложениях. Вот самые популярные типы термопар, которые используются сегодня:

ANSI IEC Используемые сплавы Самый широкий диапазон Магнитный? Комментарии
Дж Дж Железный константан от -40 ° до 750 ° C
от -40 ° до 1382 ° F
Есть Лучше для высоких, чем для низких температур
К К Хромель-Алюмель от −200 ° до 1350 ° C
от −330 ° до 2460 ° F
Есть Самый широкий ассортимент, самый популярный.Никель магнитный.
т Т Медь
(Cu)
от -270 до 400 ° C
от -454 до 752 ° F
Подходит для более низких температур и влажной среды.
E E Хромель-константан от −50 ° до 740 ° C Подходит для криогенного использования.
N N Nicrosil
(Ni-Cr-Si)
от -270 до 1300 ° C
от -450 до 2372 ° F
Широкий диапазон температур, более стабильный, чем тип K
B B Платина-30% родий
(Pt-30% Rh)
от 0 до 1820 ° C
от 32 до 3308 ° F
Высокотемпературный, нельзя вставлять в металлические трубки
R R Платина-13% родий
(Pt-13% Rh)
от -50 до 1768 ° C
от -58 до 3214 ° F
Высокотемпературный, нельзя вставлять в металлические трубки
S S Платина-10% родий
(Pt-10% Rh)
от -50 до 1768 ° C
от -58 до 3214 ° F
Высокотемпературный, нельзя вставлять в металлические трубки
C
W3
W5
C
W3
W5
Вольфрам-3% рений
(W-3% Re)
от 0 до 2320 ° C
от 32 до 4208 ° F
Предназначен для работы в условиях высоких температур, но не в окислительных средах

Подробное сравнение термопар доступно на изображении ниже.Щелкните изображение для увеличения:

Как работает термопара?

Термопары

основаны на эффекте Зеебека, который гласит, что когда пара разнородных металлов, контактирующих друг с другом на каждом конце, подвергаются изменениям температуры, они создают небольшой потенциал напряжения. Причем они делают это пассивно, т.е. им не нужно запитывать формирователь сигнала.

Как это возможно? Создаем ли мы бесплатную энергию из ничего? Вовсе нет — это просто физика!

Учтите, что электроны переносят как электричество, так и тепло.Возьмите кусок голого медного провода и обхватите его рукой с одного конца. Получив энергию от тепла вашей кожи, электроны будут распространяться от области, где вы касаетесь их, к более холодному концу, находящемуся вдали от вас, создавая температурный градиент по длине провода. Тепло превратилось в энергию.

Это явление было первоначально открыто итальянским ученым Алессандро Вольта (в честь которого мы назвали «вольт») в 1794 году. Но немецкий физик Томас Иоганн Зеебек открыл его заново в 1821 году.Он заметил, что когда провода, сделанные из двух разных металлов, соединялись на каждом конце, и между этими концами была разница температур, на стыках создавался небольшой потенциал напряжения.

Мы называем этот потенциал напряжением Зеебека, а создание этого потенциала за счет тепловой энергии — «Эффектом Зеебека». Основываясь на наблюдениях Зеебека 200 лет назад, физики могут определить коэффициент Зеебека, то есть величину термоэлектрического напряжения, которое возникает из-за разницы температур в данном материале.

Термопара обнаруживает изменения температуры пары разнородных металлов при их контакте друг с другом

Десятилетия исследований, проб и ошибок привели к сегодняшнему пониманию того, какие металлы дают нам наилучшие результаты, когда мы соединяем их в пару для создания термопары. Различные комбинации обеспечивают разные эффективные диапазоны измерения. И, конечно же, каждый металл имеет экологические свойства, которые в дальнейшем определяют, где и как их можно использовать.

Наука, лежащая в основе термопар, в настоящее время достаточно развита, и сегодня на рынке доступны стандартные «типы», такие как тип K, который сочетает в себе хромель и алюмель, обеспечивая очень широкий диапазон измерений.Подробнее о типах термопар ниже.

Звучит очень просто — возьмите пару проводов термопары и подключите один конец к вашей системе сбора данных или вольтметру и начните измерение температуры, верно? Что ж, это еще не все.

Есть два дополнительных шага, которые необходимо предпринять, чтобы преобразовать выходной сигнал термопары в пригодное для использования значение температуры: компенсация холодного спая и линеаризация. Давайте посмотрим на каждый из них, чтобы увидеть, как они работают и что делают.

Компенсация холодного спая

Для проведения абсолютного измерения термопара должна быть «привязана» к известной температуре на другом конце кабеля датчика. Раньше в качестве эталона использовалась ледяная баня с почти замороженной дистиллированной водой, известная температура которой составляла 0 ° C (32 ° F). Но так как это неудобно носить с собой, был создан другой метод с использованием крошечного термистора или RTD, экранированного от окружающей среды, для измерения температуры окружающей среды.Это называется «компенсацией холодного спая» (CJC).

CJC внутри модуля термопары Dewesoft IOLITE TH. Белые провода подключаются к термистору, встроенному в белую термопасту.

«Горячий спай» — это измерительный конец сборки термопары, а другой конец — «холодный спай», также известный как эталонный спай термопары, на котором находится микросхема CJC. Таким образом, хотя температура холодного спая может варьироваться, она обеспечивает известный эталон, по которому измерительная система может определять температуру на измерительном конце датчика с очень хорошей и повторяемой точностью.

Линеаризация

Малое выходное напряжение датчика термопары не является линейным, то есть не изменяется линейно при изменении температуры. Линеаризацию можно выполнить самим формирователем сигнала или с помощью программного обеспечения, работающего внутри системы сбора данных.

Кривые линеаризации для наиболее популярных типов термопар
Изображение из онлайн-курса обучения Dewesoft PRO

Проблемы и решения для измерения термопар

Из-за очень малых микровольт и милливольт на выходе этих датчиков, электрические помехи и помехи могут возникать, когда измерительная система не изолирована.Устройства Dewesoft DAQ решают эту проблему с помощью преобразования дифференциального сигнала. Почти все модули преобразования сигналов Dewesoft имеют гальваническую развязку, помимо дифференциальной. Это лучшие способы подавить синфазное напряжение, попадающее в сигнальную цепь.

Еще один способ уменьшить шум — разместить дигитайзер как можно ближе к датчику. Избегание длинных сигнальных линий — это проверенная стратегия повышения точности сигнала и снижения затрат. Посмотрите наши модульные DAQ-устройства SIRIUS и KRYPTON, чтобы найти лучшие в своем классе решения.

Неадекватный CJC приводит к неправильным показаниям. Этот узел необходимо защитить от изменений температуры окружающей среды, чтобы обеспечить надежный ориентир. Dewesoft использует отдельный чип CJC для каждого канала в своих высококачественных CJC, которые выфрезерованы из цельного алюминиевого блока и точно собраны для достижения наилучшего возможного эталона.

Провода для термопар

дороже простых медных проводов, что является еще одной причиной, по которой холодный спай следует располагать как можно ближе к источнику сигнала (при этом избегая резких перепадов температуры окружающей среды).

Системы

, такие как одноканальный изолированный модуль термопары KRYPTON ONE от Dewesoft, обеспечивают наилучшие результаты в этой области, позволяя распределять холодный эталон в любом месте, где расположены датчики, и соединяться между собой на расстоянии до 100 м (328 футов) друг от друга. Сигнал преобразуется в цифровой прямо в точке измерения и передается через EtherCAT в главную измерительную систему, устраняя шум и длинные участки дорогостоящих кабелей термопар.

Приложения для измерения термопар

Испытательный образец наверху печи оснащается термопарами типа K (обратите внимание на желтые разъемы на боковой стороне печи)
Achim Hering / CC BY (https: // creativecommons.org / licenses / by / 3.0)

Температура — это наиболее измеряемое физическое свойство в мире, а термопары — самый популярный датчик для измерения температуры. Таким образом, существуют буквально миллионы и миллионы приложений для термопар во всех отраслях и секторах. Вот лишь некоторые из них:

  • Электростанции (температура является показателем перегрева компонентов)
  • Бытовая техника, в которой недостаточно термисторов
  • Управление производственными процессами и автоматизация производства
  • Производство продуктов питания и напитков
  • Металлургические и целлюлозно-бумажные комбинаты
  • Экологический мониторинг и исследования
  • Научные исследования и разработки (НИОКР)
  • Производство и испытания фармацевтических и медицинских товаров
  • Автомобильные системы и испытательные приложения, испытания в жаркую и холодную погоду, испытания тормозов, испытания ADAS, анализ горения и многое другое
  • Системы и испытания авиационных и ракетных двигателей
  • Производство и испытание спутников и космических аппаратов

Преимущества и недостатки термопар

Преимущества термопары:

  • Автономный (пассивный)
  • Простота использования
  • Взаимозаменяемость, простота подключения
  • Сравнительно недорого
  • Доступен широкий выбор зондов для термопар
  • Широкий диапазон температур для многих типов
  • Более высокие температурные возможности по сравнению с другими датчиками
  • Не зависит от сопротивления уменьшается или увеличивается

Недостатки термопары:

  • Выход требует линеаризации
  • Требуется спай «холодного эталона» CJC
  • Низковольтные выходы чувствительны к шуму
  • Не так стабильно, как RTD
  • Не так точен, как RTD

Сравнение датчиков температуры

: термопары, термометры сопротивления и термисторы

Датчик Термистор Термопара RTD (Pt100)
Диапазон температур Самый узкий
от -40 ° C до 300 ° C
Самый широкий
Тип J: от -210 до 1200 ° C
Тип K: от 95 до 1260 ° C
Другие типы могут иметь диапазон от -270 ° C до 3100 ° C
Узкий
от -200- до 600 ° C
Возможно до 850 ° C
Ответ Быстро от среднего до быстрого
Зависит от размера сенсора, диаметра провода и конструкции
Медленный
Зависит от размера и конструкции датчика
Долгосрочная стабильность Плохо Очень хорошо Лучшее
(± 0.От 5 ° C до ± 0,1 ° C / год)
Точность Ярмарка Хорошо Лучше
0,2%, 0,1% и 0,05%
Линейность Экспоненциальная Нелинейный
Обычно это делается в программном обеспечении
Достаточно хорошо
Но рекомендуется линеаризация
Строительство Хрупкий Соответствующие
Оболочки и трубки повышают хрупкость, но увеличивают время отклика
Хрупкий
Оболочки и трубки повышают хрупкость, но увеличивают время отклика
Размер Очень маленький Маленький Больше
Электропроводка Очень просто Простой Комплекс
Требуемая мощность / возбуждение Нет Нет Требуется
Внешние требования Нет CJC (компенсация холодного спая) и линеаризация сигнала формирователь сигнала RTD
Стоимость Самый низкий
Типы с низкой точностью очень недорогие, но есть и более точные и более дорогие.Доступны модели NTC и PTC (отрицательный и положительный температурный коэффициент).
Низкий
Типы R и S, в которых используется платина, более дорогие
Самый высокий

Технические характеристики типовые

Выбор подходящей термопары для вашего приложения

Чтобы выбрать подходящий датчик для ваших измерений, важно учитывать ряд различных факторов:

  • Какую максимальную и минимальную температуру вам необходимо измерить?
  • Какой бюджет?
  • Какой диапазон точности нужен?
  • В какой атмосфере он будет использоваться? (окислительные, инертные и др.)
  • Каков необходимый срок службы датчика?
  • Какова необходимая реакция (как быстро она должна реагировать на изменения температуры)?
  • Будет ли использование термопары периодическим или непрерывным?
  • Будет ли термопара подвергаться изгибу или изгибу в течение срока службы?
  • Будет ли он погружен в воду и на какую глубину?

Основываясь на ответах на эти вопросы и обращаясь к приведенной выше таблице типов термопар, должна быть возможность выбрать лучший общий датчик (и) для вашего приложения.

Обучающее видео по термопарам

Это видео с конференции по измерениям Dewesoft объясняет основные характеристики и принципы работы термопар и измерения температуры с помощью устройств и программного обеспечения Dewesoft DAQ.

Dewesoft Измерительные приборы для термопар

Dewesoft предлагает несколько систем сбора данных, которые могут эффективно измерять, сохранять и отображать температуру. И они могут сделать это, подключив самые популярные в мире датчики температуры для промышленных DAQ-приложений: термопару.Системы Dewesoft могут измерять, сохранять, анализировать и визуализировать температуру от одного до сотен каналов в режиме реального времени.

Обратите внимание, что программное обеспечение для сбора данных Dewesoft X позволяет отображать выходной сигнал температуры любого датчика с выбранной вами температурной шкалой. Единицей измерения по умолчанию является Цельсий, но программное обеспечение обеспечивает легкое и простое преобразование в шкалу Фаренгейта (F) или в шкалу Кельвина (K), базовую единицу температуры в Международной системе единиц (СИ).

Файл данных теста литий-ионной батареи, в котором датчик термопары использовался для измерения температуры батареи с помощью программного обеспечения Dewesoft X и оборудования DAQ

Dewesoft X настолько гибок, что вы можете отображать данное измерение одновременно в нескольких единицах измерения, если это необходимо.

Измерение термопар SIRIUS

SIRIUS — флагман линейки продуктов Dewesoft. Они представляют собой высочайшую производительность системы сбора данных в сочетании с самым мощным программным обеспечением сбора данных на рынке, DEWESoft X.Для подключения термопар к системам сбора данных SIRIUS мы используем наши популярные адаптеры Dewesoft Sensor Interface (DSI) для взаимодействия с несколькими модулями ввода SIRIUS.

Системы сбора данных

SIRIUS доступны в широком спектре физических конфигураций, от модульных «срезов», которые подключаются к вашему компьютеру через USB или EtherCAT, систем для монтажа в стойку R3 и автономных систем R1, R2, R4 и R8, которые включить встроенный компьютер.

Линейка продуктов SIRIUS DAQ

Адаптеры для термопар серии

DSI-THx имеют стандартный входной разъем типа мини-лезвие и короткий кабель термопары, металлы которого соответствуют типу.Адаптер DSI-THx совместим с четырьмя популярными типами термопар: J, K, T и C.

Адаптер DSI-TH-K от Dewesoft (также доступны типы J, T и C)

Адаптеры

DSI используют встроенный интерфейс TEDS для автоматической настройки в программном обеспечении Dewespft X DAQ. Просто подключите адаптер термопары DSI-TH к входу DB9 выбранного модуля SIRIUS, проверьте свои настройки на экране настройки оборудования в программном обеспечении DEWESoft X, и вы готовы приступить к измерениям.

Перекрестная ссылка модулей SIRIUS и их совместимости с адаптером DSI-TH8x:

Двухъядерные модули SIRIUS Модули SIRIUS HD (высокой плотности) Модули SIRIUS HS (высокоскоростные)
СТГ, СТГМ, LV HD-STG, HD-LV HS-STG, HS-LV
DSI-THx 1

1) Примечание. Доступны адаптеры DSI-TH типов K, J, T, E и C.
2) Примечание. Некоторые модули SIRIUS DAQ имеют варианты входных разъемов, отличные от DB9.Пожалуйста, выберите DB9 для идеальной совместимости с адаптером DSI.

KRYPTON для измерения термопар

DAQ-модуль термопары KRYPTON испытывается на вибрационном шейкере

Устройства сбора данных KRYPTON — это самая защищенная линейка продуктов, доступная от Dewesoft. KRYPTON способен выдерживать экстремальные температуры, удары и вибрацию и имеет класс защиты IP67, что позволяет защитить их от воды, пыли и т. Д. Они подключаются к любому компьютеру с ОС Windows (включая защищенную модель процессора KRYPTON со степенью защиты IP67 от Dewesoft) через EtherCAT и могут быть разделены на расстояние до 100 метров (328 футов), что позволяет размещать их рядом с источником сигнала.Как и SIRIUS, они используют самое мощное программное обеспечение для сбора данных на рынке, Dewesoft X.

KRYPTONi-8xTH — изолированный 8-канальный регистратор данных с термопарой и сбор данных

KRYPTONi-16xTH — изолированный 16-канальный регистратор данных с термопарой и сбор данных

Термопары

могут быть подключены непосредственно к многоканальному модулю формирования сигнала KRYPTON-TH и к одноканальному модулю формирования сигнала высоковольтной термопары HV-TH-1.

Экран настройки программы Dewesoft X, показывающий 8 универсальных входов термопар модуля термопар KRYPTON

Экран настройки канала модуля термопар KRYPTON, показывающий настройки датчика и усилителя и предварительный просмотр аналогового сигнала в реальном времени

Перекрестная ссылка на модули KRYPTON DAQ и их совместимость с термопарами, а также на адаптеры DSI, предназначенные для измерения температуры:

Многоканальные модули KRYPTON
ТН СТГ
Термопары Собственный вход термопары (УНИВЕРСАЛЬНЫЙ — каждый канал может быть настроен на любой тип в программном обеспечении, выбираемый из этих девяти типов:
J, K, T, E, R, S, B, N, C)
Требуется небольшой DSI-THx 1)

1) Примечание — адаптеры DSI-THx доступны в типах K, J, T, C и E

Слева: 1-канальный регистратор данных термопары KRYPTON-1xTH-HV-1
Справа: универсальный модуль сбора данных сигнала KRYPTON-1xSTG-1

Одноканальный KRYPTON ONE обеспечивает максимальную модульность:

Одноканальные модули КРИПТОН-1
TH-HV-1 СТГ-1
Термопары Собственный вход термопары типа K, рассчитанный на изоляцию CAT III 600 В и CAT II 1000 В. Требуется небольшой DSI-THx 1)

1) Примечание — адаптеры DSI-TH доступны в типах K, J, T, E и C

Измерение термопары IOLITE

IOLITE — это уникальный продукт, сочетающий основные возможности промышленной системы управления в реальном времени с мощной системой сбора данных. С IOLITE сотни аналоговых и цифровых каналов могут быть записаны на полной скорости, одновременно отправляя данные в реальном времени на любой мастер-контроллер EtherCAT стороннего производителя.

Слева: система для монтажа в стойку IOLITEr с 12 слотами для модулей ввода
Справа: настольная система IOLITEs с 8 слотами для модулей ввода

Они представляют собой отличную производительность системы сбора данных плюс управление в реальном времени через EtherCAT, в сочетании с самым мощным программным обеспечением сбора данных на рынке, DEWESoft X.

Вот перекрестная ссылка на входные модули IOLITE и их совместимость с термопарами, а также адаптеры DSI, предназначенные для измерения термопар:

Многоканальные модули IOLITE
8xTH 6xSTG
Термопары Собственные входы для термопар
(8 каналов на модуль)
Доступны следующие типы:
K, J, T, R, S, N, E, C, U, B
Через DSI-THx 1)
(до 6 каналов на модуль)

1) Примечание — адаптеры DSI-TH доступны в типах K, J, T, E и C

Модуль сбора данных IOLITE-8xTH обеспечивает изоляцию как «канал-земля», так и «канал-канал» до 1000 В.Данные собираются одновременно со всех 8 каналов с частотой дискретизации до 100 с / с с использованием 24-битного дельта-сигма АЦП.

Те же характеристики частоты дискретизации и изоляции применимы к модулю 6xSTG, за исключением того, что он имеет шесть каналов вместо восьми. 6xSTG — это очень универсальный модуль, способный выполнять тензометрические, резистивные измерения и измерения низкого напряжения в дополнение к его совместимости с адаптерами серии DSI.

Измерение термопар DEWE-43A и MINITAURs

DEWE-43A — чрезвычайно портативная портативная система сбора данных.Он подключается к компьютеру через фиксируемый USB-разъем и имеет восемь универсальных аналоговых входов. Его «старший брат» называется MINITAUR — по сути, это DEWE-43A в сочетании с компьютером и некоторыми другими функциями в одном портативном корпусе. Универсальные входы обеих систем совместимы с адаптерами Dewesoft DSI, что позволяет подключать датчик термопары к любому или ко всем из их восьми входных каналов.

Слева: портативная система сбора данных DEWE-43A
Справа: модель MINITAUR, включая встроенный компьютер

Адаптеры DSI-THx доступны для нескольких популярных типов термопар, включая типы J, K, T и C.Адаптеры DSI используют сенсорную технологию TEDS для автоматической настройки в программном обеспечении Dewesoft X DAQ. Просто подключите адаптер DSI-THx к входу DB9 выбранного входа, проверьте свои настройки на экране настройки оборудования в программном обеспечении Dewesoft X, и вы готовы приступить к измерениям.

.