Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Радиолюбители и профи! Подскажите какие диоды взять.

Последовательно паять диоды полностью лишено какого-либо смысла, т.к. выигрыш по силе тока не получишь, будут те же 1А, а вот падение напряжения будет расти с увеличением числа диодов — 1 диод, около одного вольта; два диода — два вольта; пять диодов — пять вольт. При пяти вольтах падения напряжения на диодах, на лампе от 14 вольт бортсети останется только 9 вольт и гореть она в полный накал уже не будет. Последовательное включение диодов целесообразно тогда, когда требуется понизить напряжение на каком либо потребителе или при работе в цепях высоких напряжений (свыше 1000 вольт). Теперь о параллельном включении. Включить то их можно, но не простым соединением, а с помощью выравнивающих низкоомных резисторов. При простом параллельном соединении, к примеру 5 диодов, допустимый
ток должен был бы по идее суммироваться, т.е. 1Ах5=5A, ан нет. Почему нет? Это связано со следующим. Каждый диод имеет свою вольт-амперную характеристику, которая хоть и немного, но отличается от характеристик своих собратьев в партии. Т.е. порог открытия у каждого диода свой, у какого-то больше, у какого меньше. Так вот диод из этой пятерки, который имеет наименьший порог открытия, откроется первым и примет на себя всю нагрузку, не дав полностью открыться оставшимся четырем. Он в скором времени сдохнет от трехкратного превышения силы тока и если уйдет в обрыв, то его место займет следующий по порогу открытия диод, который также примет на себя всю нагрузку и также в скором времени сгорит. И так далее, до последнего диода. Чтобы этого не
происходило, последовательно с каждым диодом ставят уравнивающий резистор, величина сопротивления которого может колебаться от 0,01 до 1,0 ома, в зависимости от нагрузки и соответствующей ей мощности. Работает это так. Открывается первый диод и принимает на себя всю нагрузку, но на уравнивающем резисторе при этом появляется падение напряжения, которое позволяет открыться уже второму диоду, в цепи которого также стоит уравнивающий резистор, падение напряжения на, уже двух резисторах позволяет открыться третьему диоду.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] .. и так далее, пока не откроются все пять и нагрузка распределится на них поровну. Но это в твоем случае ненужное нагромождение, проще подобрать более мощные диоды. Можно, к примеру, раздербанить блок питания от компа, там во вторичных цепях выпрямления 12V стоит спаренный диод (похож на мощный транзистор, с тремя
выводами), он я думаю, подойдет. Там же стоит диод выпрямителя по цепи 5 вольт, его брать не советую, хотя он и мощнее. Он может не выдержать по предельному напряжению.

Мужчины не обижаются, мужчины огорчаются.

Диод | Виды, характеристики, параметры диодов

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

Диод – это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Мой генератор частоты выглядит вот так.

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

[quads id=1]

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]   В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

На схемах  триодные тиристоры  выглядят вот таким образом:

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

 На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

Похожие статьи по теме “диод”

Как работает стабилитрон

Диод Шоттки

Диодный мост

Как проверить диод и светодиод мультиметром

Как проверить тиристор

Схема для проверки тиристоров

Самодельный выпрямитель на 12 вольт

В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях. В современных устройствах в качестве таких элементов, как правило, используются плоскостные полупроводниковые диоды.

Схема полупроводникового диода.

Плоскостные полупроводниковые диоды

Наряду с хорошими проводниками и изоляторами существует очень много веществ, занимающих по проводимости промежуточное положение между двумя этими классами. Называют такие вещества полупроводниками. Сопротивление чистого полупроводника с ростом температуры уменьшается в отличие от металлов, сопротивление которых в этих условиях возрастает.

Добавляя к чистому полупроводнику небольшое количество примеси, можно в значительной степени изменить его проводимость. Существует два класса таких примесей:

Рисунок 1. Плоскостной диод: а. устройство диода; б. обозначение диода в электротехнических схемах; в. внешний вид плоскостных диодов различной мощности.

  1. Донорные — превращающие чистый материал в полупроводник n-типа, содержащий избыток свободных электронов. Проводимость такого типа называют электронной.
  2. Акцепторные — превращающие такой же материал в полупроводник p-типа, обладающий искусственно созданным недостатком свободных электронов. Проводимость такого полупроводника называют дырочной. «Дырка» — место, которое покинул электрон, ведет себя аналогично положительному заряду.

Слой на границе полупроводников p- и n-типа (p-n переход) обладает односторонней проводимостью — хорошо проводит ток в одном (прямом) направлении и очень плохо в противоположном (обратном). Устройство плоскостного диода показано на рисунке 1а. Основа — пластинка из полупроводника (германий) с небольшим количеством донорной примеси (n-типа), на которую помещается кусочек индия, являющегося акцепторной примесью.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

После нагрева индий диффундирует в прилегающие области полупроводника, превращая их в полупроводник p-типа. На границе областей с двумя типами проводимости и возникает p-n переход. Вывод, соединенный с полупроводником p-типа, называют анодом получившегося диода, противоположный — его катодом. Изображение полупроводникового диода на принципиальных схемах приведено на рис. 1б, внешний вид плоскостных диодов различной мощности — на рис. 1в.

Простейший выпрямитель

Рисунок 2. Характеристики тока в различных схемах.

Ток, протекающий в обычной осветительной сети, является переменным. Его величина и направление меняются 50 раз в течение одной секунды. График зависимости его напряжения от времени показан на рис. 2а. Красным цветом показаны положительные полупериоды, синим — отрицательные.

Поскольку величина тока изменяется от нуля до максимального (амплитудного) значения, вводится понятие действующего значения тока и напряжения. Например, в осветительной сети действующее значение напряжения 220 В — во включенном в эту сеть нагревательном приборе за одинаковые промежутки времени выделяется столько же тепла, сколько в том же устройстве, в цепи постоянного тока напряжением 220 В.

Но на самом деле напряжение в сети меняется за 0,02 с следующим образом:

  • первую четверть этого времени (периода) — увеличивается от 0 до 311 В;
  • вторую четверть периода — уменьшается от 311 В до 0;
  • третью четверть периода — уменьшается от 0 до 311 В;
  • последнюю четверть периода — возрастает от 311 В до 0.

В этом случае 311 В — амплитуда напряжения Uо. Амплитудное и действующее (U) напряжения связаны между собой формулой:

Рисунок 3. Диодный мост.

При включении в цепь переменного тока последовательно соединенных диода (VD) и нагрузки (рис. 2б), ток через нее протекает только во время положительных полупериодов (рис. 2в). Происходит это благодаря односторонней проводимости диода.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Называется такой выпрямитель однополупериодным — одну половину периода ток в цепи есть, во время второй — отсутствует.

Ток, протекающий через нагрузку в таком выпрямителе, не постоянный, а пульсирующий. Превратить его практически в постоянный можно, включив параллельно нагрузке конденсатор фильтра Cф достаточно большой емкости. В течение первой четверти периода конденсатор заряжается до амплитудного значения, а в промежутках между пульсациями разряжается на нагрузку. Напряжение становится почти постоянным. Эффект сглаживания тем сильнее, чем больше емкость конденсатора.

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя — отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода — VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 — понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 — нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 — электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе — фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

  1. Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
  2. Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.

Делаем простой выпрямитель тока на 12 вольт, для заряда аккумуляторов авто. Всё началось с того, что привезли мне на роботу нерабочий блок питания на 22В и 110В. Решил из него сделать зарядное устройство для своей машины для аккумулятора. Аккумулятор естественно на 12В. Сначала разобрал блок питания и посмотрел что там есть внутри. Как оказалось, кроме трансформатора ничего и не было. Не работал БП из-за того, что один провод на подачу электроэнергии просто каким-то образом отвалился. Все же прибор советских времен и со временем поизносился. Корпус и все провода решил выкинуть и смастерить все заново.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Достал из прибора трансформатор. Там было две вторичные обмотки. Одна была на 22В, вторая — 110В. Но этот вольтаж мне не подходил для зарядки аккумулятора.

Разобрал трансформатор, достал все пластины, размотал вторичную обмотку на 22 В. Намотал новым, более толстым, проводом новую обмотку на 12В. Она содержала наполовину меньше витков чем прежняя, но так как сечение провода увеличил, заполнило окно полностью. Все аккуратно собрал и проверил. На выходе оказалось 13.4В. Это отлично подходило для АКБ.

Схема выпрямителя тока на 12 вольт

Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

Блок питания 12 Вольт позволит осуществить питание практически любой бытовой техники, включая даже ноутбук. Обратите внимание на то, что на вход ноутбука подается напряжение до 19 Вольт. Но он прекрасно будет работать, если провести запитку от 12. Правда, максимальный ток составляет 10 Ампер. Только до такого значения потребление доходит очень редко, среднее держится на уровне 2-4 Ампер. Единственное, что следует учесть – при замене стандартного источника питания на самодельный использовать встроенную батарею не получится. Но все равно блок питания на 12 вольт идеально подходит даже для такого устройства.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Параметры блока питания

Самые главные параметры любого блока питания – это выходное напряжение и ток. Зависят их значения от одного – от используемого провода во вторичной обмотке трансформатора. О том, как провести выбор его, будет рассказано немного ниже. Для себя вы должны заранее решить, для каких целей планируется использовать блок питания 12 Вольт. Если необходимо запитывать маломощную аппаратуру – навигаторы, светодиоды, и прочее, то вполне достаточно на выходе 2-3 Ампер. И то этого будет много.

Но если вы планируете с его помощью осуществлять более серьезные действия – например, заряжать аккумуляторную батарею автомобиля, то потребуется на выходе 6-8 Ампер. Ток зарядки должен быть в десять раз меньше емкости АКБ – это требование обязательно учитывается. Если же возникает необходимость в подключении приборов, напряжение питания которых существенно отличается от 12 Вольт, то разумнее установить регулировку.

Как выбрать трансформатор

Первый элемент – это преобразователь напряжения. Трансформатор способствует преобразованию переменного напряжения 220 Вольт в такое же по амплитуде, только со значением, намного меньше. По крайней мере, вам нужно меньшее значение. Для мощных блоков питания за основу можно взять трансформатор типа ТС-270. У него высокая мощность, даже имеются 4 обмотки, которые выдают по 6,3 Вольт каждая. Они использовались для питания накала радиоламп. Без особого труда из него можно сделать блок питания 12 Вольт 12 Ампер, который сможет даже АКБ автомобиля заряжать.

Но если вас полностью не устраивают его обмотки, то можно вторичные все убрать, оставить только сетевую. И провести намотку провода. Проблема в том, как посчитать необходимое количество витков. Для этого можно воспользоваться простой схемой вычисления – посчитайте, сколько витков содержит вторичная обмотка, которая выдает 6,3 Вольт. Теперь просто разделите 6,3 на число витков. И вы получите величину напряжения, которое можно снять с одного витка провода.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Осталось только высчитать, сколько нужно намотать витков, чтобы на выходе получить 12,5-13 Вольт. Будет даже лучше, если на выходе окажется на 1-2 Вольт напряжение выше требуемого.

Изготовление выпрямителя

Что такое выпрямитель и для чего он нужен? Это устройство на полупроводниковых диодах, которое является преобразователем. С его помощью переменный ток превращается в постоянный. Для анализа работы выпрямительного каскада нагляднее использовать осциллограф. Если на перед диодами вы увидите синусоиду, то после них окажется практически ровная линия. Но мелкие куски от синусоиды все равно останутся. От них избавитесь после.

К выбору диодов стоит отнестись с максимальной серьезностью. Если блок питания на 12 Вольт будет использоваться в качестве зарядчика аккумулятора, то потребуется использовать элементы, у которых величина обратного тока до 10 Ампер. Если же намерены осуществлять питание слаботочных потребителей, то вполне достаточно окажется мостовой сборки. Вот тут стоит остановиться. Предпочтение стоит отдавать схеме выпрямителя, собранного по типу мост – из четырех диодов. Если применить на одном полупроводнике (однополупериодная схема), то КПД блока питания уменьшается практически вдвое.

Блок фильтров

Теперь, когда на выходе имеется постоянное напряжение, то необходимо, чтобы схема блока питания на 12 Вольт была немного усовершенствована. Для этой цели нужно использовать фильтры. Для питания бытовой техники достаточно применить LC-цепочку. О ней стоит рассказать более подробно. К плюсовому выходу выпрямительного каскада подключается индуктивность – дроссель. Ток должен проходить через него, это первая ступень фильтрации. Далее идет вторая – электролитический конденсатор с большой емкостью (несколько тысяч микрофарад).

После дросселя к плюсу подключается электролитический конденсатор. Второй его вывод соединяется с общим проводом (минусом). Суть работы электролитического конденсатора в том, что он позволяет избавиться от всей переменной составляющей тока.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Помните, на выходе выпрямителя оставались небольшие кусочки синусоиды? Вот, именно от нее нужно избавиться, иначе блок питания 12 Вольт 12 Ампер будет создавать помеху для устройства, подключаемого к нему. Например, магнитола или радиоприемник будет издавать сильный гул.

Стабилизация напряжения на выходе

Для осуществления стабилизации выходного напряжения можно воспользоваться одним всего полупроводниковым элементом. Это может быть как стабилитрон с напряжением рабочим 12 Вольт, так и более современные и совершенные сборки типа LM317, LM7812. Последние рассчитаны на стабилизацию напряжения на уровне 12 Вольт. Следовательно, даже при условии, что на выходе выпрямительного каскада 15 Вольт, после стабилизации останется всего 12. Все остальное уходит в тепло. А это значит, что крайне важно устанавливать стабилизатор на радиатор.

Регулировка напряжения 0-12 Вольт

Для большей универсальности прибора стоит воспользоваться несложной схемой, которую можно соорудить за несколько минут. Такое можно воплотить при помощи ранее упомянутой сборки LM317. Только отличие от схемы включения в режиме стабилизации будет небольшое. В разрыв провода, который идет на минус, включается переменный резистор 5 кОм. Между выходом сборки и переменным резистором включено сопротивление около 220 Ом. А между входом и выходом стабилизатора защита от обратного напряжения – полупроводниковый диод. Таким образом, блок питания 12 Вольт, своими руками собранный, превращается в многофункциональное устройство. Теперь остается только произвести сборку его и градуировку шкалы. А можно и вовсе на выходе поставить электронный вольтметр, по которому и смотреть текущее значение напряжения.

Источники питания на 12 Вольт с защитными стабилитронами и диодом Шоттки

Многие читатели знают, как мне нравится писать обзоры о блоках питания. И вот так случайно сложилось, что я дорвался до некоторого количества данных устройств. Все дело в том, что не так давно в одном известном магазине появились разнообразные блоки питания «с разборки», и об одном я сегодня расскажу.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Еще в прошлом году я написал в комментах, что скоро будут обзоры разных блоков питания и я имел в виду именно эти блоки питания. Заказал я их несколько видов, три мелких «БУ» и один новый, довольно мощный. Рассказывать буду «по старшинству», потому начну с самого мелкого.

Так как блоки питания я использую часто, то заказал лотом в три штуки, но есть лоты и 1 и 5 и 10 штук. Данный блок питания не является исключением и будет использован в одном из обзоров, который я планирую подготовить в относительно скором времени.

Поставляются блоки питания в отдельных больших пакетах, а не три в одном пакете, как я изначально подумал. Т.е. фактически на складе просто ставится отметка, сколько позиций положить в корзинку.

К упаковке претензий не было, все обильно замотано вспененным полиэтиленом.

В заголовке я написал ток 0.5 (1) Ампер. По ходу обзора я поясню что это означает.

На странице товара было написано — 12 Вольт, 1 Ампер, что более чем понятно. Также там написано, что блоки питания disassemble, т.е. не новые, а выковыряны откуда-то. Моя практика показывает, что такие БП чаще имеют лучше качество сборки и схемотехники, чем новые.

Блоки питания довольно компактные, реальные размеры составляют примерно 57х35х19мм.

Компоновка платы довольно плотная, частично залита силиконом, который в некоторых местах потом пришлось срезать.

Так как плата БУ, то заметны обрезанные провода.

Платы имеют разный цвет гетинакса, да и выпущены в разное время, но все три в интервале 2007-2008 годов.

Также на платах была обнаружена и маркировка модели — 3A-064WU12, по которой я нашел их реальные характеристики.

12 Вольт, 0.5 Ампера, 6 Ватт, КПД при 115 Вольт — 74%. Там же есть и название фирмы производителя — Eng Electric Co., LTD. Так что блоки питания вполне себе фирменные.

На странице товара также есть упоминание о токе в 0.5 Ампера, но указанное как-то вскользь. Думаю подразумевалось, что 0.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] 5 номинальный, 1.0 кратковременный. Но в любом случае, данные характеристики правильно и указывать в разделе характеристики, а не в названии товара.

Ладно, вернемся к нашим блокам питания.

1. По входу стоит предохранитель на ток в 1 Ампер. Предохранитель замедленный (T- Trage — медленные нем.), это обусловлено импульсным характером тока при включении блока питания.

2. Также по входу присутствует варистор диаметром 7мм и рассчитанный на амплитудное напряжение в 470 Вольт. Рядом с ним виден помехоподавляющий конденсатор Х типа с емкостью 0.1мкФ

3. Дальше синфазный дроссель и диодный мост.

4. Первичная и вторичная стороны соединены через конденсатор Y типа с емкостью 2.2нФ.

По большому счету можно было бы поставить пять баллов за фильтр, если бы не два недостатка:

1. Нет термистора, но возможно здесь в нет особого смысла, емкость входных конденсаторов не очень высокая.

2. Параллельно конденсатору Х типа нет разрядного резистора, без него БП может «щипаться» если вынуть вилку из розетки и сразу схватиться за ее контакты.

При этом плюс производителю за наличие помехоподавляющего фильтра и варистор.

1. По входу БП установлены два конденсатора емкостью 6.8мкФ каждый, суммарная емкость 13.6мкФ, что для заявленной мощности в 6 Ватт вполне нормально.

2. Но конденсаторы соединены не просто параллельно, между ними дополнительно включен дроссель. На фото не видно цветовую маркировку — коричневый-черный-красный-золотой.

3. Управляет работой блока питания довольно известный ШИМ контроллер VIPer-12A.

4. Рядом с контроллером находится конденсатор фильтра питания этого контроллера. Часто эти конденсаторы могут незаметно выйти из строя и «попить крови», так как внешне остаются нормальными. Если БП БУ, то рекомендую заменять их в первую очередь.

Силикон, которым залита плата, имеет небольшой желтый оттенок. Сначала я решил что это из-за нагрева компонентов, но цвет одинаков даже около компонентов, которые не греются.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Как я уже писал выше, применен ШИМ контроллер серии VIPer. Это семейство интегрированных ШИМ контроллеров, внутри корпуса микросхемы находится не только сам ШИМ контроллер, а и высоковольтный транзистор, цепи защиты от перегрузки, перегрева и перенапряжения.

Я обычно пользуюсь подобными контроллерами от другой, не менее известной фирмы — Power Integrations, мне они нравятся больше. Но по большому счету они во многом очень похожи.

Заявлено, что для корпуса DIP-8 мощность составляет 13 Ватт в узком диапазоне (230 Вольт) и 8 Ватт в широком (115-230 Вольт). Так как БП заявлен как 115-230, то получается что реальная мощность до 8 Ватт.

На блок схеме виден выходной транзистор, а также цепи защиты. В принципе я мог бы рассказать обо всем этом подробнее, но на мой взгляд это скорее тема отдельной статьи.

Во вторичной части блока питания находятся:

1. Выходной диод Шоттки на ток 2 Ампера, что опять же говорит о максимальном выходном токе не более 650-700мА. На одном из выводов диода присутствует ферритовая бусина.

2. Выходных конденсаторов два, 470 и 220мкФ, как и в случае входных производитель Samxon. Не скажу что конденсаторы высокого класса, скорее среднего, изначально это OEM от фирмы Matsushita продающийся под своим брендом. Лично меня расстроило то, что они рассчитаны на 16 Вольт, а не 25, как положено при таком напряжении.

3. Между конденсаторами есть место под дроссель для уменьшения пульсаций, но вместо него установлена перемычка.

4. Цепь стабилизации стандартна, регулируемый стабилитрон AZ431 (аналог TL431) и оптрон EL817 (аналог PC817).

По выходной цепи не понравились две вещи:

1. Отсутствие выходного дросселя.

2. Конденсаторы на 16 Вольт, а не 25.

В остальном все сделано довольно неплохо.

Качество пайки вполне терпимое. Снизу расположены остальные компоненты, а также пара стабилитронов, о которых я расскажу ниже.

Расстояние между высоковольтной и низковольтной сторонами вполне достаточное.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Отсутствуют защитные прорези, но так как БП изначально проектировался под установку в закрытый корпус, то допустимо делать и так.

Схема блока питания в общем-то стандартна и фактически сделана по даташиту ШИМ контроллера. Из дополнительных мелочей, которые весьма полезны в плане безопасности нагрузки я отмечу пару стабилитронов.

ZD1 — Напряжение 14 Вольт, установлен параллельно выходу, задача — не допустить поднятия выходного напряжения выше 14-14,5 Вольт.

ZD2 — Напряжение 16 Вольт, установлен параллельно транзистору оптрона, задача — ограничить выходное напряжение в случае обрыва или выхода из строя цепи обратной связи.

В комментариях мне несколько раз писали, что я не совсем правильно подхожу к тестам уровня пульсаций. Что же, я принял информацию к сведению и попробую в этот, а также в следующие раз делать это более корректно.

Дело в том, что при измерениях я подключаюсь обычно используя «неправильный» способ, как более удобный. В этом случае земляной провод щупа работает отчасти как антенна, на которую наводятся помехи и искажают осциллограмму. Такой способ для общей оценки большого значения не имеет, но действительно является некорректным.

Картинка ниже взята из описания методики тестирования блоков питания.

Для корректного снятия осциллограмм надо подключать щуп без длинных проводов прямо на выход блока питания.

Как можно увидеть по фото, щуп осциллографа помимо земляного провода с крокодилом имеет возможность подключения сразу около самого щупа.

Используя «палки и веревки» я сделал некое подобие специального щупа для проверки блоков питания, наиболее неудобно было подключаться к центральному контакту, так как он имеет коническую форму.

Параллельно входу подключены два конденсатора, электролитический 1мкФ 63 Вольта и керамический 0.1мкФ.

Конечно то, что я показал выше, можно назвать колхозом, но даже довольно известные фирмы (та же Power Integrations) не чураются делать подобное, правда они использую для этого разъем, но у меня его не было :(.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Фото из описания применения ШИМ контроллеров серии TOP от Power Integrations, номиналы элементов взяты оттуда же.

Щуп осциллографа был подключен прямо на выходные контакты блока питания, нагрузка к дополнительно запаянному проводу.

В процессе подготовки я сравнивал осциллограмму на холостом ходу с подключенной нагрузкой и без, разницы не было.

Первое, что меня удивило при включении, напряжение на выходе 12 Вольт с точностью как минимум до второго знака. По большому счету это не имеет значения и даже если бы напряжение было в диапазоне 11.5-12.5 Вольта, то я бы сказал что нормально, но все равно приятно.

1. Холостой ход.

2. 0.25 Ампера

3. 0.5 Ампера

4. 0.75 Ампера

5. 1 Ампер

6. 1.2 Ампера.

Видно что напряжение на выходе стало падать только при токе нагрузки выше 0.75 Ампера, что в полтора раза выше заявленного. До этого напряжение держалось очень точно и снижалось примерно на 0.001 Вольта на каждые 0.25 Ампера нагрузки.

Уровень пульсаций я бы не назвал маленьким, при номинальном токе 0.5 Ампера они составили 100мВ, но даже при перегрузке не были выше чем 140 мВ.

Исследование показало, что максимальный ток, при котором блок питания стабильно держит выходное напряжение, составляет 0.9 Ампера. И это для не нового БП и при почти двукратном выходном токе.

Также мне писали, что неправильно тестировать блоки питания используя электронную нагрузку. В данном случае я несогласен с таким заключением, так как в линейном режиме полевые транзисторы нагрузки по сути представляют собой те же резисторы, но с обратной связью.

В любом случае я ради эксперимента сравнил поведение блока питания при нагрузке обычным резистором с номиналом в 10 Ом (что было под рукой). На фото видно, что плюсовой щуп нагрузки не подключен.

Напряжение конечно просело, так как ток явно выше расчетного.

Слева осциллограмма нагрузки током 1 Ампер при помощи электронной нагрузки, справа 1.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] 08 Ампера и резистор в качестве нагрузки.

Не сказал бы, что имеется какая-то глобальная разница.

Следующий этап, тест на нагрев. Для этого я закрыл блок питания импровизированным «корпусом» и нагружал последовательно током от 0.25 Ампера до 0.9 Ампера. Ток в 0.9 Ампера был выбран исходя из того, что при этом токе БП еще нормально держит выходное напряжение. Каждый тест занимал 20 минут, общее время теста 1 час 20 минут.

Все данные свел в табличку, попутно ввел новую графу и теперь указано напряжение на начало теста (V1) и в конце (V2). Данное дополнение позволяет отследить уход напряжения от прогрева.

Само напряжение сначала может показаться менее стабильным, чем в тесте выше, но там я подключался прямо к контактам БП, здесь же с использованием куска провода, потому и вышла разница. Но могу сказать, что температурной зависимости выходного напряжения практически нет.

Зато выяснилось, что при токе нагрузки в 0.9 Ампера БП примерно через 5-7 минут снизил выходное напряжение.

Максимальная температура компонентов после завершения теста составила около 100 градусов у трансформатора и 118 у ШИМ контроллера. При токе до 0.75 Ампера (1.5 от номинала), перегрева нет.

Так выглядело ограничение выходной мощности. Я провел повторный тест на уже прогретом БП чтобы было более наглядно.

Старт, через 6 минут постепенное снижение напряжения, на отметке 20 минут я снял крышку, напряжение начало потихоньку расти, еще примерно через 15 минут пришлось несколько раз подуть на плату и напряжение быстро вернулось в норму.

Выше я посетовал на отсутствие выходного дросселя и решил эту недоработку сравнить, а заодно сравнить как изменится результат.

Использовал мелкий самодельный дроссель, буквально что было под рукой. Размер небольшой, намотан проводом 0.68мм.

Результат как говорится — налицо.

1, 2. Ток 0.5 Ампера, слева без дросселя, справа с дросселем.

3, 4.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Ток 1.0 Ампера.

Предупрежу сразу, дроссель не должен иметь большую индуктивность, так как при увеличении индуктивности начнут сильно расти пульсации на первом конденсаторе фильтра и это будет вредно как для самого конденсатора, так и для защитного стабилитрона, установленного параллельно ему. Придется менять конденсатор на аналогичный, но с напряжением в 25 Вольт, а стабилитрон переносить на выход БП.

На этом все. Если коротко, то блоки питания хоть и не лишены некоторых недостатков, перечисленных в обзоре, но в целом довольно неплохие и могут быть применены для разных самодельных устройств, где не требуется большая мощность (6-8 Ватт). Блоки питания вполне фирменные и относительно качественные.

Поштучно выходят дороже и потому если покупать, то лотами по 3 или 5 штук.

Надеюсь что обзор был полезен, как всегда буду рад вопросам в комментариях.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Блок питания 12 вольт 20 ампер своими руками

Многие электротехнические устройства питаются от постоянного напряжения величиной 12 вольт. Если такая техника не особо нуждается в высокой стабильности напряжения, то вполне подойдет самый простой блок питания, состоящий из понижающего трансформатора, диодного моста и фильтрующего конденсатора электролита. Тут вопрос остается только за мощностью такого источника питания, ну и следовательно от нее зависит, какие именно функциональные части будет стоять в блоке питания на 12 вольт. В этой статье давайте разберемся более подробно с этой темой.

Итак, схема простого блока питания на 12 вольт начинается с понижающего трансформатора, задача которого сетевое переменное напряжение 220 вольт понизить до более низкого. Логично предположить, что это пониженное напряжение должно в нашем случае быть 12 вольт. Но нет. На выходе вторичной обмотки трансформатора, для получения в итоге постоянных 12 вольт должно быть около 10 вольт.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Почему так? Просто существует в электротехнике такой вот эффект — переменное напряжение после диодного моста имеет выпрямленный ток, но он скачкообразной формы. Когда мы к выходу моста подсоединяем фильтрующий конденсатор электролит эти скачки постоянного напряжения сглаживаются, а само напряжение увеличивается примерно на 18%. Вот и получается, что переменные 10 вольт после выпрямительного моста и фильтрующего конденсатора электролита превратятся в постоянные 12 вольт.

Нам нужно определится, в первую очередь, с мощностью нашего блока питания на 12 вольт. Какую именно максимальную силу тока мы хотим, чтобы он имел. К примеру, нужно иметь максимальную силу тока в 5 ампер. В этом случае, чтобы спаять хороший блок питания на 12 вольт с этим током нам понадобится понижающий трансформатор мощностью около 80 ватт. Напомню, чтобы найти электрическую мощность нужно силу тока перемножить на напряжение. Следовательно мы наши 12 вольт умножаем на 5 ампер и получаем 60 ватт. Плюс к этому мы добавляем небольшой запас (пусть будет 20 ватт). Вот и видим, что нужен трансформатор на 80 ватт (это если идти по оптимальному пути, хотя если вы поставите большей мощности транс, то это только повлияет на общие размеры источника питания).

Для получения тока на вторичной обмотке около 5 ампер, диаметр этой самой обмотки должен быть не менее 1,6 мм (медь). Для определения зависимости диаметра провода вторичной обмотки и силы тока, который она должна обеспечивать нужно смотреть в справочные таблицы (их легко найти в интернете воспользовавшись поиском).

Теперь нужно подобрать подходящий выпрямительный диодный мост, который нам позволит сделать из переменного напряжения постоянное, хотя и скачкообразной формы. Опять же, нужно в начале определится с силой тока, которую диодный мост может выдержать без негативных воздействий на него. Мы определились, что нам нужен максимальный ток 5 ампер. Как и в случае с трансформатором добавим к этому некий запас. В итоге, находим диодный мост (диоды под него) на силу тока в 8-10 ампер.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1] Мост должен быть рассчитан на напряжение не менее 12 вольт (хотя диоды с маленьким обратным напряжением это редкость, обычно они рассчитаны на достаточно большие обратные напряжения). Либо ставим готовый целостный диодный мост, или паяем его сами из четырех диодов с нужными параметрами.

Ну, и последним важным функциональным элементом нашего самодельного блока питания на 12 вольт, что будем паять своими руками, является конденсатор электролит. Он выполняет фильтрующую роль, сглаживая скачки постоянного напряжения, делая постоянное напряжение более ровным (хотя и не идеальным). Для нашего блока питания вполне подойдет конденсатор электролит, рассчитанный на напряжение 16-25 вольт и емкостью около 5 000 — 10 000 микрофарад. Вот и все, осталось только эти все компоненты спаять в единую схему и собрать в подходящем корпусе.

Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.

Из чего можно собрать блок питания

Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:

  • Трансформатор.
  • Конденсатор.
  • Диоды, из которых своими руками придется собрать диодный мост.

В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.Диод на 12 вольт 5 ампер: 1A7, Диод выпрямительный 1А 1000В [R-1]

Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.

Собираем диодный мостик

А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками. Во-первых, начнем с того, что диод — это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:

  • Сначала соединяются между собой два элемента по схеме плюс-минус.
  • Точно также соединяются между собой и два других диода.
  • После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.

В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.

Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.

Полная сборка прибора

Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.

Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».

Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.

Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.

Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:

  • Выходное напряжение.
  • Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.

    И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.

    Похожие записи:

    Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

    • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
    • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
    • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

    Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

    Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

    Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

    Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

    Компоновка прибора

    Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

    На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

    Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

    Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

    Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

    Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

    Внимание!
    Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

    Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

    Проблемы простого блока питания с нагрузкой

    Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

    Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

    1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
    2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
    3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

    На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

    Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

    Блок питания повышенной мощности

    Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

    Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

    На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

    Внимание!
    Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

    Тема: как сделать простой, регулируемый плавно, блок питания своими руками.

    Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.

    Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.

    Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

    Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор — его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

    Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.

    Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).

    Проще говоря — выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1.2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.

    Диод. Светодиод. Стабилитрон / Хабр

    Не влезай. Убьет! (с)

    Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю эту статью. Всем желающим добро пожаловать под кат.

    Это вторая статья из цикла электроники. Рекомендую к прочтению также первую, которая повествует о том, что такое электрический ток и напряжение.

    Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.

    Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.

    Рассмотрим свойства диода, самые очевидные:

    • От анода к катоду, такое направление называется прямым, диод пропускает ток.
    • От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
    • При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.

    Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.

    Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.

    Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.

    Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.

    На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.

    Как применять

    Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.
    Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.

    Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.

    Немного про другие характеристики

    В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.

    Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.

    Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.

    У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.

    Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.

    Что еще можно сделать

    Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.

    Например, схема защиты цифровых или аналоговых входов от перенапряжения:

    Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.

    Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.

    Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.

    Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.
    Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из предыдущей статьи, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.

    Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.

    После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.

    Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.

    Светодиод

    Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.
    Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.
    По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.

    Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.

    Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

    Применение светодиода

    Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.

    Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.

    На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.

    Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.

    В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.

    С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

    Что-то еще про светодиод

    По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.

    Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

    Стабилитрон

    В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.
    Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.
    Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.

    Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между [Iст. min – Iст. max] с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.

    При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.

    Расчёт стабилитрона

    Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).
    Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.

    Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.

    Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.

    На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.

    Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.

    В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.

    Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.

    Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.

    Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.

    SMD Диоды на ток 1А 2А 3А 5 Ампер до 10А 1000В

    Мы надеемся, что вся информация, представленная в каталоге, будет полезна и производителям промэлектроники, и сервисным центрам, и радиолюбителям.

    Информация по размерам контактных площадок электронных компонентов, применяемых для разработки, сборки и монтажа печатных плат, находится в разделе Печатные платы.

    Выпрямительные диоды на 1000В

    Упаковка: В блистр-ленте на катушке диаметром 330 мм по 3000 выпрямительных диодов в SMC. В блистр-ленте на катушке диаметром 180 мм по 3000 выпрямительных диодов в SOD123FL.

    Диоды Шоттки на ток от 1 А

    Маркировка диода Шоттки Макс. обратное напряжение Макс. ток Имп. прямой ток Макс. прямое напряжение Максимальный обратный ток Тип корпуса диода Характеристики диодаСкладЗаказ
    SS14 40В 30А 0,5В 0,5мА SMA
    SS16 60В 30А 0,5В 0,5мА SMA
    S100 100В 30А 0,79В 0,5мА SMA
    MS120 200В 30А 0,9В 0,002мА SMA
    SR24 40В 50A 0,5В 0,5 мАпри 25°С и 20мА при 100°С SMA
    SR26 60В 50A 0,5В 0,5 мАпри 25°С и 20мА при 100°С SMA
    SX34 (SK34А) 40В 80А 0,5В 0,2мА при 25°С и 20мА при 100°С SMA
    SX36 60В 80А 0,5В 0,2мА при 25°С и 20мА при 100°С SMA
    SK34 40В 100А 0,5В 0,5 мА при 25°С и 20мА при 100°С SMC
    MB310 (SK39 PanJit) 100В 100А 0,9В 0,05мА при 25°С и 20мА при 100°С SMC
    MB510 (SK59 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 10мА при 100°С SMC
    SVC10120VB 120В 10А 200А 0,7В 0,010мА TO-277B
    Купить

    Упаковка: В блистр-ленте на катушке диаметром 330 мм по 5000 диодов Шоттки в TO-277B и MELF, по 500 в SMC на катушке диаметром 180 мм, по 1800 в SMA на катушке диаметром 180 мм.

    Быстрые диоды Шоттки

    Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодов Шоттки в SOD123FL.

    Импульсные диоды

    Упаковка: В блистр-ленте на катушке диаметром 330 мм по 7500 импульсных диодов в SMA и по 3000 (на катушке диаметром 180 мм по 500) в SMC. В блистр-ленте на катушке диаметром 180 мм по 3000 импульсных диодов в SOD123FL.


    Диоды на ток от 1 Ампера представленные в разделе, изготовлены в пластиковых корпусах SMA (SOD123) и SMC средней рассеиваемой мощности, для слаботочных и сигнальных цепей широко используются маломощные диоды и диодные сборки в корпусах SOD323 в SOT323. В аналогичных корпусах поставляются стабилитроны. Близкие размеры имеют прозрачные корпуса светодиодов 0603 и 1206, многоцветных LED светодиодов двух и трех цветов.
    Сборки высоковольтных выпрямительных диодов применяются при изготовление диодных мостов в том числе и на диодах Шоттки. В пластиковых корпусах средней мощности выпускаются защитные диоды – полупроводниковые супрессоры.

    Корзина

    Корзина пуста

    12v диод 5 ампер

    Lg шайба с верхней загрузкой протекает вода из дозатора мыла

    Купить ESD9X12ST5G — On Semiconductor — DIODE, ESD PROTECTION, 12V, SOD-923-2. Ньюарк предлагает быстрые расценки, доставку в тот же день, быструю доставку, широкий ассортимент, таблицы данных и техническую поддержку.

    Смещение операционного усилителя с помощью линейного регулятора напряжения. Для схем операционных усилителей, работающих от стандарта + 3,3 В, необходимо напряжение смещения + 1,65 В. Стабилитроны обычно доступны только до +2,4 В, хотя 1.Шунтирующие регуляторы шириной запрещенной зоны AD589 и AD1580 на 225 В могут использоваться как стабилитроны для обеспечения фиксированного, но не центрированного напряжения при низком импедансе.

    Digi-Key предлагает более 11,5 млн товаров от 1500+ производителей. Большие количества на складе, возможность отправки в тот же день. Paypal принят, закажите онлайн сегодня! Вечные чудеса Вьетнама, Камбоджи и Меконга (от Хошимина до Сиемреапа, 2019), 13-дневный тур из Сиемреапа в Кампонгтям, Ханчей и 9 направлений.

    • 1,5 И 2.0 AMP MOLDED SILICON RECTIFIER DIODES Другие с таким же файлом для таблицы данных: 10D05, 10D2, 10D4, 10D6, 10D8: Скачать … Сладкие сообщения с днем ​​рождения

      Связь между длиной волны частоты и скоростью звука

      В настоящее время для цепи опорного напряжения и 1 используются ОУ и внешним вентилятором. Однако в будущей версии устройства может быть использовано напряжение 5 В. Оба напряжения сделаны из входного напряжения 24 В.

      2U, 8 отсеков для жесткого диска / твердотельного накопителя 2,5 дюйма / 3,5 дюйма, монтируемое в стойку шасси с интерфейсом Mini-SAS HD SFF-8643 12 Гбит / с RM41-H08 Форм-фактор 4U 5 x 3.5-дюймовые серверные шасси с возможностью горячей замены и 3 x 5,25-дюймовых

    • Здесь эта схема построена с мостовым выпрямителем и стабилитроном. Мы можем использовать эту схему в качестве источника питания 12 В для шагового двигателя, серводвигателя и периферийных устройств, требующих 12 В. Понижающий трансформатор снижает напряжение переменного тока до 15 В переменного тока, а четыре диода 1N4007, подключенные как мостовой выпрямитель, дают стабилизированный источник постоянного тока. Этот постоянный ток фильтруется с помощью конденсатора C1 (470 мкФ / 16 В) … Чемпионат мира по кунг-фу 2009

      Меню предварительной обработки шаблонов drupal 8

      191-240 80 мм, 6 диодов, стойка 5 мм.Подробный листинг. 196-031 12 В … 12 В 100 А 10SI Marine SE. Подробный листинг. 110-7127MAR. 12V 63 Amp 10SI SE Marine …

      Герметичная свинцово-кислотная батарея 12 В, 35 А · ч 72 $ 99. Сравните с. UPG 46042 по цене 89,99 долларов. Экономия 19%. В корзину Добавить в мой список. Thunderbolt. 12 В, 10 Ач, герметичный свинцово-кислотный …

    • ИНТЕРНЕТ-МАГАЗИН СВЕТОДИОДОВ Комплект из 6 5-контактных реле на 12 В в стиле Bosch [Держатель гнезда для блокировки жгутов] [Горячие провода 14 AWG] [SPDT] [30/40 А] Автомобильные реле на 12 В для автомобилей фанатов автомобилей 4.7 из 5 звезд 849 $ 12,45 $ 12. 45 Minecraft design sheet

      Мотоциклы Whizzer на продажу рядом со мной

      18 февраля 2011 г. · Чтобы улучшить линейность диода, нам нужно включить диод в цепь обратной связи операционного усилителя. Практические примеры На рисунках 4–6 показаны практические примеры при использовании диода 1N4001 и RL = 1 кОм. Частота f = 1 кГц. РИСУНОК 4: Образец отрицательного полуволнового выпрямителя. РИСУНОК 5: Образец положительного полуволнового выпрямителя.

      В наборах, которые я предлагаю, используется новый клонированный генератор переменного тока Delco 10SI на 63 А.Каждый комплект поставляется с монтажным кронштейном, стяжным кронштейном, шкивом правильного размера, проводом диода / возбудителя, а также инструкциями по подключению и схемами подключения. Вся порошковая покраска завершается: СВЯЗАТЬСЯ СО МНОЙ ДЛЯ НАБОРОВ НА ЗАКАЗ. В комплект входит. Новый генератор 65 А Delco; Провод диода возбудителя

    • NOCO Genius G26000 12V / 24V 26 Amp Pro-Series Зарядное устройство и зарядное устройство 4.5 из 5 звезд 525 CDN 239,99 CDN 239 долларов США. 99 NOCO GENIUS10, полностью автоматическое интеллектуальное зарядное устройство на 10 А, зарядное устройство для аккумуляторов 6 и 12 В, устройство для обслуживания аккумуляторов, капельное зарядное устройство и десульфатор аккумуляторов с температурной компенсацией 4.7 из 5 звезд 3 345 У этого хозяина еще одна встреча в процессе

      Купить toyota tundra en espana

      Официальный сайт Ron Francis Wiring. Пионер автомобильных электромонтажных систем своими руками. С 1974 года мы поставляем качественную электротехническую продукцию для уличных торговцев, хотродов, нестандартных автомобилей, грузовиков и гоночных автомобилей. Платежный портал для заглушек dg

      Рейтинг в ампер-часах показывает, сколько заряда батареи хватит, прежде чем она разрядится. Например, аккумулятор на 7,2 Ач даст 7,2 ампер в течение одного или трех часов.6 ампер в течение 2 часов или 1,8 ампер в течение 4 часов и т. Д. Также часто встречается в системах сигнализации, установках NBN и других критических системах с резервными батареями.

    • Micro Relay 5 PIN 12v 20a + Diode Changover Mini 20 amp CAR VAN MARINE MRY11. 2,65 фунта стерлингов + 16,64 фунта стерлингов P&P. Ежедневный протокол работы Cufca

      Globoplay roku usa

      BatteryMINDer Зарядное устройство / устройство непрерывного действия / десульфатор — 12 В, 1,5 А, модель № 1500 (89) Всего 48,74 доллара США. Товар # 44103 Краткая информация … Ruag 50 BMG brass

      Закажите Panasonic Electric Works CA1A-12V-A-5 (255-5272-ND) в DigiKey.Проверьте наличие на складе и цены, просмотрите спецификации продукта и сделайте заказ в Интернете.

    • ЗАЗОР — 30 ДНЕЙ ГАРАНТИИ От аккумулятора к зарядному устройству (вход 12–12 В, 50 А) или (вход 12–24 В, 50 А) Только 30 дней гарантии — полная информация. Быстрая покупка. Распроданный. .percent20

      React white screen

      Вы можете сделать это с помощью диодов, но большой ток в таком диоде будет выделять много тепла. У меня нет времени вдаваться в подробности прямо сейчас, но вам, вероятно, лучше было бы поставить реле рядом с источником света и использовать существующий сильноточный сигнал, чтобы управлять только катушкой реле через гораздо более низкий текущий диод, а затем пропустите свой новый переключатель сигнала через аналогичный диод… King of tone clone

      Зарядное устройство на 12 В, 5 А. С 3-портовой линейной вилкой: $ 119,95 Артикул № CHR-S12V5A3P: зарядное устройство на 12 В, 5 А. С 2-портовой линейной вилкой: 119,95 долларов США Артикул № CHR-S12V5A2P: зарядное устройство на 12 В, 5 А. С 3-контактным разъемом XLR: $ 119,95 Артикул № CHR-S12V5AXLR: Зарядное устройство на 12 В, 5 А. С 3-портовой домашней вилкой: $ 119,95 Товар # CHR-S12V5AHS: зарядное устройство на 12 В, 5 А. С поляризованным штекером …

    Стабилитрон, резистор, источник переменного тока постоянного тока, миллиамперметр, вольтметр, реостат и провод. Теория.Стабилитрон похож на сигнальный диод общего назначения. При смещении в прямом направлении он ведет себя так же, как обычный сигнальный диод, но когда на него подается обратное напряжение, напряжение остается постоянным для широкого диапазона токов.

    Был изготовлен из Bestellen Ihres Diode 5a 12v zu beachten, позолоченный. Кроме того, был использован Thema Diode 5a 12v erfahren möchtest, siehst du auf unserer Website — genau wie die best Diode 5a 12v Tests. In die Endnote fällt viele Eigenarten, damit das perfekte Ergebniss zu sehen.Gegen unseren Vergleichssieger konnte sich keinanderes Produkt messen.

    Светодиодные ленты 5M Гибкие фонари Tiktok IP20 300led SMD 2835 8-миллиметровая диодная лента 12В Светодиодная лента Ledstrip для дома $ 5.19. 5,19 доллара США. 7,79-34%.

    В приведенной выше схеме напряжение на стабилитроне составляет 10 В, а на резисторе — 2 В. При 2 В на резисторе 400 Ом ток через этот резистор (и диод последовательно) составляет 5 мА. Опоры напряжения на стабилитронах. Фиксированное свойство напряжения стабилитронов делает их чрезвычайно удобно в качестве ссылок быстрого напряжения.Основная схема выглядит …

    Better20 5etools

    Источником питания может быть либо сухой элемент на 9 В, либо его можно использовать в автомобильном аккумуляторе на 12 В. Самый быстрый способ — использовать последовательный резистор, чтобы снизить напряжение с 9 В или 12 В примерно до 5 В. Фактическое напряжение не обязательно должно быть точно 5 В. Обычно есть некоторая терпимость. Думаю, диапазон от 4,75 до 5,25 В — хороший целевой диапазон. Напряжение счетчика

    начинает расти. Когда нижняя сторона диода видит положительное напряжение на 0,7 В больше, чем верхнее, диод смещается в прямом направлении, позволяя пройти избыточному напряжению, замыкая цепь на другой конец катушки.Ток течет в цепи диода и катушки до тех пор, пока не исчезнет напряжение.

    Locast.org donate

    Обычное напряжение питания составляет 12 В, поэтому вторичная обмотка 12 В, 1 А будет типичной для небольшого приемника или передатчика. Иногда вторичные значения также указываются в единицах VA. Вторичная обмотка 12 В с номинальной мощностью 12 ВА предназначена для питания нагрузки 12 В при 1 А.

    MK Battery 12v 51 AH Deep Cycle Sealed Gel Mobility Battery Цена: 211,95 долларов Цена за объем: 194,95 долларов Размер: 8,99 дюйма x 5.47 «x 9,26» «Ампер / час: 51 AH Заменяет: Pride BATGEL1003, Pride BATGEL1008 Герметичное мини-реле с диодом SPST — Heavy Duty — нормально разомкнутые 40 А. Panasonic Nais 40A — те же высококачественные мини-реле, что и выше. Без монтажного кронштейна. на основе. Потребляемая мощность 1,8 Вт. Диод на катушке переключателя для предотвращения скачков обратного напряжения, безопасен для систем с шиной CAN. 8,95 долл. США за штуку — розетки MR40-D-4. и клиенты отвечает

    частота

    .Версия с выходом включала фиксированные 3,3 В, 5 В, 12 В и регулируемый тип. Доступны пакеты со стандартными 5 выводами — TO263-5, TO220-5 и TO220-5 (R). Характеристики • Выходное напряжение: 3,3 В, 5 В, 12 В и регулируемое выходное напряжение. Версия

    Maplestory tutu boss guide

    Ключ ответа на листе именования ковалентных и ионных соединений

    Pua Appearance Massachusetts Reddit

    Правила структуры предложений на английском языке pdf

    Ram air systems

    Chromosomes pogil

    • Панель управления грузового транспорта 2007 года

    • Apple Valley CA Записи о смерти

    • Как установить набор инструментов социальной инженерии

      0316

    • 000

      Удельный вес с дробями

    • Alpha bucky x omega reader hydra

    • HP probook 640 g1 по истечении срока службы

    • Ford ranger испытание катушки зажигания

    • 900 место, где можно купить трубочный табак онлайн

    Реле NAGARES 40 А с защитным диодом, 12 В, 5,00 €

    Wechselrelais mit integrierter Schutzdiode gegen Überspannungsspitzen für elektronische Schaltausgänge
    Anzahl der Kontakte: 5
    Betriebsspannung: 12 Volt DC
    Belastbarkeit: 40

    000 Date

    Einbau & Montage:
    Durch unser geschultes Fachpersonal garantieren wir Ihnen den fachgerechten Einbau unserer Produkte в unserer Werkstatt в Билефельде.Richten Sie Ihre Terminanfrage bitte an: [email protected] oder nutzen Sie das Kontaktformular im Onlineshop. Bitte geben Sie stets die gewünschte Artikelnummer sowie Ihre Fahrgestellnummer vom Fahrzeug an.

    Einbaupartner:
    Ihnen ist die Anreise nach Bielefeld zu weit? Auf unserer Webseite unter www.wibutec.com finden Sie von uns ausgewählte Einbaupartner welche die gewünschte Nachrüstung an Ihrem Fahrzeug ebenfalls gerne durchführen. Für die Montage durch einen unserer Einbaupartner schließen Sie mit dem Fachhändler einen gesonderten Vertrag über die gewünschte Dienstleistung ab.Bitte beachten Sie, dass die Einbaupreise unserer Einbaupartner von unseren Preisen abweichen können.

    Нет отзывов на текущем языке.

    1N5820, 1N5821, 1N5822 — Выпрямители с осевым выводом

    % PDF-1.4
    %
    1 0 obj
    >
    эндобдж
    5 0 obj
    >
    эндобдж
    2 0 obj
    >
    эндобдж
    3 0 obj
    >
    транслировать
    application / pdf

  • ON Semiconductor
  • 1N5820, 1N5821, 1N5822 — Выпрямители с осевыми выводами
  • 2007-12-12T10: 56: 55-07: 00BroadVision, Inc.2020-08-11T14: 09: 13 + 02: 002020-08-11T14: 09: 13 + 02: 00 Acrobat Distiller 8.1.0 (Windows) uuid: 1a1ff9d3-4834-4ab0-a878-feb7fca15d3fuid: fbcbe52f-64e9-453a-9015-ff7b8990e508

    конечный поток
    эндобдж
    4 0 obj
    >
    эндобдж
    6 0 obj
    >
    эндобдж
    7 0 объект
    >
    эндобдж
    8 0 объект
    >
    эндобдж
    9 0 объект
    >
    эндобдж
    10 0 obj
    >
    эндобдж
    11 0 объект
    >
    эндобдж
    12 0 объект
    >
    эндобдж
    13 0 объект
    >
    эндобдж
    14 0 объект
    >
    эндобдж
    15 0 объект
    >
    эндобдж
    16 0 объект
    >
    эндобдж
    17 0 объект
    >
    эндобдж
    18 0 объект
    >
    эндобдж
    19 0 объект
    >
    транслировать
    HT6zWQ., .II $ [m4ȁ + 6SYR} ͥ0lY {3͈> d> o \ QR 賻 C, dEànb * Idá; CV5, SMW ~ gn3cN $ = dvmsV7) J} F (u
    9nS’qggwkxxxNLeBTR W% HD (% * = 3’V «, OP 漒 pNPSVRh

    диод% 205% 20 ампер техническое описание и примечания по применению

    fgt313

    Аннотация: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096 диод ry2a
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    2SA1186
    2SC4024
    2SA1215
    2SC4131
    2SA1216
    2SC4138
    100 В переменного тока
    2SA1294
    2SC4140
    fgt313
    транзистор fgt313
    SLA4052
    Диод РГ-2А
    SLA5222
    fgt412
    РБВ-3006
    FMN-1106S
    SLA5096
    диод ry2a
    перекрестная ссылка диода

    Аннотация: перекрестная ссылка диода Шоттки MV3110 AH513 AH512 AH761 Диод Ганна Ah470 импатт-диод DMK-6606
    Текст: Текст файла отсутствует

    Сканирование OCR

    PDF

    MA40401
    MA40402
    MA40404
    MA40405
    MA40406
    MA40408
    перекрестная ссылка диода
    перекрестная ссылка на диод Шоттки
    MV3110
    AH513
    AH512
    AH761
    Диод Ганна
    Ач470
    импат-диод
    DMK-6606
    2002-SE012

    Аннотация: sta474a SE140N диод SE115N 2SC5487 SE090 sanken SE140N STA474 UX-F5B
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    2SA1186
    2SA1215
    2SA1216
    2SA1262
    2SA1294
    2SA1295
    2SA1303
    2SA1386
    2SA1386A
    2SA1488
    SE012
    sta474a
    SE140N
    диод
    SE115N
    2SC5487
    SE090
    Санкен SE140N
    STA474
    UX-F5B
    Антенна GPS AT65

    Аннотация: MA4EX580L1-1225T MA4ST1081CK-287 ELDC-17LITR MA4ST1081 MA4P789ST-287T etc1-1-13tr MAALSS0042 MAAVSS0007 MADRCC0013
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    AM50-0002
    AM50-0003
    AM50-0004
    AM50-0006
    AT10-0009
    AT10-0017
    AT10-0019
    AT-108
    АТ-110-2
    AT-113
    Антенна GPS AT65
    MA4EX580L1-1225T
    MA4ST1081CK-287
    ELDC-17LITR
    MA4ST1081
    MA4P789ST-287T
    etc1-1-13tr
    MAALSS0042
    MAAVSS0007
    MADRCC0013
    диод

    Аннотация: диод стабилитрон 1N4148 «высокочастотный диод» стабилитрон A 36 кодовый диод 1n4148 стабилитрон Шоттки диод стабилитрон частотный высокочастотный диод 8889
    Текст: Текст файла отсутствует

    Сканирование OCR

    PDF

    1N4148
    1N4148W
    1N4150
    1N4150W
    1N914
    1N4151
    1N4151W
    1N4448
    1N4448W
    1N4731
    диод
    стабилитрон диодный 1Н4148
    «высокочастотный диод»
    стабилитрон A 36
    коде диод
    1n4148 стабилитрон
    Диод Шоттки
    Частота стабилитрона
    высокочастотный диод
    8889
    KIA78 * pI

    Аннотация: транзистор КИА78 * п ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П хб9д0н90н КИД65004АФ МОП-транзистор хб * 2Д0Н60П KIA7812API
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    2N2904E
    BC859
    KDS135S
    2N2906E
    BC860
    KAC3301QN
    KDS160
    2N3904
    BCV71
    KDB2151E
    KIA78 * pI
    транзистор
    KIA78 * р
    ТРАНЗИСТОР 2Н3904
    хб * 9Д5Н20П
    khb9d0n90n
    KID65004AF
    Транзистор MOSFET
    хб * 2Д0Н60П
    KIA7812API
    CTX12S

    Резюме: SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N ​​2SC5586 2SK1343 CTPG2F
    Текст: Текст файла недоступен

    Оригинал

    PDF

    2SA744
    2SA745
    2SA746
    2SA747
    2SA764
    2SA765
    2SA768
    2SA769
    2SA770
    2SA771
    CTX12S
    SLA4038
    fn651
    SLA4037
    sla1004
    CTB-34D
    SAP17N
    2SC5586
    2SK1343
    CTPG2F
    2SC5586

    Реферат: транзистор 2SC5586 диод RU 3AM 2SA2003 СВЧ диод 2SC5487 однофазный мостовой выпрямитель IC с выходом 1A RG-2A Diode Dual MOSFET 606 2sc5287
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    2SA1186
    2SA1215
    2SA1216
    2SA1262
    2SA1294
    2SA1295
    2SA1303
    2SA1386
    2SA1386A
    2SA1488
    2SC5586
    транзистор 2SC5586
    диод РУ 3АМ
    2SA2003
    диод СВЧ
    2SC5487
    однофазный мостовой выпрямитель IC с выходом 1A
    Диод РГ-2А
    Двойной полевой МОП-транзистор 606
    2sc5287
    2001 — диод РУ 3АМ

    Аннотация: диод RU 4B RG-2A Диод MN638S диод RU 4AM FMM-32 SPF0001 красный зеленый зеленый стабилитрон sta464c Diode RJ 4B
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    Варистор RU

    Аннотация: Транзистор SE110N 2SC5487 SE090N 2SA2003 Транзистор высокого напряжения 2SC5586 SE090 RBV-406
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    2SA1186
    2SA1215
    2SA1216
    2SA1262
    2SA1294
    2SA1295
    2SA1303
    2SA1386
    2SA1386A
    2SA1488
    Варистор РУ
    SE110N
    транзистор
    2SC5487
    SE090N
    2SA2003
    транзистор высокого напряжения
    2SC5586
    SE090
    РБВ-406
    fn651

    Резюме: CTB-34D 2SC5586 hvr-1×7 STR20012 sap17n 2sd2619 RBV-4156B SLA4037 2sk1343
    Текст: Текст файла недоступен

    Оригинал

    PDF

    2SA744
    2SA745
    2SA746
    2SA747
    2SA764
    2SA765
    2SA768
    2SA769
    2SA770
    2SA771
    fn651
    CTB-34D
    2SC5586
    hvr-1×7
    STR20012
    sap17n
    2sd2619
    РБВ-4156Б
    SLA4037
    2sk1343
    1N4007 ЗЕНЕР ДИОД

    Аннотация: диод A14A диод st4 diac diode a15a стабилитрон db3 стабилитрон 1n4744 диод стабилитрон 1n4002 стабилитрон 5A стабилитрон 400в
    Текст: Текст файла отсутствует

    Сканирование OCR

    PDF

    1N4001
    1N4002
    1N4003
    1N4004
    1N4005
    1N4006
    1N4007
    1N5400
    1N5401
    1N5402
    1N4007 ЗЕНЕР ДИОД
    диод A14A
    диод
    st4 diac
    диод a15a
    стабилитрон db3
    стабилитрон 1n4744
    стабилитрон диодный 1н4002
    стабилитрон 5А
    стабилитрон 400 в
    хб * 9Д5Н20П

    Аннотация: Стабилитрон khb9d0n90n 6v транзистор khb * 2D0N60P KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9D0N90N схема ktd998 транзистор
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    2N2904E
    BC859
    KDS135S
    2N2906E
    BC860
    KAC3301QN
    KDS160
    2N3904
    BCV71
    KDB2151E
    хб * 9Д5Н20П
    khb9d0n90n
    Стабилитрон 6в
    хб * 2Д0Н60П
    транзистор
    KHB7D0N65F
    BC557 транзистор
    kia * 278R33PI
    Схема КХБ9Д0Н90Н
    ktd998 транзистор
    Q2N4401

    Аннотация: D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751
    Текст: Текст файла недоступен

    Оригинал

    PDF

    RD91EB
    Q2N4401
    D1N3940
    Q2N2907A
    D1N1190
    Q2SC1815
    Q2N3055
    D1N750
    Q2N1132
    D02CZ10
    D1N751
    2012 — SR506 Диод

    Аннотация: диод 6А 1000в SM4007 Диод диод SR360 диод her307
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    SMD4001-4007)
    SR560
    DO-27
    UF4004
    DO-41
    UF4007
    10A10
    LL4148
    FR101-FR107
    SR506 Диод
    диод 6А 1000в
    SM4007 Диод
    Диод SR360
    диод her307
    2006 — термодиод

    Аннотация: Тепловой диод PowerPC970MP CY8C27243 PPC970MP PowerPC970MPTM PowerPC970MP PowerPC 970 PowerPC-970mp Использование тепловых диодов в процессоре PowerPC 970MP
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    PowerPC970MP®
    64-битный
    PowerPC970MPTM
    970 МП)
    970 МП
    термодиод
    Тепловой диод PowerPC970MP
    CY8C27243
    PPC970MP
    PowerPC970MPTM
    PowerPC970MP
    PowerPC 970
    PowerPC-970mp
    Использование тепловых диодов в процессоре PowerPC 970MP
    OZ Optics Пигтейл оптоволоконное покрытие AR

    Аннотация: Лазерный диод 1550нм 1300нм 1550нм лазерный диод Радиальный sma ОПТИЧЕСКОЕ ВОЛОКНО LDC-21A ЛАЗЕРНЫЙ ИЗМЕРИТЕЛЬ РАССТОЯНИЯ лазерный соединитель SMA 905 размеры волокна линза лазерный диод TILT rotATOR
    Текст: текст файла отсутствует

    Оригинал

    PDF

    -40 дБ
    OZ Optics Fiber пигтейл AR покрытие
    Лазерный диод 1550нм 1300нм
    1550нм лазерный диод
    Радиальное sma ОПТИЧЕСКОЕ ВОЛОКНО
    LDC-21A
    ЛАЗЕРНЫЙ РАССТОЯНИТЕЛЬ
    лазерный соединитель
    Размеры волокна SMA 905
    линза лазерный диод
    НАКЛОН ВРАТОРА
    Германиевый диод

    Аннотация: 5-амперные диодные выпрямители Germanium Diode OA91 aa117 diode 2 Amp rectifier diode diode 2 Amp zener diode DIODE 1N649 германиевый выпрямительный диод OA95 diode
    Текст: текст файла отсутствует

    Сканирование OCR

    PDF

    1N34A
    1Н38А
    1N60A
    1N100A
    1N270
    1N276
    1N277
    1N456
    1N459
    1N456A
    Германиевый диод
    Диодные выпрямители на 5 ампер
    Германиевый диод OA91
    aa117 диод
    Выпрямительный диод на 2 А
    диод
    2-амперный стабилитрон
    ДИОД 1Н649
    германиевый выпрямительный диод
    Диод OA95
    диод Шоттки 60V 5A

    Аннотация: Высокоскоростной диод 30A Диод Шоттки 20V 5A Диод Шоттки высокого обратного напряжения код маркировки 1A Диод Schottky Diode 40V 2A диод Шоттки код 10 Барьер Шоттки 3A БАРЬЕРНЫЙ ДИОД ШОТТКИ ERG81-004
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    5 В / 10 А)
    500нс,
    диод шоттки 60V 5A
    30А быстродействующий диод
    Диод Шоттки 20V 5A
    Диод Шоттки, высокое обратное напряжение
    код маркировки 1А диод
    Диод Шоттки 40V 2A
    диод шоттки код 10
    Барьер Шоттки 3A
    БАРЬЕРНЫЙ ДИОД ШОТТКИ
    ERG81-004
    Диод Ганна

    Аннотация: Кремниевый детектор СВЧ-диод DW9248 СВЧ волновод Маркони-ганн Кремниевый детектор УВЧ-диод варакторный диодный фильтр варактор
    Текст: Текст файла отсутствует

    Сканирование OCR

    PDF

    DA1304
    DA1307
    DA1321
    DA1321-1
    DA1338
    DA1338-1
    DA1338-2
    DA1338-3
    DA1349-2
    DA1349-4
    Диод Ганна
    Кремниевый детекторный диод СВЧ
    DW9248
    СВЧ волновод
    Маркони Гунн
    Кремниевый детектор
    УВЧ диод
    варакторный диодный фильтр
    варактор
    pm2222a

    Резюме: BCB47B SOD80C PHILIPS BF960 PMBTA64 1N4148 SOD80C PXTA14 BCB47BW pzt222a BF606A
    Текст: Текст файла недоступен

    Сканирование OCR

    PDF

    BA582
    OD123
    BA482
    BA682
    BA683
    BA483
    BAL74
    BAW62,
    1N4148
    pm2222a
    BCB47B
    SOD80C ФИЛИПС
    BF960
    PMBTA64
    1N4148 SOD80C
    PXTA14
    BCB47BW
    pzt222a
    BF606A
    схемы сварки

    Реферат: многопереходный «солнечный элемент» EMCORE CIC Emcore солнечный дуговой реактор солнечного элемента Многопереходный диодный элемент Шоттки «солнечный элемент»
    Текст: Нет текста в файле

    Оригинал

    PDF

    2009-2850КТ

    Реферат: 2850MT 1200 RTV 2850FT RTV-615 1N6515 1N5550 диод из литого эпоксидного герметика с точкой поворота 40 В
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    1N6515
    1N5550
    2850КТ
    2850МТ
    1200 RTV
    2850FT
    РТВ-615
    1N6515
    1N5550
    шотландская эпоксидная смола
    заливочный материал
    диод с шипом 40в
    1998 — стабилитрон 3в 400 мВт

    Резюме: транзистор bc548b транзистор BC107 транзистор транзистор bc108 bc547 схема перекрестных ссылок Транзистор BC109 DIAC OB3 DIAC Br100 74HCT IC спецификации семейства транзистор mosfet BF998
    Текст: Текст файла отсутствует

    Оригинал

    PDF

    DS750
    87C750
    80C51
    PZ3032-12A44
    БУК101-50ГС
    BUW12AF
    BU2520AF
    16 кГц
    BY328
    Стабилитрон 3в 400мВт
    транзистор bc548b
    BC107 транзистор
    ТРАНЗИСТОР BC108
    bc547 таблица перекрестных ссылок
    Транзистор BC109
    DIAC OB3
    DIAC Br100
    Спецификация семейства 74HCT IC
    ТРАНЗИСТОР MOSFET BF998
    Фазовращатель УВЧ

    Резюме: Текст аннотации недоступен
    Текст: Текст файла отсутствует

    Сканирование OCR

    PDF

    Как сделать мостовой выпрямитель на трансформаторе 12-0-12 вольт.

    Как сделать мостовой выпрямитель на трансформаторе 12-0-12 вольт.

    Сначала вы хотите 1 шт. Трансформатор 12-0-12 вольт

    Это необходимо для изготовления ……….

    * 👉 Трансформатор 12-0-12 вольт ……….. https: //amzn.to/ 2Ae0X0F

    [Мостовой выпрямитель]

    * 👉 Для трансформатора на 5 А …………

    1.👉 4 шт. SR5100 ……… https: // amzn. к / 2Rk2Ena

    2.👉 1 шт. 4700 мкФ конденсатор 16-25 В ………. https: //amzn.to/2Abnv24

    * 👉 Для трансформатора на 2-3 А …………

    1.👉 4 диода IN5408 ………. https: //amzn.to/2V84fLy

    2.👉 1 шт 3330 мкФ 16-25 В конденсатор ……… ..https: //amzn.to/2AeIPnf

    * 👉 Для трансформатора 500 мА -1 А ……….

    1.👉 4 диода IN4007 …….. https: //amzn.to/2RandCk

    2.👉 1 шт. 2220 мкФ конденсатор 16-25 В ………. https: //amzn.to/2RebB0V

    Как это сделать……… ??

    Посмотрите это видео, чтобы лучше понять.

    Принципиальная схема

    * Посмотрите эту принципиальную схему и следуйте моим инструкциям по ее изготовлению.

    * Я использую здесь трансформатор на 1 ампер, но вы можете использовать этот мостовой выпрямитель для подключения любого трансформатора тока. [Необходимо заменить диод и конденсатор при увеличении тока на трансформаторе]

    * Тогда вам понадобится 4 диода IN4007 (на трансформатор на 1 ампер.необходимо заменить диод при увеличении тока на трансформаторе).

    * Держите диоды с одной стороны [+].

    * Затем держите диоды так же, как на этой картинке. 2 диода [+] с одной стороны и 2 диода [-] с одной стороны.

    * Затем соединительный штифт диодов, а также рисунок.

    * смотрите картинку.

    * Где 2 диода [+] подключили выход DC 12 вольт [-].

    * Где 2 диода [-] подключили выход DC 12 вольт [+].

    * А где 1 диод [+] и где 1 диод [-] подключен там вход переменного тока 12 вольт.

    * Затем аккуратно припаяйте штырь диодов.

    * Тогда вам нужно 2 конденсатора 1000 мкФ. (для трансформатора на 1 ампер. необходимо заменить конденсатор при увеличении тока на трансформаторе).

    * Посмотрите это изображение о конденсаторах [+] и [-]. Синяя часть конденсатора является положительной, а белая часть конденсатора — отрицательной.

    * Затем соедините один конденсатор [+] с одним конденсатором [-], как показано на рисунке.

    * Затем посмотрите на эту картинку, слева, где конденсатор [-], вход и выход постоянного тока 12 вольт [-].Справа где конденсатор [+] там вход и выход DC 12 вольт [+]. А там, где соединен один конденсатор [+] с одним конденсатором [-], там вход и выход GND.

    * Затем соедините мостовой выпрямитель с трансформатором. [где 1 диод [+] и где 1 диод [-] подключен к входу переменного тока 12 вольт].

    * Тогда посмотрите картинку, где 2 диода [+] подключили к нему выход DC 12 вольт [-]. Где 2 диода [-] подключены к выходу DC 12 вольт [+]. И подключите средний контакт заземляющего провода трансформатора.

    * Затем соедините конденсаторы с трансформатором, как показано на рисунке. подключите выпрямитель [+] к конденсатору [+], подключите выпрямитель [-] к конденсатору [-], а GND подключите к тому месту, где подключены один конденсатор [+] с одним конденсатором [-].

    * Затем подключите 3-миллиметровый светодиод с резистором 1 кОм. резистор подключаем к выводу [+] светодиода.

    * А затем светодиод подключить выпрямитель моста. подключите резистор к выходу постоянного тока [+] 12 вольт. И подключите вывод светодиода [-] к GND.

    * Затем проверьте напряжение мультиметром.

    Купить автомобильное реле в Интернете, 5-контактный, 12 В
    Великобритания

    Возврат

    Наша политика действует 30 дней. Если с момента покупки прошло 30 дней, к сожалению, мы не сможем предложить вам возврат или обмен.

    Чтобы иметь право на возврат, ваш товар должен быть неиспользованным и в том же состоянии, в котором вы его получили. Он также должен быть в оригинальной упаковке.

    Некоторые виды товаров не подлежат возврату. Скоропортящиеся товары, такие как продукты питания, цветы, газеты или журналы, возврату не подлежат.Мы также не принимаем товары интимного или гигиенического назначения, опасные материалы или легковоспламеняющиеся жидкости или газы.

    Дополнительные невозвратные товары:

    Подарочные карты

    Загружаемые программные продукты

    Некоторые предметы здоровья и личной гигиены

    Для завершения возврата нам потребуется квитанция или подтверждение покупки.

    Не отправляйте товар обратно производителю.

    Есть определенные ситуации, когда предоставляется только частичный возврат (если применимо)

    Книга с явными признаками употребления

    CD, DVD, кассета VHS, программное обеспечение, видеоигры, кассеты или виниловые пластинки, которые были открыты

    Любой элемент не в исходном состоянии, поврежден или отсутствует часть по причинам, не связанным с нашей ошибкой

    Любой предмет, возвращенный более чем через 30 дней после доставки

    Возврат (если применимо)

    Как только ваш возврат будет получен и проверен, мы отправим вам электронное письмо, чтобы уведомить вас о том, что мы получили ваш возвращенный товар.Мы также сообщим вам об утверждении или отклонении вашего возмещения.

    Если вы одобрены, то ваш возврат будет обработан, и кредит будет автоматически зачислен на вашу кредитную карту или исходный способ оплаты в течение определенного количества дней.

    Просроченный или отсутствующий возврат средств (если применимо)

    Если вы еще не получили возмещение, сначала проверьте свой банковский счет еще раз.

    Затем обратитесь в компанию, обслуживающую вашу кредитную карту. Прежде чем ваш возврат будет официально объявлен, может пройти некоторое время.
    Затем обратитесь в свой банк. Перед отправкой возврата часто требуется некоторое время на обработку.

    Если вы выполнили все это и еще не получили возмещение, свяжитесь с нами по адресу [email protected]

    Предметы продажи (если применимо)

    Возврату подлежат только товары по стандартной цене, к сожалению, товары со скидкой не подлежат возврату.

    Биржи (если применимо)

    Мы заменяем элементы только в том случае, если они неисправны или повреждены. Если вам нужно обменять его на такой же товар, отправьте нам письмо по адресу abconeill @ gmail.com и отправьте свой товар по адресу: Unit 10, Teemore business Complex Co., Фермана GB BT92 9BL.

    Подарки

    Если товар был отмечен как подарок при покупке и доставке непосредственно вам, вы получите подарочный кредит на сумму вашего возврата. После получения возвращенного товара вам будет отправлен подарочный сертификат.

    Если товар не был помечен как подарок при покупке, или если даритель получил заказ, чтобы передать его вам позже, мы отправим дарителю возмещение, и он узнает о вашем возврате.

    Доставка

    Чтобы вернуть продукт, отправьте его по адресу: Grease Monkey, Unit 10, Teemore Business Complex Co. Fermanagh GB BT92 9BL

    Вы несете ответственность за собственные расходы по доставке при возврате вашего товара. Стоимость доставки не возвращается. Если вы получите возмещение, стоимость обратной доставки будет вычтена из вашего возмещения.

    В зависимости от того, где вы живете, время, необходимое для того, чтобы обмененный товар был доставлен вам, может варьироваться.

    Если вы отправляете товар стоимостью более 75 фунтов стерлингов, вам следует рассмотреть возможность использования отслеживаемой службы доставки или приобретения страховки доставки. Мы не гарантируем получение возвращенного вами товара.

    Схема зарядного устройства батареи SMPS 12 В, 5 А

    В этой статье мы изучаем простую конструкцию обратного преобразователя, которая реализована в виде источника питания зарядного устройства батареи SMPS 12 В, 5 ампер, без использования трансформатора с железным сердечником.

    Как это работает

    В предлагаемой схеме зарядного устройства для аккумуляторов 12 В, 5 А, используется обратный преобразователь, который обеспечивает требуемую конструкцию сильноточного, компактного, изолированного от сети преобразователя на основе SMPS.

    Здесь высокомощный МОП-транзистор становится основным переключающим компонентом и используется для запуска ферритовой первичной обмотки с заданным выпрямленным постоянным током сети высокой частоты.

    При включении резистор 470k заряжает затвор МОП-транзистора до состояния проводимости и инициирует действие переключения.

    Вышеупомянутое действие индуцирует напряжение на вспомогательной обмотке трансформатора, что приводит к возникновению напряжения обратной связи на затворе МОП-транзистора через конденсатор 2n2 / 100В, заставляя МОП-транзистор проводить еще более жесткую проводимость.

    Как только это происходит, первичная обмотка подключается к полному выпрямленному напряжению 310 В постоянного тока через клеммы стока / истока МОП-транзистора.

    Во время этого процесса напряжение на резисторе 0,22 Ом, расположенном на источнике МОП-транзистора, имеет тенденцию пересекать уровень 0,6 В, что мгновенно запускает транзистор BC546, который замыкает затвор МОП-транзистора на землю, делая его полностью выключенным.

    Это также обеспечивает отключение вспомогательного напряжения обратной связи, возвращая всю первичную секцию в исходное выключенное состояние.

    Цикл теперь начинается заново и непрерывно переключается с частотой около 60 кГц, которую можно изменять, увеличивая или уменьшая значения конденсатора обратной связи 2n2 и базового конденсатора 100 пФ BC546 NPN (хотя это не рекомендуется).

    В периоды выключения первичной обмотки наведенная эквивалентная обратная ЭДС передается на вторичную обмотку, которая преобразует ее во вторичный выходной сигнал с пониженным низким напряжением и высоким током.

    Вышеупомянутый вторичный выход соответствующим образом выпрямляется и фильтруется сильноточным диодом и конденсатором фильтра.

    Каскад обратной связи между вторичным и первичным каскадами реализован через оптрон, который определяет необходимое фиксированное регулируемое выходное напряжение.

    Стабилитрон, связанный с оптопарой, можно настроить для получения различных стабилизированных выходов для желаемых приложений.

    Здесь было зафиксировано около 14,4 В, что становится оптимальным уровнем для зарядки свинцово-кислотных аккумуляторов на 12 В.

    Токовый выход этого бестрансформаторного зарядного устройства 12 В, 5 А smps можно изменить двумя способами.

    Либо изменив толщину вторичного провода трансформатора, либо изменив значение резистора 0,22 Ом, установленного на клеммах источника / заземления МОП-транзистора.

    Входной каскад обычно состоит из мостового выпрямительного каскада, за которым следуют NTC и каскад фильтра.

    Входная катушка EMI не является обязательной.


    Рекомендовано для вас: 24 Вт, 12 В, 2 А SMPS с использованием одной микросхемы, которую необходимо прочитать.


    Принципиальная схема

    Как намотать ферритовый трансформатор

    Ферритовый трансформатор намотан на 15-миллиметровую пластиковую бобину, совместимую с ферритовым сердечником EE.

    Половина первичной обмотки сначала наматывается с помощью сверхэмалированного медного провода толщиной 0,4 мм (15 витков).

    Закрепите конец этого на одном из штифтов основной стороны шпульки. Накройте обмотку слоем изоляционной ленты.

    Затем намотайте на нее вторичную обмотку (5 витков) проволокой 0,6 мм.

    Установите концы на второстепенные штифты шпульки.

    Оберните эту обмотку изоляционной лентой.

    На этом витке 3 витка вспомогательной обмотки 0,4мм, заклейте изоляционной лентой.

    Наконец, продолжайте движение от защищенного конца первой первичной обмотки и намотайте еще 15 витков поверх упомянутого выше вспомогательного обмотки, чтобы закончить катушки ферритового трансформатора.

    Положите несколько слоев изоляционной ленты, чтобы закончить изоляцию обмотки.

    Закрепите сердечники EE и снова заклейте лентой по периферии.

    Убедитесь, что края сердечника EE разделены воздушным зазором через кусок изоляционной ленты или бумаги, это предотвратит насыщение сердечника и остановку желаемой индукции smps.