Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Тиристоры и схемы коммутации мощной нагрузки

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.

Блок: 1/4 | Кол-во символов: 494
Источник: https://zetsila.ru/%D1%82%D0%B8%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B5-%D1%81%D1%85%D0%B5%D0%BC%D1%8B-%D0%BA%D0%BE%D0%BC%D0%BC%D1%83%D1%82%D0%B0%D1%86%D0%B8%D0%B8/

Принцип действия тиристора

Основное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Блок: 2/6 | Кол-во символов: 2152
Источник: https://chebo.pro/tehnologii/tiristor-dlya-chajnikov-shema-vklyucheniya-i-sposoby-upravleniya.html

Конструкция

Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.

Блок: 2/9 | Кол-во символов: 861
Источник: https://instrument.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Блок: 3/6 | Кол-во символов: 1100
Источник: https://chebo.pro/tehnologii/tiristor-dlya-chajnikov-shema-vklyucheniya-i-sposoby-upravleniya.html

Особенности схемного подключения

Тиристор предназначен для коммутации напряжения в различных устройствах. Но при этом имеется стандартная схема его подключения, которую нарушать крайне не рекомендуется. Например, между катодом (вывод под пайку) и управляющим электродом необходимо подключить резистор в качестве шунтирующего компонента. Благодаря его присутствию управляющая цепь замыкается и обеспечивается насыщение перехода. Его сопротивление должно быть не более и не менее 51 Ом.

Если на аноде присутствует напряжение отрицательной полярности, то управляющий ток должен быть равен нулю. Иначе произойдет электрический пробой перехода, что приведет к неисправности всего устройства в целом.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Дальнейшая его работа невозможна, как и обратное восстановление.

Блок: 3/9 | Кол-во символов: 760
Источник: https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Технические параметры тиристора

Тиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.

Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.

Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.

Блок: 4/9 | Кол-во символов: 955
Источник: https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Блок: 4/6 | Кол-во символов: 218
Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/tiristory/

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Блок: 5/6 | Кол-во символов: 377
Источник: https://chebo.pro/tehnologii/tiristor-dlya-chajnikov-shema-vklyucheniya-i-sposoby-upravleniya.html

Проверка тиристора

Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.

Проверить тиристор можно несколькими способами:

  • Использовать специальное устройство, которое анализирует параметры всех переходов.
  • Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.

Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.

Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.

Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А.

Блок: 5/9 | Кол-во символов: 1332
Источник: https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Блок: 6/6 | Кол-во символов: 1961
Источник: https://chebo.pro/tehnologii/tiristor-dlya-chajnikov-shema-vklyucheniya-i-sposoby-upravleniya.html

Проверка в режиме коммутации

Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:

  1. лампочки или светодиода с соответствующим резистором, если подключается к питанию 12В;
  2. источник малого напряжения, например, пальчиковая батарейка типа АА;
  3. несколько проводников и источник напряжения 12 В.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Для осуществления проверки выполняем следующие шаги:

  1. Подключаем нагрузку в цепь источник питания 12 В и А-К тиристора.
  2. Подаем отрицательное напряжение на выводы УЭ и А (+ батарейки должен подключаться к А) на мгновенье.

После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.

Блок: 6/9 | Кол-во символов: 925
Источник: https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Аналоги КУ202Н

Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

К зарубежным аналогам тиристора КУ202Н относятся устройства:

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

Блок: 7/9 | Кол-во символов: 809
Источник: https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Простые схемы управления КУ202Н

На тиристор КУ202Н схема управления достаточно простая. Первый вариант был описан в разделе проверки устройства. Она включала батарейку на 1,5 В, лампочку и источник питания 12 В. Но также существует масса других способов элементарного подключения тиристора.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Рассмотрим самую простую схему на его базе.

Блок: 8/9 | Кол-во символов: 335
Источник: https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Регулятор мощности

В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.

Блок: 9/9 | Кол-во символов: 1019
Источник: https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html

Кол-во блоков: 23 | Общее кол-во символов: 20918
Количество использованных доноров: 5
Информация по каждому донору:

  1. https://chebo.pro/tehnologii/tiristor-dlya-chajnikov-shema-vklyucheniya-i-sposoby-upravleniya.html: использовано 4 блоков из 6, кол-во символов 5590 (27%)
  2. https://instrument.guru/elektrichestvo/harakteristiki-i-shema-vklyucheniya-tiristora-ku202n.html: использовано 8 блоков из 9, кол-во символов 6996 (33%)
  3. https://zetsila.ru/%D1%82%D0%B8%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B5-%D1%81%D1%85%D0%B5%D0%BC%D1%8B-%D0%BA%D0%BE%D0%BC%D0%BC%D1%83%D1%82%D0%B0%D1%86%D0%B8%D0%B8/: использовано 2 блоков из 4, кол-во символов 2690 (13%)
  4. https://elektronchic.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора ru/elektronika/upravlenie-tiristorom-princip-dejstviya.html: использовано 3 блоков из 4, кол-во символов 5043 (24%)
  5. https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/tiristory/: использовано 3 блоков из 6, кол-во символов 599 (3%)

принцип работы и способы управления

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод — положительный вывод;
  • катод — отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

  • Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение — наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания).Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Как правильно подключить симистор

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Управление мощной нагрузкой переменного тока

Тиристор

Иногда нужно слабым сигналом с микроконтроллера включить мощную нагрузку, например лампу в комнате. Особенно эта проблема актуальна перед разработчиками умного дома. Первое что приходит на ум — реле. Но не спешите, есть способ лучше 🙂

В самом деле, реле это же сплошной гемор. Во первых они дорогие, во вторых, чтобы запитать обмотку реле нужен усиливающий транзистор, так как слабая ножка микроконтроллера не способна на такой подвиг. Ну, а в третьих, любое реле это весьма громоздкая конструкция, особенно если это силовое реле, расчитанное на большой ток.

Если речь идет о переменном токе, то лучше использовать симисторы или тиристоры. Что это такое? А сейчас расскажу.

Симистор BT139
Схема включения из даташита на MOC3041

Если на пальцах, то тиристор похож на диод, даже обозначение сходное.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Пропускает ток в одну сторону и не пускает в другую. Но есть у него одна особенность, отличающая его от диода кардинально — управляющий вход.
Если на управляющий вход не подать ток открытия, то тиристор не пропустит ток даже в прямом направлении. Но стоит подать хоть краткий импульс, как он тотчас открывается и остается открытым до тех пор, пока есть прямое напряжение. Если напряжение снять или поменять полярность, то тиристор закроется. Полярность управляющего напряжения предпочтительно должна совпадать с полярностью напряжения на аноде.

Если соединить встречно параллельно два тиристора, то получится симистор — отличная штука для коммутации нагрузки на переменном токе.

На положительной полуволне синусоиды пропускает один, на отрицательной другой. Причем пропускают только при наличии управляющего сигнала. Если сигнал управления снять, то на следующем же периоде оба тиристора заткнутся и цепь оборвется. Крастота да и только. Вот ее и надо использовать для управления бытовой нагрузкой.

Но тут есть одна тонкость — коммутируем мы силовую высоковольтную цепь, 220 вольт. А контроллер у нас низковольтный, работает на пять вольт. Поэтому во избежание эксцессов нужно произвести потенциальную развязку. То есть сделать так, чтобы между высоковольтной и низковольтной частью не было прямого электрического соединения. Например, сделать оптическое разделение. Для этого существует специальная сборка — симисторный оптодрайвер MOC3041. Замечательная вещь!
Смотри на схему подключения — всего несколько дополнительных деталек и у тебя силовая и управляющая часть разделены между собой. Главное, чтобы напряжение на которое расчитан конденсатор было раза в полтора два выше напряжения в розетке. Можно не боятся помех по питанию при включении и выключении симистора. В самом оптодрайвере сигнал подается светодиодом, а значит можно смело зажигать его от ножки микроконтроллера без всяких дополнительных ухищрений.

Вообще, можно и без развязки и тоже будет работать, но за хороший тон считается всегда делать потенциальную развязку между силовой и управляющей частью.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Это и надежность и безопасность всей системы. Промышленные решения так просто набиты оптопарами или всякими изолирующими усилителями.

Ну, а в качестве симистора рекомендую BT139 — с хорошим радиатором данная фиговина легко протащит через себя ток в 16А

принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Тиристоры: принципы работы и проверки

Эх, знали бы вы, как занудно и безобразно читал нам электротехнику преподаватель в институте. Тему про тиристоры: принципы работы, устройство и их проверку бубнил себе под нос, рисовал на доске графики, P-N переходы с дырками и электронами так, что понять его было очень сложно.

Чтобы подготовиться к экзамену, мне пришлось покупать учебники и разбираться самостоятельно. В зачетку получил пятерку, но предмет был быстро забыт …

Буквально через год после выпуска в должности инженера пришлось разбираться с работой тиристорной схемы.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Знания возобновлял практически с нуля.

Помогли коллеги, показавшие удобные методики, избавившие от всех этих высоконаучных заумностей и позволившие представлять сложные электротехнические процессы простыми схемами.

Пользуюсь ими и поныне. Поскольку они не потеряли свою актуальность, то поэтапно раскрываю их технологию для разных случаев практической деятельности ниже.

Содержание статьи

Тиристор в электрической схеме: что это за полупроводник

Если воспользоваться научными терминами, то можно заметить, что конструкция этого сложного электронного прибора включает монокристалл полупроводника с тремя или большим количеством p-n переходов.

Они сделаны для того, чтобы изменять его проводимость до двух критических состояний, когда он:

  1. Открыт и пропускает через себя электрический ток.
  2. Полностью закрыт.

Для подключения к электрической схеме он снабжен, как правило, тремя, двумя или четырьмя выводами от контактных площадок p-n слоев.

Не стану дальше продолжать эту тему научным языком, ибо новички ничего не поймут, а мне сложно объяснить простыми терминами, как перемещаются носители зарядов (дырки и электроны) по всей этой структуре в каждом конкретном случае.

Да и никому это сейчас не надо кроме студентов, стремящихся сдать экзамен, и работников, проектирующих, разрабатывающих новые устройства.

Домашнему же электрику требуется просто понимать принцип работы конечного прибора дабы уметь проверять его исправность и грамотно эксплуатировать в повседневной жизни.

Поэтому показываю конечный результат — как выглядит вольт амперная характеристика тиристора при его работе.

На ней выделены две области рабочего состояния при прямом и обратном приложении напряжения, формирующие пять режимов, расписанных на картинке. Не будем вдаваться глубоко в теорию и сделаем для себя краткие выводы:

  1. на начальном этапе области прямых смещений полупроводник закрыт, потом он открывается и остается открытым;
  2. при обратном подключении к источнику напряжения он вначале не пропускает ток, но при достижении критического состояния пробивается.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Как же выглядит и обозначается тиристор на электрических схемах

Современная промышленность использует огромный ассортимент этих уникальных полупроводников. Они выпускаются в разных корпусах с возможностями передачи и коммутирования всевозможных мощностей.

Привожу внешний вид только небольшой их части, изготавливаемых в металлическом корпусе, предназначенном для работы в силовых цепях с большими токами.

А еще имеются конструкции, выпускаемые в пластиковом корпусе, позволяющем коммутировать токи меньших величин. Они применяются в схемах управления различных бытовых устройств.

Внешне тиристор выглядит как диод.

Только в большинстве случаев он имеет дополнительный вывод для подключения к внешней цепи — управляющий электрод. Обозначение на схеме тоже примерно одинаковое.

Изменение касается только небольшой дорисовки катодного вывода — маленькой ломаной линии. Все это хорошо видно при сравнении.

Внешний вид диодов и тиристоров, а также их обозначения на схемах похожи не случайно. Они, хоть и немного отличаются конструктивно, но работают по общему принципу: пропускают электрический ток только в одну сторону.

Этот вопрос я излагаю дальше более конкретно.

Как просто понять принципы работы и научные термины этого сложного полупроводника: 2 мневмонических правила

Заповедь №1 для новичка

Представим, что мы сплавляемся на большом плоту по широкой реке. Двигаться мы можем только по течению, а не против него. Поток воды перемещается за счет разности высот (потенциалов), обладающих различным уровнем потенциальной энергии.

Вот и ток в диоде может проходить только в одну сторону: от анода к катоду. Иное движение электронов блокирует полупроводниковый переход. Других средств регулирования здесь нет.

Все это полностью соответствует работе тиристора, но с небольшими дополнениями: диод сразу открывается при прямом приложении напряжения к его выводам.

Тиристор же в этом случае закрыт, ток не проводит.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора Он действует как плотина со шлюзами, загораживающая реку. Наш плот просто остановится перед возникшей преградой. Для возобновления движения ему необходимо открыть ворота водяного заграждения.

Делается все это по команде, когда импульс тока определенного направления подается через управляющий электрод, например, на анод (при соответствующем управлении).

Только в этом случае закрытый полупроводниковый переход открывается и сохраняет свое состояние в течение всего времени, пока на него подано прямое входное напряжение.

Если импульс тока исчезает, то это не влияет на работу полупроводникового перехода: он остается открытым. Для закрытия тиристора необходимо: разорвать цепь питания в любом месте или вывести из работы источник напряжения либо надежно зашунтировать анод с катодом.

Вот такое простое мневмоническое правило, основанное на сравнении гидравлических и электротехнических процессов позволяет легче работать с этим сложным электронным изделием.

Завет №2: особенности применения тиристоров внутри цепей постоянного и переменного тока

Внутреннее сопротивление полупроводниковых переходов в открытом состоянии довольно маленькое. Ток через него определяется по закону Ома, а при приложенном постоянном напряжении по величине он не меняется.

Схема управления тиристором в этом случае не позволяет корректировать его силу. Регулировать ее нужно другими средствами.

Импульс же тока, подаваемый посредством управляющей команды, регулируется до безопасного значения подключенным токоограничивающим резистором R.

Делается это для исключения пробоя слоя полупроводников, задействованных в протекании управляющего сигнала.

Как работает тиристор в схеме бытовых приборов на переменном токе

Иные перспективы создают переменные цепи, а, особенно, синусоидальные источники напряжения. У них сигнал имеет не строго постоянную величину, а меняющуюся во времени форму синусоиды.

Здесь каждый период колебания состоит из двух полупериодов:

  1. положительного;
  2. отрицательного.Как подключить тиристор: Схема управления симистором. Включение тиристора схема включения тиристора

Они имеют свои знаки на графике: «плюс» и «минус». Реально же при смене полупериода направление протекания тока меняется на строго противоположное.

Когда синусоида достигает нулевой амплитуды, то ток через полупроводниковый переход прекращается, он закрывается. Для возобновления процесса необходимо на следующем положительном полупериоде вновь подать импульс на управляющий электрод.

Все это происходит автоматически. Одновременно смещение положения открывающего импульса по времени (в угловой системе измерения — по фазе) позволяет регулировать силу тока за счет изменения момента открытия перехода.

Включение второго тиристора с соответствующей полярностью в нижнюю полуволну позволяет регулировать и ее величину. Тогда мы получаем не чистую синусоидальную форму, а немного обрезанную по времени (до момента включения управляющего импульса).

3 варианта такого сигнала показаны на нижнем графике выходного тока при открытии двух тиристоров в моменты:

  1. возрастания полуволны;
  2. на ее амплитуде;
  3. и при спаде.

Таким обрезанным, а не чисто синусоидальным током питается наш электроинструмент: дрели, перфораторы, болгарки и другие приборы с тиристорным или симисторным управлением.

В общем-то ничего страшного в подобном изменении формы сигнала нет: все производители провели массу экспериментов и запустили эту схему в эксплуатацию.

Нам же все это необходимо четко представлять, ибо при ремонте или наладке с помощью осциллографа такие сигналы напряжения необходимо проследить на контрольных точках электрической цепи.

Выпрямительные устройства с регулировкой тока — второй принцип работы

Схемы зарядных, пускозарядных приборов и сварочных аппаратов постоянного тока работают на выпрямленном напряжении. При этом часто устройства выпрямления типового диодного моста заменяется на трансформаторное преобразование однофазного сигнала с двумя диодами или тиристорами.

Ее принято называть двухполупериодным выпрямлением.

Здесь в каждой выходной полуобмотке силового трансформатора вмонтирован тиристор, обрабатывающий свою полуволну.

Выпрямление же достигается схемой подключения полуобмоток с общей точкой и выбором направления подключения цепи «анод-катод» каждого полупроводникового прибора.

Итоговая форма выпрямленного и измененного сигнала выглядит следующим образом.

Опять же, для сравнения с предыдущим принципом показываю форму сигналов в трех вариантах запуска фазосдвигающего управляющего импульса. Здесь видно, что отрицательный полупериод перевернулся, а работа схемы управления не изменилась.

Правило №3: отличия управления транзистором и тиристором

У меня как-то так получилось, что вначале пришлось практически осваивать электронные схемы, работающие на транзисторах, а только после них — тиристорные сборки.

Поэтому я вначале уяснил и запомнил, что выходной сигнал на транзисторе можно изменять за счет величины разницы потенциалов на его базе, то есть напряжением.

Мои же друзья разъяснили, что тиристорная схема, как правило, открывается током, протекающим через управляющий электрод.

Такое небольшое дополнение к вышеизложенному материалу новичкам стоит запомнить. А чтобы понять разницу между силой электрического тока и величиной действующего напряжения я написал две отдельные статьи.

Рекомендую ознакомиться с ними подробнее. Они тоже изложены простым языком.

Как проверить тиристор: 3 доступные методики для новичков

Принцип этой технологии я буду показывать на примере силового тиристора КУ202Н по одной простой причине: он оказался под рукой при написании статьи, а все более мощные модели я умудрился раздать друзьям для их самоделок…

Способы электрических
проверок буду показывать на его примере. Для этого публикую важные характеристики, которые надо учитывать при работе. Они делятся на две группы:

  1. предельные;
  2. номинальные.

Параметры первой категории относятся к импульсному режиму, используемому кратковременно. Они нас не интересуют: длительную эксплуатацию могут создать только номинальные показатели.

Обращаем внимание на:

  1. Максимально допустимое напряжение — 400 В;
  2. Постоянный ток в открытом и закрытом состоянии — 10 А;
  3. Ток удержания — 200 мА;
  4. Отпирающий постоянный ток — 100 мА.

Эти данные для других полупроводниковых приборов можно взять в технических справочниках и на многочисленных сайтах в сети интернет.

Самый первый метод проверки: стрелочным тестером или цифровым мультиметром

Оценка состояния исправности КУ202Н прибором Ц4324 за 3 шага

Такой раритетный измерительный инструмент старого электрика у меня до сих пор в рабочем состоянии. Он сохранился благодаря знаку качества и постоянной внимательности при замерах.

Шаг №1. Выставление режима и замер закрытого состояния перехода

Устанавливаю центральным переключателем режим измерения сопротивлений и кнопкой — предел «килоомы». Плюсовой вывод цешки сажу на анод, а минусовой подключаю к катоду.

Для наглядности пометил их на фотографии ярким красным цветом «+» и «-» прямо на изоляции крокодилов.

Измерительная стрелка показывает очень большое сопротивление. Оно же будет при обратной полярности выводов. Можете проверить.

Шаг №2. Открытие тиристора

Касанием руки подключаю вывод управляющего электрода на корпус (анод) полупроводника.

Стрелка резко отклоняется к началу шкалы в сторону меньшего сопротивления. Показание порядка 0,15 k свидетельствует об открытии n-p перехода.

Шаг №3. Проверка открытого состояния при снятии управляющего сигнала

Отвожу провод вывода от корпуса полупроводника и наблюдаю показание стрелки.

Оно не изменилось: переход сохранил свое открытое положение. Он исправен.

Проверка состояния КУ202Н цифровым мультиметром

Принципиальных отличий анализа тиристорных устройств здесь нет. Технология та же. Показываю ее фотографиями на примере моего карманного мультиметра Mestek MT-102.

Для первого шага перевожу его в режим проверки полупроводников и подключаю прибор крокодилами.

На дисплее видно, что переход закрыт: сопротивление большое.

Затем перемыкаю вывод управляющего электрода на анод. Полупроводник открылся.

При разрыве перемычки показания на дисплее не изменились.

Доступный для всех способ проверки током от батарейки и обычной лампочкой

Эта методика популярна, но она требует предварительно учитывать технические характеристики испытуемого прибора и выходные величины от нагрузки, создаваемые лампочкой.

Для силовых транзисторов это не критично, но у маломощных изделий можно нерасчетным током повредить структуру электронных компонентов.

Демонстрацию методики буду выполнять на примере конструкции самого доступного китайского фонарика на светодиодах и обычной лампочки. Принципиальных различий нет при использовании одной батарейки формата АА или ААА.

На всякий случай выполнил мультиметром замер тока лампочки.

Получил результат 183 миллиампера, что вполне нормально для нашего случая.

Теперь использую этот блок батареек для проверки. Подаю его плюс на анод, а минус на катод проверяемого полупроводника через лампочку.

Свечения нет. Это значит, что сопротивление проверяемой цепи большое, все переходы закрыты.

Замыкаю управляющий электрод на корпус прибора — анод.

Лампочка загорается: прибор открылся.

Запуск тиристора в работу можно выполнить подачей плюса напряжения от пальчиковой батарейки на его анод, а минус необходимо предварительно подключить к управляющему электроду.

Так рекомендуют справочники, но я предпочитаю первый способ. Он проще.

Теперь размыкаю созданное подключение. Лапочка не прекращает светиться: ток продолжает течь по цепи анод-катод.

Полупроводник остался в открытом положении, он исправен.

Как можно проверить тиристор на электронной плате без выпаивания со схемы: советы бывалых

Работу, как и всегда, необходимо выполнять при снятом напряжении. Это делается не только в целях безопасности, но и для достоверности результата.

Следующим шагом потребуется выцепить из схемы платы управляющий электрод. Разъединить его контакт можно паяльником или перерезать дорожку ножом.

Я же буду проводить эксперимент на том же самом КУ202Н без платы. Для проверки потребуется 2 отдельных прибора:

  1. омметр;
  2. милливольтметр постоянного тока.

Их можно заменить двумя мультиметрами или тестерами, что я и показываю следующими фотографиями. Свой тестер Ц4324 перевожу в режим измерения постоянного напряжения на пределе =1,2В. Подключаю его к аноду и катоду.

Mestek MT-102 устанавливаю в режим омметра и крокодилами сажу его на выводы полупроводника так, чтобы плюс попал на управляющий электрод, а минус — на анод.

Стрелка тестера отклонилась вправо, показывая значение меньшее вольта. По этому замеру можно судить об исправности полупроводникового перехода.

Любая из трех методик проверки основана на принципах работы тиристоров. Она учитывает протекание в них токов через полупроводниковые переходы. При их выполнении важно оценить четыре последовательных этапа: Обычное закрытое состояние до получения команды.Открытие по команде.Удержание в открытом состоянии при отключении управляющего сигнала.Закрытие при пропадании питания.

Для более наглядного представления этих процессов я специально записал видеоролик. Смотрите его здесь.

Однако я рассмотрел только КУ202Н, как довольно распространенную модель, хоть она уже и снята с производства. В одной статье сложно показать все остальные. А их очень много.

Какие существуют разновидности тиристоров: краткие сведения

Развитие науки и электронных технологий в частности способствовало созданию большого количества полупроводниковых приборов с различной структурой слоев и переходов. (Смотрите картинку в начале статьи.)

Я относительно подробно показал выше структуру и принцип работы КУ202 и аналогичных тиристоров с тремя выводами. Однако это не полный обзор, а только частный случай, характерный для большинства подобных приборов.

Они отличаются по:

  • количеству выводов и способу управления;
  • проводимости;
  • режимам работы;
  • быстродействию;
  • другим эксплуатационным параметрам.

Количество выводов

У основной четырехслойной структуры может быть создано 2, 3 или 4 контактных отвода для подключения к внешней схеме.

Что такое динистор

Корпуса с двумя выводами называют динисторами. Для открытия этих полупроводников между анодом и катодом импульсом подают повышенное напряжение.

По принципу работы динисторы бывают:

  1. симметричные;
  2. несимметричные.

Второй тип при обратном напряжении (плюс на катоде, а минус на аноде) всегда закрыт. Он ведет себя как диод и при аварийном токе сгорает. Симметричные же динисторы работают при любой полярности.

Как работает тринистор

Такое название закрепилось за триодными тиристорами (с третьим выводом управляющего электрода). Частный случай этих приборов мы уже разобрали, но на практике следует учитывать, что подобные изделия могут выпускаться с:

  1. Катодным управлением, когда командный сигнал поступает по цепи управляющий электрод — катод.
  2. Анодным — тот случай, что показан на примере КУ202.

При проверке работоспособности полупроводникового перехода следует учесть его конструкцию, а не бездумно копировать мою методику или любую другую, взятую из интернета.

Тринисторы могут выполняться с различными способами закрытия:

  1. запираемые;
  2. незапираемые.

Первым для перехода в закрытое состояние достаточно снизить ток по цепи «анод-катод». Вторым необходимо подать напряжение запирания на управляющий электрод.

Еще раз хочу подчеркнуть, что изложенная методика проверки на примере КУ202 применима для незапираемых тиристоров с управлением по аноду.

Виды проводимостей

В самом начале я сравнивал работу полупроводников с течением реки и заострил внимание на том, что через них ток проходит в одну сторону. Только это утверждение характерно для большинства, а не всех поголовно случаев.

Однако учтите, что есть и иные конструкции, специально созданные:

  1. с не высоким обратным напряжением, которые называют обратно-проводящими;
  2. без нормировки обратной проводимости. Их применяют в схемах, исключающих появление обратного напряжения;
  3. для пропускания тока в обе стороны по цепи анод-катод. Это симметричные тиристоры, называемые симисторами либо триаком (от англ — «triac»).

При их проверке следует в обязательном порядке учитывать конструктивные особенности электронных переходов.

Тринисторы чаще всего создаются для работы в схеме электронного ключа. Они управляют мощной силовой нагрузкой за счет подачи слабого сигнала команды через управляющий электрод.

Быстродействие

Этим параметром оценивают скорость перехода полупроводниковых изделий из закрытого состояния в открытое и наоборот. Он может быть критичен при работе сложных схем защит или управления технологическими процессами.

Импульсный режим работы

Созданы и такие приборы, способные мгновенно реагировать на быстро возникающие электротехнические ситуации на сложном производстве. Но в домашнем оборудовании их не применяют.

Особенности лавинных тиристоров

Такие конструкции имеют лавинную вольт-амперную характеристику. При подаче обратного напряжения развивается лавинный процесс. Такая ВАХ:

  • устойчива к высоким перенапряжениям схемы;
  • способна работать без дополнительных защит;
  • равномерно перераспределяет энергию по последовательно подключенным полупроводниковым переходам.

Их используют в схемах защит полупроводниковых разрядников и преобразователях.

Тиристоры имеют очень много разновидностей внутренней схемы, корпусов и принципов работы. Проверка их технического состояния должна учитывать все эти особенности.

Довольно оригинально эта информация изложена в видеоролике владельца Радиолюбитель.

Поскольку тема про тиристоры, принципы их работы и проверки весьма обширная, то жду ваших дополнений или комментариев, которые будут полезны и понятны всем домашним электрикам, включая новичков.

Симистор. Принцип работы, параметры и обозначение на схеме.

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3023

Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Выпрямитель с кремниевым управлением (SCR) | Тиристоры

Диоды Шокли и выпрямители с кремниевым управлением (SCR)

Диоды Шокли

— любопытные устройства, но их применение весьма ограничено. Однако их полезность можно расширить, оснастив их другим средством фиксации. При этом каждое из них становится настоящим усилительным устройством (хотя бы в режиме включения / выключения), и мы называем их кремниевыми выпрямителями или тиристорами.

Переход от диода Шокли к SCR достигается одним небольшим дополнением, фактически не более чем подключением третьего провода к существующей структуре PNPN: (рисунок ниже)

Кремниевый выпрямитель (SCR)

Проведение SCR

Если затвор SCR остается плавающим (отключенным), он ведет себя точно так же, как диод Шокли.Он может фиксироваться напряжением размыкания или превышением критической скорости нарастания напряжения между анодом и катодом, как и в случае диода Шокли. Отключение достигается за счет уменьшения тока до тех пор, пока один или оба внутренних транзистора не перейдут в режим отсечки, также как диод Шокли. Однако, поскольку вывод затвора подключается непосредственно к базе нижнего транзистора, его можно использовать в качестве альтернативного средства для фиксации тринистора. При приложении небольшого напряжения между затвором и катодом нижний транзистор будет принудительно включаться результирующим током базы, что приведет к тому, что верхний транзистор будет проводить ток, который затем подает ток на базу нижнего транзистора, так что его больше не нужно активировать. напряжением затвора.Необходимый ток затвора для инициирования фиксации, конечно, будет намного ниже, чем ток через SCR от катода к аноду, поэтому SCR действительно обеспечивает некоторое усиление.

Запуск / срабатывание

Этот метод обеспечения проводимости SCR называется запуском или срабатыванием, и это, безусловно, наиболее распространенный способ фиксации SCR на практике. Фактически, тиристоры обычно выбираются так, чтобы их напряжение переключения намного превышало максимальное напряжение, которое ожидается от источника питания, поэтому его можно включить только преднамеренным импульсом напряжения, приложенным к затвору.

Обратное срабатывание

Следует отметить, что тиристоры иногда могут отключаться путем прямого замыкания их выводов затвора и катода вместе или путем «обратного запуска» затвора отрицательным напряжением (относительно катода), так что нижний транзистор принудительно запускается. в отсечку. Я говорю, что это «иногда» возможно, потому что при этом весь ток коллектора верхнего транзистора шунтируется через базу нижнего транзистора. Этот ток может быть значительным, что в лучшем случае затрудняет триггерное отключение SCR.Вариант SCR, называемый тиристором с выключенным затвором, или GTO, упрощает эту задачу. Но даже с GTO ток затвора, необходимый для его отключения, может составлять до 20% анодного тока (нагрузки)! Схематический символ GTO показан на следующем рисунке: (Рисунок ниже)

Тиристор выключения затвора (ГТО)

SCR против GTO

SCR и GTO имеют одинаковую эквивалентную схему (два транзистора, подключенных по принципу положительной обратной связи), единственные отличия заключаются в деталях конструкции, предназначенных для предоставления транзистору NPN большего β, чем PNP.Это позволяет меньшему току затвора (прямому или обратному) оказывать большую степень контроля над проводимостью от катода к аноду, при этом фиксированное состояние транзистора PNP в большей степени зависит от NPN, чем наоборот. Тиристор с выключенным затвором также известен под названием Gate-Controlled Switch, или GCS.

Проверка работоспособности тринистора с помощью омметра

Элементарный тест функции SCR или, по крайней мере, идентификация клеммы может быть выполнен с помощью омметра. Поскольку внутреннее соединение между затвором и катодом является одним PN-переходом, измеритель должен показывать непрерывность между этими выводами с помощью красного измерительного провода на затворе и черного измерительного провода на катоде следующим образом: (Рисунок ниже)

Элементарный тест SCR

Все остальные измерения целостности, выполненные на SCR, будут показывать «разомкнут» («OL» на некоторых дисплеях цифровых мультиметров).Следует понимать, что этот тест является очень грубым и не представляет собой исчерпывающую оценку SCR. SCR может давать хорошие показания омметра и при этом оставаться неисправным. В конечном счете, единственный способ проверить SCR — это подвергнуть его току нагрузки.

Если вы используете мультиметр с функцией «проверки диодов», полученное вами показание напряжения перехода затвор-катод может соответствовать или не соответствовать ожидаемому от кремниевого PN перехода (приблизительно 0,7 В).В некоторых случаях вы увидите гораздо более низкое напряжение перехода: всего сотые доли вольта. Это связано с внутренним резистором, подключенным между затвором и катодом, встроенным в некоторые тиристоры. Этот резистор добавлен, чтобы сделать тиристор менее восприимчивым к ложному срабатыванию из-за паразитных скачков напряжения, «шума» цепи или статического электрического разряда. Другими словами, наличие резистора, подключенного через переход затвор-катод, требует подачи сильного пускового сигнала (значительного тока) для фиксации тринистора.Эта функция часто встречается в больших SCR, а не в маленьких SCR. Помните, что SCR с внутренним резистором, подключенным между затвором и катодом, будет указывать на непрерывность в обоих направлениях между этими двумя клеммами: (рисунок ниже)

Более крупные тиристоры имеют резистор между катодом и затвором.

SCR чувствительного затвора

«Нормальные» тиристоры, в которых отсутствует этот внутренний резистор, иногда называют чувствительными тиристорами затвора из-за их способности запускаться при малейшем положительном сигнале затвора.

Испытательная схема для SCR практична как диагностический инструмент для проверки подозрительных SCR, а также является отличным помощником в понимании основных операций SCR. Источник постоянного напряжения используется для питания схемы, а два кнопочных переключателя используются для фиксации и разблокировки тиристора соответственно: (рисунок ниже)

Схема тестирования SCR

При нажатии нормально разомкнутого кнопочного переключателя затвор соединяется с анодом, пропуская ток от положительной клеммы батареи, через нагрузочный резистор, через переключатель, через PN переход катод-затвор и обратно к батарее. .Этот ток затвора должен вынудить SCR зафиксироваться, позволяя току проходить напрямую от анода к катоду без дальнейшего запуска через затвор. Когда кнопка «Вкл.» Отпущена, нагрузка должна оставаться под напряжением.

Нажатие на нормально замкнутый кнопочный переключатель «выключено» разрывает цепь, заставляя ток через тиристор останавливаться, тем самым заставляя его отключиться (отключение при слабом токе).

Ток удержания

Если SCR не фиксируется, проблема может быть в нагрузке, а не в SCR.Определенная минимальная величина тока нагрузки требуется, чтобы удерживать тиристор во включенном состоянии. Этот минимальный уровень тока называется током удержания. Нагрузка со слишком большим значением сопротивления может не потреблять достаточно тока, чтобы удерживать тиристор в защелкивании, когда ток затвора прекращается, что создает ложное впечатление о плохом (нефиксируемом) тиристоре в тестовой цепи. Значения тока удержания для различных тиристоров должны быть доступны у производителей. Типичные значения удерживающего тока находятся в диапазоне от 1 мА до 50 мА или более для более крупных устройств.

Для того, чтобы тест был полностью исчерпывающим, необходимо протестировать не только запускающее действие. Предел прямого напряжения переключения SCR можно проверить, увеличив подачу постоянного напряжения (без нажатия кнопочного переключателя) до тех пор, пока SCR не защелкнется сам по себе. Помните, что испытание на отключение может потребовать очень высокого напряжения: многие силовые тиристоры имеют номинальное напряжение размыкания 600 вольт или более! Кроме того, если доступен генератор импульсного напряжения, критическая скорость нарастания напряжения для SCR может быть проверена таким же образом: подвергнуть его импульсному напряжению питания с разной скоростью вольт / время без срабатывания кнопочных переключателей и посмотреть, когда он защелкнется.

В этой простой форме испытательная схема SCR может быть достаточной в качестве схемы управления пуском / остановом для двигателя постоянного тока, лампы или другой практической нагрузки: (рисунок ниже)

Цепь управления пуском / остановом двигателя постоянного тока

Схема «Лом»

Еще одно практическое применение SCR в цепи постоянного тока — это устройство лома для защиты от перенапряжения. Схема «лом» состоит из тиристора, размещенного параллельно с выходом источника питания постоянного тока, для прямого короткого замыкания на выходе этого источника, чтобы предотвратить попадание чрезмерного напряжения на нагрузку.Повреждение SCR и источника питания предотвращается за счет разумного размещения предохранителя или значительного последовательного сопротивления перед SCR для ограничения тока короткого замыкания: (рисунок ниже)

Цепь лома, используемая в блоке питания постоянного тока

Некоторые устройства или схемы, измеряющие выходное напряжение, будут подключены к затвору SCR, так что при возникновении состояния перенапряжения напряжение будет приложено между затвором и катодом, запустив SCR и заставив плавкий предохранитель перегореть.Эффект будет примерно таким же, как при падении твердого стального лома прямо на выходные клеммы источника питания, отсюда и название схемы.

Большинство приложений SCR предназначены для управления мощностью переменного тока, несмотря на то, что SCR по своей сути являются устройствами постоянного тока (однонаправленными). Если требуется двунаправленный ток в цепи, можно использовать несколько тиристоров, один или несколько тиристоров обращены в каждом направлении, чтобы обрабатывать ток через оба полупериода волны переменного тока. Основная причина, по которой тиристоры вообще используются для управления мощностью переменного тока, — это уникальная реакция тиристора на переменный ток.Как мы видели, тиратронная лампа (версия SCR с электронной лампой) и DIAC, гистерезисное устройство, срабатывающее во время части полупериода переменного тока, будут фиксироваться и оставаться включенными в течение оставшейся части полупериода до тех пор, пока переменный ток ток уменьшается до нуля, так как он должен начинать следующий полупериод. Непосредственно перед точкой перехода через ноль формы сигнала тока тиристор выключится из-за недостаточного тока (это поведение также известно как естественная коммутация), и его необходимо снова запустить во время следующего цикла.В результате ток в цепи эквивалентен «нарезанной» синусоидальной волне. Для обзора, вот график реакции DIAC на напряжение переменного тока, пик которого превышает напряжение отключения DIAC: (рисунок ниже)

Двунаправленный ответ DIAC

Для DIAC этот предел напряжения отключения был фиксированной величиной. С помощью SCR мы можем точно контролировать момент фиксации устройства, запуская логический элемент в любой момент времени по форме волны. Подключив подходящую схему управления к затвору SCR, мы можем «отрезать» синусоидальную волну в любой точке, чтобы обеспечить пропорциональное во времени управление мощностью нагрузки.

В качестве примера возьмем схему на рисунке ниже. Здесь SCR расположен в цепи для управления мощностью нагрузки от источника переменного тока.

SCR управление питанием переменного тока

Будучи однонаправленным (односторонним) устройством, в лучшем случае мы можем подавать на нагрузку только полуволновую мощность в полупериоде переменного тока, когда полярность напряжения питания положительная вверху и отрицательная внизу. Однако для демонстрации основной концепции пропорционального времени управления эта простая схема лучше, чем одна схема управления двухполупериодной мощностью (для которой потребовалось бы два SCR).

При отсутствии срабатывания затвора и напряжении источника переменного тока значительно ниже номинального напряжения отключения тиристора, тиристор никогда не включится. Подключение затвора SCR к аноду через стандартный выпрямительный диод (для предотвращения обратного тока через затвор в случае, если SCR содержит встроенный резистор затвор-катод), позволит запускать SCR почти сразу в начале каждый положительный полупериод: (рисунок ниже)

Затвор, подключенный напрямую к аноду через диод; почти полная полуволна тока через нагрузку.

Задержка срабатывания триггера SCR

Мы можем задержать срабатывание тринистора, однако, добавив некоторое сопротивление в схему затвора, увеличив таким образом величину падения напряжения, требуемого до того, как достаточный ток затвора запустит тринистор. Другими словами, если мы усложним прохождение тока через затвор, добавив сопротивление, напряжение переменного тока должно будет достичь более высокой точки в своем цикле, прежде чем ток затвора станет достаточным для включения SCR. Результат показан на рисунке ниже.

В цепь затвора вставлено сопротивление; менее полуволны тока через нагрузку.

Поскольку полусинусоидальная волна в большей степени прерывается задержкой срабатывания тринистора, нагрузка получает меньшую среднюю мощность (мощность доставляется в течение меньшего времени в течение цикла). Сделав резистор последовательного затвора переменным, мы можем отрегулировать пропорциональную во времени мощность: (рисунок ниже)

Увеличение сопротивления приводит к повышению порогового уровня, в результате чего на нагрузку подается меньшая мощность. Уменьшение сопротивления снижает пороговый уровень, в результате чего на нагрузку поступает больше мощности.

К сожалению, эта схема управления имеет существенное ограничение. При использовании сигнала источника переменного тока для нашего триггерного сигнала SCR мы ограничиваем управление первой половиной полупериода сигнала. Другими словами, мы не можем ждать, пока волна не достигнет пика, чтобы запустить SCR. Это означает, что мы можем уменьшить мощность только до точки, в которой SCR включается на самом пике волны: (Рисунок ниже)

Цепь при минимальной установке мощности

Дальнейшее повышение порога срабатывания триггера приведет к тому, что схема вообще не сработает, поскольку даже пика напряжения переменного тока не будет достаточно для срабатывания тринистора.В результате на нагрузку не подается питание.

Гениальное решение этой дилеммы управления заключается в добавлении в схему фазосдвигающего конденсатора: (рисунок ниже)

Добавление в схему фазовращающего конденсатора

Меньшая форма волны, показанная на графике, представляет собой напряжение на конденсаторе. Для иллюстрации фазового сдвига я предполагаю состояние максимального управляющего сопротивления, при котором тиристор не срабатывает вообще без тока нагрузки, за исключением того небольшого тока, который проходит через управляющий резистор и конденсатор.Это напряжение на конденсаторе будет сдвинуто по фазе от 0 ° до 90 °, отставая от формы сигнала переменного тока источника питания. Когда это сдвинутое по фазе напряжение достигает достаточно высокого уровня, срабатывает тиристор.

При достаточном напряжении на конденсаторе для периодического срабатывания тринистора, результирующая форма волны тока нагрузки будет выглядеть примерно так, как показано на рисунке ниже).

Сигнал со сдвигом фазы запускает SCR в проводимость.

Поскольку форма волны конденсатора все еще нарастает после того, как форма волны основной мощности переменного тока достигла своего пика, становится возможным запускать SCR на пороговом уровне за пределами этого пика, тем самым прерывая волну тока нагрузки дальше, чем это было возможно с более простой схемой.На самом деле форма волны напряжения конденсатора немного сложнее, чем то, что показано здесь, ее синусоидальная форма искажается каждый раз, когда тиристор срабатывает. Однако то, что я пытаюсь проиллюстрировать здесь, — это задержка срабатывания триггера, полученная с помощью фазосдвигающей RC-цепи; таким образом, упрощенная, неискаженная форма сигнала хорошо служит этой цели.

Запуск SCR сложными схемами

SCR также могут запускаться или «запускаться» более сложными схемами. В то время как ранее показанная схема достаточна для простого применения, такого как управление лампой, большие промышленные системы управления двигателями часто полагаются на более сложные методы запуска.Иногда импульсные трансформаторы используются для соединения схемы запуска с затвором и катодом SCR, чтобы обеспечить электрическую изоляцию между цепями запуска и питания.

Трансформаторная развязка триггерного сигнала обеспечивает развязку.

Когда для управления мощностью используются несколько тиристоров, их катоды часто не являются электрически общими, что затрудняет подключение одной цепи запуска ко всем тиристорам в равной степени. Примером этого является управляемый мостовой выпрямитель, показанный на рисунке ниже.

Управляемый мостовой выпрямитель

В любой схеме мостового выпрямителя выпрямительные диоды (в данном примере это выпрямительные тиристоры) должны проводить встречные пары. SCR1 и SCR3 должны запускаться одновременно, а SCR2 и SCR4 должны запускаться вместе как пара. Однако, как вы заметите, эти пары тиристоров не используют одни и те же катодные соединения, а это означает, что просто параллельное соединение их соответствующих затворов и подключение одного источника напряжения для запуска обоих не сработает: (рисунок ниже)

Эта стратегия не будет работать для запуска SCR2 и SCR4 как пары.

Несмотря на срабатывание источника напряжения показан, вызовет SCR4, это не будет вызывать scr2 должным образом, потому что два тиристор не имеет общую связь катода ссылку, что инициирующее напряжение. Однако импульсные трансформаторы, соединяющие два тиристорных затвора с общим источником пускового напряжения, будут работать: (рисунок ниже)

Трансформаторная муфта затворов позволяет срабатывать SCR2 и SCR4.

Имейте в виду, что эта схема показывает соединения затвора только для двух из четырех тиристоров.Импульсные трансформаторы и источники запуска для SCR1 и SCR3, а также детали самих источников импульсов для простоты опущены.

Управляемые мостовые выпрямители не ограничиваются однофазными конструкциями. В большинстве промышленных систем управления питание переменного тока доступно в трехфазной форме для максимальной эффективности, и полупроводниковые схемы управления построены для использования этого преимущества. Схема трехфазного управляемого выпрямителя, построенная на тиристорах, без показанных импульсных трансформаторов или схемы запуска, будет выглядеть, как показано на рисунке ниже.

Трехфазный мостик SCR управления нагрузкой

ОБЗОР

: выпрямитель с кремниевым управлением, или SCR, по сути, представляет собой диод Шокли с добавленной дополнительной клеммой. Этот дополнительный вывод называется затвором, и он используется для запуска устройства в режим проводимости (защелкивания) путем приложения небольшого напряжения. Чтобы запустить или запустить SCR, необходимо приложить напряжение между затвором и катодом, положительное к затвору и отрицательное к катоду.

При тестировании SCR мгновенного соединения между затвором и анодом достаточно полярности, интенсивности и продолжительности для его запуска.SCR могут срабатывать при преднамеренном срабатывании вывода затвора, чрезмерном напряжении (пробое) между анодом и катодом или чрезмерной скорости нарастания напряжения между анодом и катодом. Тиристоры могут быть отключены анодным током, падающим ниже значения удерживающего тока (слаботочное выпадение) или «обратным зажиганием» затвора (подачей отрицательного напряжения на затвор). Обратное срабатывание только иногда эффективно и всегда связано с большим током затвора.

Вариант SCR, называемый тиристором с выключением затвора (GTO), специально разработан для отключения посредством обратного запуска.Даже в этом случае для обратного запуска требуется довольно большой ток: обычно 20% анодного тока. Клеммы SCR могут быть идентифицированы измерителем непрерывности: единственными двумя клеммами, показывающими какую-либо непрерывность между ними, должны быть затвор и катод. Выводы затвора и катода подключаются к PN-переходу внутри SCR, поэтому измеритель целостности цепи должен получать диодоподобные показания между этими двумя выводами с красным (+) выводом на затворе и черным (-) выводом на катоде. Однако помните, что некоторые большие тиристоры имеют внутренний резистор, подключенный между затвором и катодом, что повлияет на любые показания непрерывности, снятые измерителем.

SCR

— настоящие выпрямители: они пропускают через них ток только в одном направлении. Это означает, что их нельзя использовать отдельно для управления двухполупериодным переменным током. Если диоды в цепи выпрямителя заменены на тиристоры, у вас есть задатки схемы управляемого выпрямителя, в соответствии с которой мощность постоянного тока на нагрузку может быть пропорциональной по времени за счет срабатывания тиристоров в разных точках формы волны переменного тока.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Как работает тиристорная схема »Электроника

Существует множество схем тиристоров / тиристоров, которые могут управлять как постоянным, так и переменным током — часто в цепях управления переменным током используется разность фаз на затворе для управления уровнем протекания тока.


Конструкция схемы тиристора Включает:
Праймер для разработки схемы тиристора
Схема работы
Конструкция пусковой / пусковой цепи
Лом перенапряжения
Цепи симистора


Тиристорные цепи SCR широко используются для управления мощностью систем постоянного и переменного тока. В схемах используется множество различных методов для управления потоком тока нагрузки, но все они требуют, чтобы затвор сработал и напряжение на аноде с катода было снято, чтобы остановить ток.Понимание того, как работает схема тиристора / тиристора, упрощает их проектирование.

Во многих схемах тиристоров переменного тока и тиристора используется переменная разность фаз сигнала, создаваемого на затворе, для управления частью формы волны, по которой проводит тиристор. Этот тип схемы относительно легко спроектировать и построить.

Тиристор постоянного тока / цепь SCR

Существует множество приложений, в которых цепь SCR требуется для управления работой нагрузки постоянного тока. Его можно использовать для двигателей постоянного тока, ламп или любой другой нагрузки, требующей переключения.

Базовая схема SCR, приведенная ниже, может управлять мощностью нагрузки с помощью небольшого переключателя, чтобы инициировать подачу питания на нагрузку.

Базовая схема тиристора постоянного тока / тиристора

Изначально при замкнутом S1 и разомкнутом S2 ток не протекает. Только когда S2 замкнут и запускает затвор, вызывая протекание тока затвора, схема SCR включается и ток течет в нагрузке.

Ток будет продолжать течь до тех пор, пока не будет прервана анодная цепь. Это можно сделать с помощью S1.Альтернативный метод состоит в том, чтобы поместить переключатель S1 на тиристор, и, мгновенно замкнув его, напряжение на тиристоре исчезнет, ​​и тиристор перестанет проводить.

В результате их функций в этой схеме тринистора S1 может называться выключателем, а S2 — выключателем. В этой конфигурации S1 должен иметь возможность проводить ток полной нагрузки, в то время как S2 должен иметь возможность переносить ток затвора. Когда тиристор включен, переключатель можно отпустить и оставить в разомкнутом состоянии, поскольку действие тиристора поддерживает ток через устройство и, следовательно, нагрузку.

Резистор R1 подключает затвор к питанию через переключатель. Когда переключатель S2 замкнут, ток проходит через резистор, попадает в затвор и включает тиристор. Резистор R1 должен быть рассчитан так, чтобы обеспечить достаточный ток затвора для включения цепи SCR.

R2 включен для снижения чувствительности SCR, чтобы он не срабатывал при возникновении любого шума, который может быть уловлен.

Базовая схема тиристора переменного тока / тиристора

Когда переменный ток используется с тиристорной схемой, необходимо внести несколько изменений, как показано ниже.

Причина этого заключается в том, что питание переменного тока меняет полярность в течение цикла. Это означает, что тиристор будет иметь обратное смещение, эффективно снижая анодное напряжение до нуля, вызывая его отключение в течение одной половины каждого цикла. В результате отпадает необходимость в выключателе, поскольку это достигается при использовании источника переменного тока.

Базовая схема тиристора переменного тока / тиристора

Работа схемы немного отличается от схемы тиристора постоянного тока.Когда переключатель включен, схема должна будет дождаться, пока не появится достаточное анодное напряжение, пока форма волны переменного тока продвигается по своему ходу. Кроме того, схеме SCR необходимо будет подождать, пока напряжение в секции затвора схемы не сможет обеспечить достаточный ток для запуска SCR. Для этого переключатель должен находиться в закрытом положении.

После срабатывания SCR останется в проводящем состоянии в течение положительной половины цикла. По мере падения напряжения наступит момент, когда напряжение на аноде и катоде будет недостаточным для поддержания проводимости.На этом этапе SCR перестанет проводить.

Тогда в течение отрицательной половины цикла SCR не будет работать. Только когда вернется следующая положительная половина цикла, процесс повторится.

В результате эта цепь будет работать только тогда, когда переключатель затвора находится в закрытом положении.

Одна из проблем с использованием схемы SCR такого рода заключается в том, что она не может подавать более 50% мощности на нагрузку, потому что она не проводит ток в течение отрицательной половины цикла переменного тока, потому что SCR смещен в обратном направлении.

AC SCR цепь с управлением фазой затвора

Можно контролировать количество энергии, достигающей нагрузки, изменяя долю полупериода, в течение которого проводит SCR. Это может быть достигнуто с помощью схемы SCR, которая включает управление фазой входного стробирующего сигнала.

Формы сигналов тиристорной цепи переменного тока

Используя схему SCR с фазовым управлением, можно увидеть, что сигнал затвора SCR получается из RC-цепи, состоящей из R1, VR1 и C1 перед диодом D1.

Как и в случае с базовой схемой тиристора переменного тока, интерес представляет только положительный полупериод сигнала, поскольку тиристор смещен в прямом направлении. В течение этого полупериода конденсатор C1 заряжается через цепь резисторов, состоящую из R1 и VR1, от напряжения питания переменного тока. Видно, что форма волны на положительном конце C1 отстает от формы входной волны, и затвор срабатывает только тогда, когда напряжение на верхнем конце конденсатора поднимается достаточно, чтобы запустить SCR через D1. В результате точка включения SCR задерживается по сравнению с той, которая обычно имела бы место, если бы RC-сеть отсутствовала.Установка значения VR1 изменяет задержку и, следовательно, пропорцию цикла, в которой работает SCR. Таким образом можно регулировать мощность нагрузки.

Схема тиристора переменного тока с управлением фазой затвора

Включен последовательный резистор R1, чтобы ограничить минимальное значение для цепи резисторов значением, которое обеспечит приемлемый уровень тока затвора для SCR.

Как правило, чтобы обеспечить полный контроль над 50% цикла, доступного для проведения с помощью SCR, фазовый угол сигнала затвора должен изменяться от 0 ° до 180 °.

Эти схемы дают некоторые из основных концепций, лежащих в основе проектирования схем тиристоров / тиристоров. Они демонстрируют основные операции того, как они работают и как их можно использовать.

Одной из основных проблем, о которых следует помнить при проектировании тиристорных схем, является рассеиваемая мощность. Поскольку эти схемы часто работают с высоким напряжением и высокими уровнями мощности, рассеяние мощности может быть основным фактором при проектировании и работе схемы.

Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем

Вернуться в меню «Конструкция схемы».. .

Как работают тиристоры? | Сравнение тиристоров и транзисторов

Как работают тиристоры? | Сравнение тиристоров и транзисторов

Реклама

Криса Вудфорда. Последнее изменение: 11 апреля 2020 г.

Транзисторы — крошечные электронные компоненты
которые изменили мир: вы найдете их в
все от калькуляторов и
компьютеры для
телефоны, радио и
слуховые аппараты.Они удивительно универсальны, но это не значит, что они могут все.
Хотя мы можем использовать их для включения крошечных электрических токов и
выключено (это основной принцип, лежащий в основе компьютерной памяти), и
преобразовать малые токи в несколько большие (вот как
усилитель работает), они не очень полезны в обращении
намного большие токи. Еще один недостаток в том, что они отключаются
сразу после снятия тока переключения, что означает
они не так полезны в устройствах, таких как будильники, где вы хотите
цепь для срабатывания и остается включенной неопределенно долго.Для такого рода работ
мы можем обратиться к похожему электронному компоненту, называемому
тиристор, имеющий общие черты с
диоды, резисторы,
и транзисторы. Триристоры довольно легко понять,
хотя большинство объяснений, которые вы найдете в Интернете, излишне
сложный и часто невероятно запутанный. Итак, это наш старт
точка: давайте посмотрим, сможем ли мы ясно и просто взглянуть на то, что
тиристоры, как они работают и какие
вещи, для которых мы можем их использовать!

Изображение: Типичный тиристор немного похож на транзистор — и работает в
близкородственный способ.

Что такое тиристоры?

Во-первых, давайте разберемся с терминологией. Некоторые люди
используйте термин кремниевый выпрямитель (SCR)
взаимозаменяемо с «тиристором». Фактически, кремниевый
выпрямитель — это торговая марка, которую компания General Electric представила
опишите один конкретный тип тиристора, который он сделал. Есть
различные другие типы тиристоров (в том числе так называемые
диаки и симисторы, которые
предназначены для работы с переменным током), поэтому условия не полностью
синоним.Тем не менее, эта статья о хранении вещей
просто, поэтому поговорим о тиристорах в самом общем виде
термины и предполагают, что SCR — это одно и то же. Мы будем называть их тиристорами.

Фото: Тиристоры широко используются в электронных схемах управления мощностью, подобных этому.

Три соединения

Так что же такое тиристор? Это электронный
компонент с тремя выводами, называемый анодом (положительный вывод),
катод (отрицательный вывод) и затвор.Это несколько аналогичные
к трем выводам транзистора, которые, как вы помните, называются
эмиттер, коллектор и база (для обычного транзистора) или
исток, сток и затвор (в полевом транзисторе или полевом транзисторе).
В обычном транзисторе один из трех выводов (база) действует
как элемент управления, который регулирует, сколько тока течет между другими
два отведения. То же самое и с тиристором: затвор управляет
ток, протекающий между анодом и катодом.
(Стоит отметить, что можно получить триисторы
с двумя или четырьмя выводами, а также с тремя выводами.Но мы сохраняем
здесь все просто, поэтому мы просто поговорим о наиболее распространенной разновидности.)

Сравнение транзисторов и тиристоров

Если транзистор и тиристор выполняют одну и ту же работу,
какая между ними разница? С транзистором, когда маленький
ток течет в базу, это делает больший ток между
эмиттер и коллектор. Другими словами, он действует как
переключатель и усилитель одновременно:

Как работает транзистор: небольшой ток, протекающий в базу, вызывает больший ток между эмиттером и коллектором.Это транзистор n-p-n с красным, обозначающим кремний n-типа, синим, обозначающим p-тип, черными точками, представляющими электроны, и белыми точками, обозначающими дырки.

Аналогичная вещь происходит внутри полевого транзистора, за исключением того, что мы прикладываем небольшое напряжение к затвору, чтобы произвести
электрическое поле, которое помогает току течь от источника к
осушать. Если мы удалим малый ток в базе (или затворе), большой ток
немедленно перестает течь от эмиттера к коллектору (или от истока к стоку в полевом транзисторе).

Часто это не то, чего мы хотим. В
что-то вроде цепи охранной сигнализации (где, возможно, злоумышленник
наступает на нажимную подушечку и колокольчики начинают звенеть), мы хотим, чтобы
небольшой ток (активируется нажимной подушечкой) для отключения большего
ток (звон колокольчиков) и чтобы больший ток продолжал течь
даже когда меньший ток прекращается (так что колокола все еще звонят, даже если
наш незадачливый злоумышленник осознает свою ошибку и отходит от площадки). В тиристоре это
именно то, что происходит.Небольшой ток на затворе вызывает много
больший ток между анодом и катодом. Но даже если мы тогда
удалить ток затвора, больший ток продолжает течь из
анод к катоду. Другими словами, тиристор остается («защелкивается») включенным.
и остается в этом состоянии до тех пор, пока схема не будет сброшена.

Там, где транзистор обычно имеет дело с крошечными электронными
токи (миллиампер) тиристор выдерживает настоящие (электрические)
силовые токи (обычно несколько сотен вольт и 5–10 ампер).Вот почему мы можем использовать их в таких вещах, как заводские выключатели питания,
регуляторы скорости электродвигателей,
бытовые диммеры, выключатели зажигания автомобилей,
сетевые фильтры и
термостаты. Время переключения
практически мгновенно (измеряется в микросекундах), и эта полезная функция,
в сочетании с отсутствием движущихся частей и высокой надежностью, поэтому часто используются тиристоры.
как электронные (твердотельные) версии реле
(переключатели электромагнитные).

Как работает тиристор?

Тиристоры являются логическим продолжением диодов и
транзисторы, поэтому давайте кратко рассмотрим эти компоненты.Если
вы не знакомы с твердотельной электроникой, у нас больше и
более четкие объяснения того, как работают диоды и
и как работают транзисторы,
которую вы, возможно, захотите прочитать в первую очередь.

Тиристор как два диода

Напомним, что диод — это два слоя полупроводника.
(p-тип и n-тип) зажаты вместе, чтобы создать соединение
где происходят интересные вещи. В зависимости от того, как вы подключаете
диод, ток либо будет течь через него, либо нет, что делает его
электронный эквивалент улицы с односторонним движением.С положительной связью
к p-типу (синий) и отрицательному соединению к n-типу (красный) диод
смещение вперед, поэтому электроны (черные точки) и дыры (белые точки) перемещаются
к счастью через переход и нормальный ток течет:

Диод с прямым смещением: через переход между p-типом (синий) и n-типом (красный) протекает ток, переносимый электронами (черные точки) и дырками (белые точки).

В противоположной конфигурации, с положительным подключением к n-типу и
отрицательный к p-типу, диод имеет обратное смещение:
соединение становится огромной пропастью, которую электроны и дырки не могут пересечь
и нет тока:

Диод с обратным смещением: при обратном подключении батареи «зона истощения» на стыке становится шире, поэтому ток не течет.

В транзисторе мы имеем три слоя полупроводника, расположенных поочередно (либо p-n-p, либо n-p-n), что дает
два перекрестка, где могут происходить интересные вещи. (Полевой транзистор немного
разные, с дополнительными слоями металла и оксида, но все же
по сути, бутерброд n-p-n или p-n-p.). Тиристор — это просто следующий шаг в
последовательность: четыре слоя полупроводника, снова расположенные поочередно
дайте нам p-n-p-n (или n-p-n-p, если вы поменяете местами) с тремя
стыки между ними. Анод соединяется с внешним слоем p,
катод к внешнему n слою, а затвор к внутреннему p
слой, например:

Тиристор похож на два соединенных диода, соединенных вместе, но с дополнительным подключением к одному из внутренних слоев — «затвору».«

Вы можете видеть, что это напоминает два соединительных диода, соединенных последовательно, но с дополнительным соединением затвора внизу.
Тиристор, как и диод, является выпрямителем: он проводит только в одном направлении. Вы не можете сделать тиристор, просто подключив два диода последовательно: дополнительное соединение затвора означает, что это еще не все. Если вы хорошо знакомы с электроникой, вы заметите сходство между тиристором и диодом Шокли (своего рода двойной диод с
четыре чередующихся полупроводниковых слоя, изобретенные пионером транзисторов Уильямом Шокли
в 1956 г.).Тиристоры произошли от работы транзисторов и диодов Шокли,
который был разработан Джуэллом Джеймсом Эберсом,
кто разработал двухтранзисторную модель, о которой мы расскажем дальше.

Тиристор как два транзистора

Менее очевидно то, что четыре слоя работают как два
транзисторы (n-p-n и p-n-p), которые соединены вместе, так что
выход из одного формирует вход в другой. Ворота служат
как своего рода «стартер» для их активации.

Тиристор также похож на два транзистора, соединенных вместе, поэтому выход каждого из них служит входом для другого.

Три состояния тиристора

Так как же это работает? Мы можем перевести его в три возможных состояния, во всех трех из которых он либо полностью выключен, либо полностью включен, что означает, что это, по сути, двоичное цифровое устройство. Чтобы понять, как работают эти состояния, полезно помнить о диодах и транзисторах:

Прямая блокировка

Обычно, когда ток не течет в затвор, тиристор выключен: ток не может течь из затвора.
анод к катоду.Почему? Представьте тиристор как два соединенных диода.
вместе. Верхний и нижний диоды смещены в прямом направлении.
Однако это означает, что соединение в центре имеет обратное смещение, поэтому ток не может
пройти весь путь сверху вниз. Это состояние называется вперед
блокировка. Хотя это похоже на прямое смещение в обычном диоде, ток не течет.

Блокировка обратного хода

Предположим, мы поменяем местами соединения анод / катод. Теперь вы, вероятно, видите, что оба
верхний и нижний диоды имеют обратное смещение, поэтому ток через тиристор по-прежнему не течет.Это
называется обратной блокировкой (и она аналогична обратному смещению в простом диоде).

Форвардное ведение

Третье состояние действительно интересно. Нам нужно, чтобы анод был
положительный и отрицательный катод. Затем, когда ток течет в затвор, он
включает нижний транзистор, который включает верхний,
который включает нижний и так далее. Каждый транзистор
активирует другой. Мы можем рассматривать это как своего рода внутреннюю положительную обратную связь, в которой два транзистора продолжают подавать ток друг другу.
пока они оба не будут полностью активированы, после чего через них может течь ток.
как от анода к катоду.Это состояние называется прямой проводимостью, и именно так
тиристор «защелкивается» (остается постоянно) включенным. После фиксации тиристора
на таком, вы не можете выключить его, просто сняв ток с
вентиль: в этот момент ток затвора не имеет значения — и вы должны
прервать основной ток, протекающий от анода к
катод, часто отключая питание всей цепи. Не следите за этим?
Посмотрите на анимацию в поле ниже, я надеюсь, она вам прояснится.

Как тиристор фиксируется на

Эта небольшая анимация представляет собой простое описание того, как тиристор фиксируется.Вы заметите
Я перерисовал тиристор так, чтобы он выглядел как два соединенных транзистора (p-n-p вверху и n-p-n под ним).
вместе с анодом, катодом и затвором, образующими три внешних соединения. Каждый транзистор действует
как вход для другого. Итак, как это работает?

  1. При отсутствии тока в затворе тиристор выключен и ток между анодом не протекает.
    и катод.
  2. Когда ток течет в затвор, он фактически течет на базу (вход) нижнего (n-p-n) транзистора,
    включаю его.
  3. После включения нижнего транзистора через него может протекать ток, активируя базу (вход) верхнего (p-n-p) транзистора, включая его.
  4. Когда оба транзистора полностью включены («насыщены»), ток может протекать через оба из них — через весь тиристор от анода до катода.
  5. Поскольку два транзистора поддерживают друг друга включенными, тиристор остается включенным — «защелкивается», даже если ток затвора снят.

Типы тиристоров

Несколько упрощенно, вот в чем суть того, как
тиристор работает.Есть множество вариантов, в том числе
устройства отключения ворот (GTO)
(который может быть включен или выключен действием затвора), AGT (тиристор с анодным затвором)
устройства, которые имеют затвор, идущий на внутренний слой n-типа около анода (вместо слоя p-типа около катода),
фотоэлектрические тиристоры, в которых база активируется светом, и все другие виды. Но все они работают примерно одинаково,
с затвором, отключающим один транзистор, который затем отключает другой.

Если вам понравилась эта статья…

… вам могут понравиться мои книги. Мой последний
Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

Возможно, вам понравятся эти другие статьи на нашем сайте по схожей тематике:

Книги

Блоки тиристоров

Не беспокойтесь, что эти книги «старые»: вообще говоря, физика полупроводников никогда не устаревает.

  • Данные тиристорного устройства: Motorola, 1988.Подробный сборник таблиц данных и многое другое.
  • Физика тиристоров
    Адольф Блихер, Springer, 1976. Подробный взгляд на физику твердого тела тиристоров. Вы можете прочитать весь текст онлайн, если вы «одолжите» книгу виртуально из Интернет-архива.
  • 110 Проекты тиристоров
    автор R.M. Marston, Newnes, 1972. Огромная коллекция практических схем тиристоров, включая проекты переключения мощности, сигнализации, схемы с выдержкой времени, контроллеры ламп, контроллеры нагревателей и контроллеры двигателей.
  • Руководство по выпрямителю с кремниевым управлением от General Electric, 1964 г. Это исчерпывающее (400 страниц) руководство по тиристорам собственной марки GE.
Учебники общеобразовательные

Статьи

  • Как Б. Джаянт Балига преобразовал силовые полупроводники Дэвида Шнайдера. IEEE Spectrum, 27 апреля 2014 г. Празднование работы Б. Джаянта Балиги, лауреата Почетной медали IEEE 2014 г., в разработке тиристоров и других силовых полупроводников.
  • Попробуйте симистор Чарльза Платта.Make, 10 января 2014 г. Узнайте о симисторах из этого практического светодиодного проекта.
  • Кремниевый p-n-p-n переключатель и управляемый выпрямитель (тиристор). Автор Ник Холоняк-младший. IEEE Transactions on Power Electronics, январь 2001 г., том 16, выпуск 1, стр. 8–16. Эта интересная статья (изобретателя светодиода) описывает историческое развитие тиристоров Уильямом Шокли, Джимом Эберсом и другими.
  • Ранняя история силовых полупроводников в GE: Музей полупроводников представляет раннюю историю кремниевого управляемого выпрямителя, рассказанную в устной истории одним из его пионеров, Ф.В. «Билл» Гуцвиллер.

Патенты

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2012. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2012) Тиристоры. Получено с https://www.explainthatstuff.com/how-thyristors-work.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Учебное пособие по схемам для проектов

Basic Triac-SCR

by Lewis Loflin

На этой странице обсуждаются базовые симисторы и тиристоры.Симистор — это двунаправленный трехконтактный двойной тиристорный (SCR) переключатель. Это устройство может переключать ток в любом направлении, подавая небольшой ток любой полярности между затвором и вторым главным контактом.

Симистор изготовлен путем объединения двух тиристоров в обратном параллельном соединении. Он используется в приложениях переменного тока, таких как регулирование яркости света, управление скоростью двигателя и т. Д. Симисторы также могут использоваться в микроконтроллере управления мощностью со схемой фазовой синхронизации.

Если кто-то не знаком с диодами и выпрямлением переменного тока, см. Следующее:

Включение / выключение диода

На рисунке выше изображен кремниевый управляемый выпрямитель (SCR) или тиристер. Это диод с «затвором». SCR не только проводит в одном направлении, как любой другой диод, но и затвор позволяет отключать и отключать саму проводимость. Когда переключатель ON нажат, SCR включается, и ток течет с отрицательного на положительный через SCR и нагрузку.После включения SCR будет оставаться включенным до тех пор, пока не будет нажат выключатель, нарушающий текущий путь.

Обратите внимание, что переключатель ON называется «нормально разомкнутым» (Н.О.) и при нажатии замыкает (замыкает) соединение. Выключатель OFF, называемый нормально закрытым (N.C.), разрывает (размыкает) соединение при нажатии. Оба они кнопочные.

В цепи над нагрузкой есть лампа постоянного тока. Нажмите переключатель S1, и включатся и будут продолжать оставаться включенными, пока не будет нажат переключатель S2.

В этом примере мы разместили диод последовательно с переключателем включения / выключения затвора. Когда вы нажимаете переключатель ON, двигатель запускается, загорается свет и т. Д. Когда переключатель отпускается, питание прекращается без использования переключателя OFF. Это связано с тем, что входное напряжение переменного тока возвращается к нулевому напряжению на 180 и 360 градусов, отключая SCR. И как диод, SCR проводит только половину цикла.

В этом примере схемы мы разместили переменный резистор (потенциометр) последовательно с диодом затвора.(Это было также известно как ручка регулировки громкости старого стиля.) «Поворачивая ручку», мы можем изменить точку срабатывания при включении SCR только части полупериода или, если сопротивление достаточно, выключить SCR.

Это иллюстрирует процесс с двухполупериодным нефильтрованным постоянным током

В другом примечании мы можем управлять двухполупериодным пульсирующим нефильтрованным постоянным током с помощью тиристора. См. Также «Основы выпрямления и фильтрации переменного тока»

.

Подробнее см. Что такое светоактивированный кремниевый управляемый выпрямитель? (LASCR) и спецификация оптопары h21C6 SCR.(PDF файл)

Выше представлена ​​практическая схема тестирования SCR. Лампа загорится только при нажатии Sw3. Лампа будет иметь половинную яркость, потому что тиристор действует как полуволновой выпрямитель. R4 может находиться в диапазоне от 100 до 470 Ом. Лампа должна быть полностью выключена, если выключатель не нажат или устройство не неисправно. (Полностью или частично закорочены.)

Эта схема также хороша для сравнения различных тиристоров одного и того же номера детали. Например, однажды у меня была проблемная печатная плата с шестью тиристорами, но один тиристор из шести при работе включался при совершенно другом напряжении срабатывания, чем остальные пять.Лампа имела другой уровень яркости, чем остальные пять. Замена этого одного SCR устранила эту очень дорогую печатную плату.

Введение в симисторы

Симистор — это твердотельный переключатель переменного тока. Небольшой ток на клемме затвора может переключать очень большие токи переменного тока. Думайте о симисторе как о двух последовательно соединенных тиристорах, в которых катод одного тиристора соединен с анодом другого и наоборот. Ворота соединены между собой. Поскольку у нас есть две конфигурации типа SCR, можно переключать оба полупериода.

Примечание: я видел бумажные примеры использования двух тиристоров, расположенных один за другим, в качестве симистора, но это может не работать так же! Остерегайтесь этого.

В приведенном выше примере замыкание переключателя приведет к включению симистора. Идея состоит в том, чтобы использовать небольшой переключатель малой мощности для управления устройствами большой мощности, такими как двигатели или нагреватели. Опасность здесь заключается в том, что на самом переключателе присутствует высокое напряжение переменного тока. Это также может быть большой проблемой для твердотельных контроллеров, если они не используют маленькое реле, которое некоторые микроволновые печи делают именно так.

Выше представлена ​​практическая схема тестирования TRIAC. Нажмите любой переключатель, и лампа включится с половинной яркостью. Сожмите оба вместе на полную яркость. Это позволяет тестировать обе стороны SCR по отдельности. Яркость должна быть одинаковой для обеих сторон, иначе TRIAC неисправен. Когда ни один переключатель не нажат, лампа должна быть полностью выключена. R1 и R2 должны быть в диапазоне от 100 до 470 Ом.

Схема симистора с наилучшим откликом и диак.

Ключ к успешному срабатыванию симистора состоит в том, чтобы убедиться, что затвор получает свое напряжение срабатывания со стороны главной клеммы 2 схемы (основной клеммы на противоположной стороне символа TRIAC от клеммы затвора).Идентификация клемм Mt1 и Mt2 должна выполняться по номеру детали TRIAC со ссылкой на технический паспорт или книгу.

DIAC, или «диод переменного тока», представляет собой триггерный диод, который проводит ток только после того, как его напряжение пробоя было на мгновение превышено. Когда это происходит, сопротивление DIAC резко уменьшается, что приводит к резкому уменьшению падения напряжения на самом DIAC, что приводит к резкому увеличению тока, протекающего через затвор симистора.

Это обеспечивает быстрое и чистое резание TRIAC.DIAC остается в режиме проводимости до тех пор, пока напряжение не упадет до очень низкого значения, намного ниже напряжения срабатывания. Это называется удерживающим током. Ниже этого значения диак снова переключается в состояние высокого сопротивления (выключено). Это двунаправленное поведение, то есть обычно одинаковое как для положительного, так и для отрицательного полупериодов.

Большинство DIAC имеют напряжение пробоя около 30 В. Таким образом, их поведение в некоторой степени похоже на (но гораздо более точно контролируется и происходит при более низких напряжениях, чем) неоновая лампа.

ЦИАП

не имеют электрода затвора, в отличие от некоторых других тиристоров. Некоторые TRIAC содержат встроенный DIAC последовательно (я никогда не видел такого в полевых условиях) с терминалом «затвора» TRIAC для этой цели. ДИАП также называют симметричными триггерными диодами из-за симметрии их характеристической кривой. Поскольку DIAC являются двунаправленными устройствами, их выводы помечены не как анод и катод, а как A1 и A2 или Mt1 («Главный вывод») и Mt2. Большинство листов спецификаций не удосуживаются маркировать A1 / A2 или Mt1 / Mt2.

Также см. Как проверить DIAC

Диммер для коммерческих ламп в странах с напряжением 220 В. Br100 — диак.

Диак обеспечивает более чистое переключение симистора. Диоды — это специализированные диоды Шокли, соединенные спина к спине.

Демпферы

Демпферная цепь (обычно RC-типа) часто используется между МТ1 и МТ2. Демпфирующие цепи используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети переменного тока или индуктивными нагрузками, такими как двигатели.Кроме того, резистор затвора или конденсатор (или оба параллельно) могут быть подключены между затвором и MT1 для дальнейшего предотвращения ложного срабатывания. Это может увеличить требуемый ток запуска и, возможно, задержку выключения при разрядке конденсатора.

В этой схеме выше «горячая» сторона линии переключается, а нагрузка подключается к холодной или заземленной стороне. Резистор на 100 Ом и конденсатор 0,1 мкФ предназначены для демпфирования симистора. Эти компоненты должны использоваться с индуктивными нагрузками, такими как двигатели, контакторы и т. Д.

Для получения дополнительной информации о вышеуказанном оптроне см. Оптоизолятор серии moc30xx (файл в формате pdf)

Серия

и параллельное соединение тиристоров или тиристоров

В настоящее время доступны тиристоры номиналом до 10 кВ и 3 кА. Но иногда мы сталкиваемся со спросом, большим, чем эти рейтинги. В этом случае используется комбинация более чем одного SCR. Последовательное соединение тиристоров удовлетворяет потребности в высоком напряжении, а параллельное соединение тиристоров отвечает требованиям высокого тока. Эти последовательные и параллельные соединения тиристоров или тиристоров будут работать эффективно, если все тиристоры полностью задействованы.Хотя все SCR в строке имеют одинаковый рейтинг, их характеристики V-I отличаются друг от друга. Это приводит к неравному разделению напряжения или тока между ними. Следовательно, каждый SCR используется не полностью. Таким образом, эффективность цепочки всегда меньше 100% в соответствии с данным выражением

С увеличением количества SCR в цепочке напряжение или ток, обрабатываемые каждым SCR, минимизируются. Это явление увеличивает надежность струны, но снижает использование каждой SCR.Таким образом, эффективность струны снижается. Надежность струны измеряется коэффициентом снижения номинальных характеристик (DRF), который задается выражением

Последовательная работа SCR

Когда рабочее напряжение превышает номинальное значение одного SCR, последовательно используются несколько SCR с одинаковыми номиналами. Как мы знаем, тиристоры с одинаковым номиналом могут иметь разные ВАХ, поэтому неизбежно возникнет неравное деление напряжения. Например, если два последовательно подключенных тиристора могут блокировать 5 кВ по отдельности, то цепочка должна блокировать 10 кВ.Но практически этого не происходит. В этом можно убедиться на примере. Пусть характеристики двух тиристоров такие, как показано на рис. 1.

Как видно из диаграммы, при одинаковом токе утечки имеет место неравное деление напряжения. Напряжение на SCR 1 составляет 1 В, а на SCR 2 2 В. V 2 намного меньше, чем V 1 . Итак, SCR 2 используется не полностью. Следовательно, струна может блокировать V 1 + V 2 = 8 кВ, а не 10 кВ, а эффективность струны составляет = 80%.

Для повышения эффективности используется резистор, подключенный параллельно к каждому тиристору. Значения этих сопротивлений таковы, что эквивалентное сопротивление каждой пары тиристоров и резисторов будет одинаковым. Следовательно, это обеспечит одинаковое деление напряжения на каждом тиристоре. Но на практике другой номинал резистора использовать очень сложно. Итак, мы выбрали одно значение сопротивления, чтобы получить оптимальный результат, который определяется как

Где, n = no. SCR в цепочке
В bm = Напряжение заблокировано SCR с минимальным током утечки.
ΔI b = Разница между максимальным и минимальным током утечки, протекающим через тиристоры.
В с = Напряжение на струне.
Это сопротивление b называется схемой статического выравнивания. Но этого сопротивления недостаточно, чтобы уравнять деление напряжения при включении и выключении. В этих переходных условиях, чтобы поддерживать равный объем на каждом устройстве, конденсатор используется вместе с резистором параллельно с каждым тиристором. Это не что иное, как демпферная схема, также известная как схема динамического выравнивания.Дополнительные диоды также могут быть использованы для улучшения характеристик схемы динамического выравнивания.

Параллельная работа SCR

Когда рабочий ток превышает индивидуальные номинальные значения тока SCR, мы используем более одного SCR параллельно. Из-за различных характеристик V-I тиристоры одного и того же номинала разделяют неодинаковый ток в цепочке. Пусть цепочка состоит из двух параллельно включенных транзисторов, как показано на рис. 1 и их текущий рейтинг на 1 КА. Из характеристик V-I устройств видно, что для рабочего объема V ток через SCR 1 составляет 1 кА, а через SCR 2 — 0.8 КА. Следовательно, SCR 2 здесь не используется полностью. Хотя струна должна выдерживать R KA, теоретически она способна выдерживать только 1,8 KA. Таким образом, КПД струны = 90%.

Из-за неравномерного деления тока, когда ток через тиристор увеличивается, его температура также увеличивается, что, в свою очередь, снижает сопротивление. Следовательно, происходит дальнейшее увеличение тока, и это кумулятивный процесс. Это явление известно как термический «уход», который может повредить устройство. Чтобы решить эту проблему, SCR должны поддерживаться при той же температуре.Это возможно, установив их на одном радиаторе. Они должны быть установлены симметрично как флюс.

Связи между устройствами будут такими же. Значит, взаимная индуктивность устройств будет одинаковой. Это обеспечит одинаковое реактивное сопротивление через все устройства. Таким образом уменьшается разница в уровне тока через устройства. Другой способ выравнивания деления тока в цепи переменного тока может быть достигнут с использованием магнитного реактивного сопротивления, как показано на рис. 2.

Когда I 1 = I 2 , то результирующий магнитный поток равен нулю, поскольку две катушки соединены в анти- параллельно.Таким образом, индуктивность обоих путей будет одинаковой. Если I 1 > I 2 , то будет результирующий поток. Этот поток вызывает ЭДС в цв. 1 и 2, как показано на рис. Следовательно, ток на пути 1 является противоположным, а на пути 2 ему помогают наведенные ЭДС. Таким образом уменьшая текущую разницу в путях.

тиристоров в цепях переменного тока

  • Изучив этот раздел, вы сможете:
  • Описать методы управления мощностью переменного тока с помощью тиристоров
  • • Полуволновое и двухполупериодное управление
  • • Базовое резистивное управление.
  • • Фазовое управление.
  • • Контроль уровня.
  • • Импульсный запуск.
  • • Синхронное переключение или переключение через ноль.
  • Разберитесь в работе схемы для различных методов срабатывания тринистора.
  • Опишите методы безопасной изоляции для устройств среднего и высокого напряжения.

Базовый резистивный контроль

Тиристоры обычно используются в цепях управления питанием переменного тока, таких как диммеры освещения, регуляторы скорости двигателя переменного тока, нагреватели и т. Д.где сетевое (линейное) напряжение используется для нагрузок в много ватт или часто киловатт. Целью управления переменным током является запуск SCR на части в течение каждого цикла переменного тока, чтобы ток нагрузки через SCR отключался на часть цикла переменного тока, таким образом ограничивая средний ток, протекающий через SCR, и, следовательно, среднюю передаваемую мощность. к нагрузке.

Рис. 6.2.1 Базовая схема резистивного управления

Самый простой способ достижения этого показан на рис. 6.2.1, где тиристор включается подачей синусоидальной волны низкого напряжения (полученной от входа переменного тока простой резисторной цепью, содержащей переменный потенциометр) на вывод затвора SCR.Обратите внимание, что поскольку волна на входе затвора получается из переменного тока, протекающего через тиристор, она будет состоять только из выпрямленных полуволновых импульсов. Эффект этой входной волны заключается в том, что SCR будет включаться только тогда, когда форма волны затвора достигает потенциала срабатывания SCR, что происходит на полпути в течение каждого положительного полупериода волны переменного тока. После включения тиристора он продолжает проводить до тех пор, пока волна переменного тока не упадет до чуть выше нуля вольт, когда ток, протекающий между анодом и катодом, упадет до значения, меньшего, чем пороговое значение « тока удержания » (показано в тиристорном модуле 6.0 рис. 6.0.3). Затем тиристор остается в непроводящем состоянии в течение отрицательного полупериода волны переменного тока, поскольку теперь он смещен в обратном направлении (в режиме обратной блокировки) в течение оставшейся части цикла переменного тока. Когда начинается следующий положительный полупериод, тиристор остается в непроводящем состоянии до тех пор, пока сигнал запуска на выводе затвора снова не достигнет своего пускового потенциала.

Рис. 6.2.2 Активное срабатывание SCR

Время или фазовый угол, при котором срабатывает тиристор, можно изменять, изменяя амплитуду сигнала затвора.Как видно из анимации на рис. 6.2.2. чем меньше амплитуда стробирующего сигнала, тем позже включается тиристор. Таким образом, изменение амплитуды сигнала триггера контролирует время включения SCR. Однако обратите внимание, что, поскольку тиристор в основном представляет собой выпрямительный диод, он проводит только половину цикла переменного тока, поэтому один тиристор может выдавать только 50% доступной мощности переменного тока. Кроме того, при использовании этой очень простой формы управления током, протекающим через тиристор, можно управлять только в течение половины положительного полупериода, то есть четверти полного цикла переменного тока.Можно видеть, что как только время включения достигает пика амплитуды волны переменного тока, его нельзя регулировать дальше, так как пиковая амплитуда сигнала запуска больше не будет достигать потенциала срабатывания затвора SCR и, следовательно, не будет запускать SCR после эта точка.

Рис. 6.2.3 Управление переменным током с помощью резисторов

Рис. 6.2.3 Видео недоступно в формате для печати

Из анимации и видео на рис. 6.2.3 также видно, что при использовании простого резистивного метода управление не очень линейное; первоначально ток через SCR изменяется только на относительно небольшую величину, но есть более быстрое изменение непосредственно перед прекращением проводимости.Внимательно посмотрите на вставку с изображением лампы на видео; он начинает заметно тускнеть только тогда, когда время переключения приближается к пиковому значению волны переменного тока.

Рис. 6.2.4 Методы управления полноволновым тиристором

Полноволновой регулятор SCR

Базовая операция SCR, описанная выше, может быть значительно улучшена с помощью некоторых простых модификаций. Возможно, самым большим недостатком простого резистивного управления является то, что диапазон регулировки может покрывать только 25% всей волны переменного тока.Это связано с тем, что диодный тиристор проводит только положительную половину волны переменного тока. Чтобы обеспечить проводимость во время прохождения отрицательной половины волны переменного тока, переменный ток можно выпрямить с помощью двухполупериодного выпрямителя, как показано на рис. 6.2.4 (a). Поскольку обе половины волны переменного тока теперь будут положительными, диапазон регулировки теперь увеличен почти до 50%. Альтернативой является использование второго SCR, соединенного встречно-параллельно, как показано на рис. 6.2.4 (b), чтобы один SCR работал во время положительных полупериодов, а другой SCR — во время отрицательных полупериодов.Однако такое параллельное расположение тиристоров также можно получить, просто используя один симистор вместо двух тиристоров.

Рис. 6.2.5 Демонстрационная схема управления фазой SCR

Управление фазой SCR

Для достижения практически 100% -ного контроля волны переменного тока при регулировке фазы просто заменяется один из резисторов в резистивной цепи управления на конденсатор. Теперь это преобразует цепь резисторов в переменный фильтр нижних частот, который будет сдвигать фазу волны переменного тока, подаваемой на затвор.Подробности о том, как работает фильтр нижних частот, можно найти здесь, но в основном значения C и R выбраны таким образом, чтобы регулировка R1 обеспечивала сдвиг фазы от 0 ° до почти 90 °. Чтобы быть эффективным, изменение R1 должно приводить к значительным изменениям в поведении нагрузочного устройства (в данном случае лампы на 12 В, 100 мА). Однако, помимо сдвига фазы сигнала затвора, RC-фильтр также будет изменять амплитуду формы сигнала затвора, поэтому амплитуда сигнала затвора также должна поддерживаться выше пускового потенциала выбранного типа SCR для переключения иметь место.Из этих условий видно, что расчет подходящих значений для R и C для обеспечения надлежащего управления зависит как от фазы, так и от амплитуды, поэтому может быть довольно сложным. Поэтому, скорее всего, также потребуются некоторые практические эксперименты со значениями R и C.

Рис. 6.2.6 Управление фазой SCR

Рис. 6.2.6 Видео недоступно в формате для печати

Видео на рис. 6.2.6 показывает рабочую схему с использованием значений компонентов, показанных на рис.6.2.5. Наблюдая за яркостью лампы вместе с изменяющейся формой волны, показанной на вставленном изображении, можно увидеть, что использование фазового управления действительно дает значительно лучший контроль почти на всех 180 ° каждого полупериода по сравнению с простым резистивным управлением.

Контроль уровня SCR

Рис. 6.2.7 Контроль уровня SCR

Другой способ включения тиристора в соответствующую часть цикла переменного тока — подать напряжение постоянного тока на затвор в течение времени, которое требуется тиристору для проведения.Следовательно, постоянный ток, приложенный к затвору, будет импульсом переменной ширины, имеющим уровень напряжения, достаточный для того, чтобы заставить тиристор проводить. Эти импульсы должны быть синхронизированы с выпрямленной волной переменного тока, чтобы они всегда начинались и заканчивались в правильное время относительно формы волны переменного тока.

Анимация на рис. 6.2.7 иллюстрирует основной метод запуска SCR с использованием управления уровнем. SCR запускается (включается) в течение каждого полупериода выпрямленного переменного тока напряжением V g , приложенным к затвору SCR.SCR отключается в конце каждого полупериода, когда напряжение на SCR падает почти до нуля, что также совпадает с окончанием триггерного импульса V g . Импульсы постоянного тока могут генерироваться в цифровом виде, с использованием выхода компьютера или дискретной компонентной схемы, такой как показанная ниже на рисунке 6.2.8, в которой используется моностабильный таймер 555. Эта схема предлагает простой и недорогой метод демонстрации работы тринистора с использованием только низких напряжений. Используются два блока питания, заштрихованная область на рис.6.2.8 — это демонстрационный источник питания переменного тока, описанный в модуле SCR 6.0, который изолирует демонстрационную схему от сети (линии). На контрольную секцию цепи должно подаваться постоянное напряжение от 5 В до 12 В. Это может быть либо отдельный источник питания постоянного тока (например, «настенная бородавка»), либо специальный регулируемый источник питания IC, либо батарея. Секция управления схемы (черная) также изолирована от секции переменного тока (красная) двумя оптопарами, IC1 и IC3. Поскольку эта схема уже изолирована от сетевого напряжения с помощью T1, казалось бы, нет необходимости использовать второй метод изоляции в IC1, однако основная функция IC1 в данном случае не изоляция, а действие как детектор перехода через ноль.

Рис. 6.2.8 Цепь запуска уровня SCR

Рис. 6.2.9 Формы сигналов запуска уровня SCR

Демонстрационная схема запуска уровня

Схема на рис. 6.2.8 включает тиристор в момент времени, выбранный настройкой VR1, в течение каждого положительного полупериода переменного тока от низковольтного источника питания (форма сигнала A). SCR снова отключается, когда выпрямленное переменное напряжение падает почти до нуля в конце каждого полупериода. Схема управления основана на микросхеме таймера 555, работающей в моностабильном режиме, и двух оптопарах 4N25.

Помимо изоляции цепи 555 от входящего переменного тока, IC1 (4N25) выдает синхронизирующий импульс (форма сигнала B на рис. 6.2.9). Это достигается за счет смещения IC1 в режиме общего коллектора, так что его выходной транзистор проводит большую часть входного двухполупериодного переменного тока, создавая высокое (5 В) напряжение на выводе 4, но выключается, когда волна переменного тока приближается к 0 В, создавая выходной сигнал 0 В. на выводе 4 микросхемы IC1. Эти импульсы используются для запуска моностабильного модуля 555 (IC2) в начале каждого полупериода.

Каждый раз, когда срабатывает IC2, его выход на выводе 3 становится высоким в течение времени, установленного постоянной времени, создаваемой переменным резистором VR1 и конденсатором синхронизации C1.Обратите внимание, что VR1 также подключен параллельно резистору R4 на 27 кОм. Целью этого является достижение более точной постоянной времени, чем это возможно при использовании только предпочтительных значений VR1 и C1. Также можно было бы установить предварительно установленный резистор вместо R4 для получения точной длительности запускающего импульса высокого уровня, создаваемого IC2.

Рис. 6.2.10 Срабатывание по уровню SCR

Рис. 6.2.10 Видео недоступно в формате для печати

Обратите внимание, что запускающий импульс, создаваемый IC2 (форма сигнала C на рис.6.2.9) переходит в высокий уровень сразу после получения синхронизирующего импульса, который включает SCR в начале полупериода. Кроме того, когда импульс запуска возвращается на низкий уровень, это не приведет к отключению SCR, он будет продолжать работать до конца полупериода; это не то, что нужно. Однако форма сигнала C инвертируется под действием оптрона IC3, поскольку его выходной транзистор подключен в режиме общего эмиттера. Следовательно, SCR срабатывает во время последнего периода полупериода выпрямленного переменного тока (форма сигнала D на рис.6.2.9). Обратите внимание, что форма сигнала D не похожа на инверсию сигнала C, потому что, как только SCR запускается, вход затвора (вместе с анодом и катодом) следует форме выпрямленной волны переменного тока с момента запуска до момента, когда он достигает 0 В.

Обратите внимание, что схема запуска уровня, описанная здесь и показанная в работе на видео на рис. 6.2.10, не предназначена конкретно для представления практической схемы для управления высоким напряжением, а как демонстрационный образец, позволяющий изучить управление SCR. .Таким образом, этот модуль дает возможность более глубоко изучить режимы запуска SCR, используя низковольтный источник питания переменного тока, описанный в модуле SCR 6.0, и создавая схемы запуска на макетной плате. Однако на практике есть некоторые недостатки срабатывания по уровню, которые можно преодолеть с помощью импульсного запуска.

Запуск импульса SCR

Использование запуска по уровню, как описано выше, имеет недостаток, заключающийся в создании тока затвора в течение всего периода включения SCR.Это создает ненужный ток затвора и в приложениях с высокой мощностью может увеличить тепло, выделяемое на переходе 2 SCR, что, в свою очередь, может снизить долговременную надежность.

Модификация схемы, показанной на рис. 6.2.8, проиллюстрирована на рис. 6.2.11. Эта схема генерирует одиночный узкий импульс (длительностью около 4 мкс) для запуска SCR при выбранном угле включения, затем SCR продолжает проводить, пока прямой ток не упадет до значения, меньшего, чем значение удерживающего тока около 0 В, что значительно снижает среднее значение затвора Текущий.

Рис. 6.2.11 Цепь запуска импульса SCR

Как работает схема запуска импульса

Часть рис. 6.2.11, показанная бледно-серым цветом, работает так же, как уже было описано для рис. 6.2.8; Выход IC2 (моностабильный) состоит из положительных импульсов переменной ширины (форма сигнала A, показанная на рис. 6.2.12), где задний фронт каждого импульса определяет угол включения SCR. (Обратите внимание, что в схеме запуска уровня этот сигнал инвертируется перед подачей на затвор, так что задний фронт становится нарастающим фронтом для запуска SCR).На рис. 6.2.11 перед тем, как выходной сигнал IC2 будет инвертирован, он дифференцируется C3 и R5 для создания серии узких 4 мкс положительных и отрицательных импульсов, соответствующих нарастающим и спадающим фронтам сигнала A. Эти узкие импульсы подаются на общий коллектор (эмиттерный повторитель) задающего транзистора Tr1 через R6. Диод D2 на эмиттере Tr1 удаляет положительные импульсы (за исключением небольшого остатка из-за потенциала прямого перехода диода).

Рис. 6.2.12 Формы сигналов запуска импульса SCR

Отрицательные импульсы (форма волны B) на эмиттере Tr1 инвертируются импульсным трансформатором 1: 1 T2 путем подключения вторичной обмотки T2 в противофазе к первичной обмотке T2 (обратите внимание на точки индикатора фазы рядом с первичной и вторичной обмотками), таким образом, производя положительные триггерные импульсы для SCR.Т2 также действует как изолятор между цепью управления постоянного тока низкого напряжения и тиристором переменного тока более высокого напряжения. На рис. 6.2.12 форма волны C показывает форму волны катода SCR, причем быстрый нарастающий фронт соответствует времени запуска импульса, подаваемого на затвор через токоограничивающий резистор R8; это снижает ток, подаваемый каждым импульсом запуска, примерно до 100 мкА.

Цепи запуска по уровню и импульсного запуска обеспечивают надежный запуск и настройку почти на всех 360 ° волны переменного тока 50 Гц.Для работы на частоте 60 Гц может потребоваться некоторая корректировка постоянной времени моностабильности. Уровень напряжения питания постоянного тока не критичен, от 5 до 12 В.

Рис. 6.2.13 Кривые пересечения нуля SCR

Синхронное переключение (переход через нуль)

Однако проблема существует со всеми описанными выше методами управления. Форма выходного сигнала переменного тока, когда SCR включается в течение каждого положительного полупериода волны переменного тока, имеет очень быстрое время нарастания, поскольку ток через SCR внезапно переключается с нуля на мгновенное значение волны переменного тока.При использовании источника переменного тока 230 В это резкое изменение может составлять около 325 В (пиковое значение волны переменного тока). Форма волны также может быть острым треугольным всплеском, если SCR включается после достижения пикового значения волны. В любом случае форма волны переменного напряжения, создаваемая действием SCR, будет богата гармониками, которые могут вызвать серьезный уровень электромагнитных помех (ЭМИ), вызывающих проблемы не только для других подключенных схем; Помехи также могут излучаться на другие расположенные поблизости электронные устройства в виде радиочастотных помех (r.f.i.), поскольку создаваемые гармоники могут распространяться в радиодиапазоны. Чтобы избежать этих проблем, можно использовать альтернативные методы контроля. Один из таких методов, называемый «синхронное переключение или переключение с переходом через нуль», заключается в том, чтобы разрешить тиристорам переключаться только тогда, когда форма напряжения сети равна или очень близка к нулю. Затем тиристор включается на определенное количество циклов, а затем снова выключается (когда напряжение переменного тока проходит через 0 В) еще на количество циклов. Затем можно изменить соотношение циклов включения и выключения, чтобы обеспечить изменение средней мощности, подаваемой на нагрузку.Рис. 6.2.13 иллюстрирует теоретический метод достижения нулевого переключения кроссовера. Практическая демонстрационная схема показана на рис. 6.2.14, а фактические формы сигналов, полученные из схемы, показаны на рис. 6.2.15.

Форма сигнала A на рис. 6.2.15 показывает форму сигнала 18Vpp, 100 Гц, приложенную к цепи перехода через нуль от двухполупериодного выпрямленного источника питания переменного тока и мостового выпрямителя (затенено серым на рис. 6.2.14).

Форма сигнала B представляет собой серию импульсов 5 В, полученных от оптопары IC1.Поскольку транзистор оптопары включен в течение большей части положительного полупериода входа переменного тока, это делает эмиттер высоким, за исключением узкого импульса, поскольку эмиттер падает с 5 В до 0 В каждый раз, когда вход переменного тока падает до 0 В. Таким образом, эти импульсы синхронизируются с точкой нулевого напряжения формы сигнала A.

Однако, поскольку для запуска SCR необходимы положительные импульсы запуска, импульсы в точке B инвертируются с помощью Tr1 для создания сигнала C.

Форма сигнала D является выходным сигналом автономного нестабильного генератора 555 IC2, который генерирует прямоугольные импульсы с частотой повторения импульсов около 7 Гц и переменной скважностью, регулируемой VR1.Эта форма сигнала используется для управления соотношением времени включения и выключения SCR. Поскольку SCR будет высоким (включенным) в течение нескольких полупериодов 100 Гц, затем низким (выключенным) в течение нескольких полупериодов. Отношение метки к пространству прямоугольной волны, создаваемой IC2, регулируется VR1, чтобы обеспечить время включения примерно от 20% до 90% от периодического времени нестабильного выхода. Работа микросхемы IC2 более подробно описана в модуле «Осцилляторы» 4.4.

Выходы Tr1 (форма сигнала C) и IC2 (форма сигнала D) подаются на два входа логического элемента И (IC3).Выход IC3 переходит в логическую 1 только тогда, когда оба входа находятся на логической 1. Это создает серию узких положительных пусковых импульсов (форма сигнала E) для запуска SCR только в начале этих полупериодов, когда форма сигнала D имеет высокий уровень. Создаваемые импульсы запуска подаются на Т2, изолирующий импульсный трансформатор 1: 1 через транзистор Tr2 драйвера эмиттерного повторителя. Вторичная обмотка Т2 подает триггерные импульсы на затвор тринистора через резистор ограничителя тока R11 и диод D3. Форма волны затвора (форма волны F) практически идентична форме волны выходного сигнала на катоде SCR, поскольку между затвором и катодом SCR существует лишь небольшая разница в напряжении.

Рис. 6.2.14 Цепь управления переходом через ноль SCR

* Примечание по безопасности: Как правило, резисторы 0,25 Вт подходят для этой конструкции, но если схема работает в течение длительного времени без источника переменного тока, но при этом источник постоянного тока все еще включен, существует вероятность того, что R11 (47R 0,25 Вт) может перегреться. , поскольку в этих условиях он будет пропускать повышенный ток из-за сигнала E, являющегося версией нестабильного выхода с более высоким током (форма сигнала D). Чтобы избежать перегрева, R5 можно заменить версией с более высокой мощностью, или, предпочтительно, всегда должны быть отключены источники переменного и постоянного тока, когда цепь не работает!

Рис.6.2.15 Формы сигналов Рис. 6.2.14 Схема

Рис. 6.2.16 SCR Zero Crossing

Схема макетной платы

Работа цепи перехода через ноль SCR

В этой демонстрационной схеме снова используется двухполупериодный выпрямленный источник переменного тока низкого напряжения (12 В, RMS, ), описанный ранее и затененный серым цветом на рис. 6.2.14.

Рис. 6.2.14. использует два разных метода изоляции и демонстрирует, как метод контроля перехода через нуль может быть реализован с использованием стандартных компонентов.Он не предназначен для представления какого-либо конкретного коммерчески доступного решения и не предназначен для представления наилучшего доступного метода. Целью схем управления затвором SCR, обсуждаемых в этом модуле, является предоставление полезных демонстраций широко используемых методов управления и среды низкого напряжения для соответствующих экспериментов. Они могут быть построены недорого на стандартном макете или плате, как показано на рис. 6.2.16, в качестве полезных демонстраций или студенческих проектов. В этих проектах используются низкие напряжения, чтобы поддерживать более безопасную окружающую среду, но узнайте больше об электронике.org не заявляет и не предполагает, что любая электронная схема является полностью безопасной, выбор построения и / или использования схем и методов, описанных на этом сайте, осуществляется исключительно на ваш страх и риск.

Видео на рис. 6.2.17 показывает эффект управления переходом через ноль при использовании для уменьшения яркости лампы. Обратите внимание на выраженное мерцание, возникающее при включении и выключении SCR на низких частотах, показывая, что это решение, устраняя одну проблему управления SCR (помехи), создает другую — низкую скорость переключения и связанное с этим мерцание.Однако, хотя это может быть проблемой для приложений освещения, это не проблема для приложений с медленно меняющимися значениями, такими как управление нагревом. Таким образом, переход через нуль может быть эффективным для контроля температуры за счет изменения средней мощности, подаваемой на нагревательный элемент. Кроме того, из-за отсутствия быстро изменяющихся скачков напряжения при управлении переходом через ноль он больше подходит для использования с индуктивными нагрузками, чем схемы управления, которые переключаются во время цикла переменного тока.

Рис.6.2.17 SCR Zero Crossing Control

Рис. 6.2.17 Видео недоступно

в формате для печати

тиристоров в цепях постоянного тока

  • Изучив этот раздел, вы сможете:
  • Общие сведения о работе SCR в цепях постоянного тока:
  • SCR как переключатель постоянного тока.
  • SCR как предохранительное устройство лома.

Рис. 6.1.1 Управление постоянным током с помощью тиристора

Коммутация постоянного тока

Тиристоры

могут использоваться для управления нагрузками переменного или постоянного тока и могут использоваться для переключения низковольтных слаботочных устройств, а также очень больших токов при сетевых (линейных) напряжениях. Простой пример тиристора, управляющего нагрузкой постоянного тока, такого как небольшой двигатель постоянного тока, показан на рис. 6.1.1. Двигатель здесь подключен к источнику питания 12 В постоянного тока через тиристор BT151, но не будет работать, пока тиристор не станет проводящим.Это достигается путем кратковременного замыкания «пускового» переключателя, который подает импульс тока на вывод затвора тиристора. Теперь двигатель работает, поскольку тиристор включается, и его сопротивление теперь очень низкое.

Когда пусковой переключатель возвращается в нормально разомкнутое состояние, ток затвора больше не возникает, но тиристор продолжает проводить, и в цепи постоянного тока ток будет продолжать течь, а двигатель продолжает работать. Любые дальнейшие действия пускового переключателя теперь не действуют.Тиристор выключится только в том случае, если ток упадет до значения ниже порогового значения тока удержания тиристора.

Это достигается за счет короткого замыкания тиристора путем кратковременного замыкания переключателя «стоп». Ток цепи теперь протекает через выключатель остановки, а не через тиристор, который мгновенно отключается, поскольку ток SCR теперь снижается до значения, меньшего, чем значение тока удержания. Остановка двигателя также может быть достигнута путем использования нормально замкнутого переключателя, включенного последовательно с тиристором, который при нажатии также временно предотвращает протекание тока через тиристор на время, достаточное для отключения тиристора.

Хотя эта простая схема работает, как можно увидеть в видео, сопровождающем рис. 6.1.1, нетрудно представить более простые способы включения и выключения небольшого двигателя. Однако этот принцип полезен в таких ситуациях, как использование компьютера для управления двигателем постоянного тока. Небольшой ток, производимый на выходе компьютера, используется для запуска тиристора (обычно через оптоволоконное устройство для обеспечения гальванической развязки). Затем тиристор может подавать на двигатель или другое устройство любое необходимое значение тока более высокого значения.Использование тиристора с некоторыми подходящими дополнительными схемами могло бы также позволить дистанционное переключение схемы или устройства, запускаемое, например, радиосигналом.

Рис. 6.1.2 Защита лома от перенапряжения

Цепи лома SCR

Еще одна операция постоянного тока с использованием тиристоров — это схема «лом», используемая в качестве устройства защиты от перенапряжения. Схема называется ломом, так как ее действие так же тонко, как быстрый удар ломом. Такие цепи часто можно встретить, не позволяя цепям источника питания выдавать напряжение, превышающее нормальное, в условиях неисправности.

Основная идея заключается в том, что, если, например, неисправность в линии источника питания постоянного тока приводит к тому, что выходное напряжение превышает заданное значение напряжения, это « перенапряжение » обнаруживается и вызывает обычно непроводящий тиристор, подключенный между выходом источника питания и земля включится очень быстро. Это может иметь различные защитные действия, простейшее из которых, как показано на рис. 6.1.2, состоит в том, чтобы перегореть предохранитель и, таким образом, полностью отключить питание, что требует внимания сервисного техника для восстановления работоспособности цепи.Это часто выбирается как самый безопасный вариант, так как причина первоначального перенапряжения должна быть исследована и устранена, прежде чем цепь снова будет работать.

На рис. 6.1.2 выходной сигнал регулируемого источника постоянного тока 5 В воспринимается D1, стабилитроном 6,2 В, анод которого удерживается под напряжением, близким к 0 В, с помощью R1. Этот резистор 100 Ом гарантирует, что если линия питания 5 В поднимется выше заданного предела, через стабилитрон будет протекать достаточный ток, чтобы обеспечить достаточный ток на затворе SCR для включения SCR.Также необходимо позаботиться о том, чтобы SCR не сработал случайно при появлении быстрых скачков напряжения на линии 5 В, например, из-за других переключающих устройств в цепи, на которую подается питание. Таким образом, C1 подключается между затвором и катодом SCR, чтобы уменьшить амплитуду любых очень коротких импульсов помех, при условии, что они не существуют достаточно долго, чтобы зарядить C1 до достаточно высокого уровня, чтобы запустить SCR.

Причина использования тиристора для срабатывания предохранителя заключается в том, что предохранители срабатывают не сразу, а срабатывают, когда чрезмерный ток протекает достаточно долго, так что плавкий элемент нагревается и плавится.Это может занять достаточно много времени, чтобы чрезмерное напряжение уже разрушило ряд полупроводниковых компонентов. Однако тиристор имеет очень быстрое время включения (около 2 мкс для BT151), так что в течение короткого времени между возникновением перенапряжения и срабатыванием предохранителя весь выходной ток источника питания будет проходить через тиристор, а не через цепь подается.

Хотя схемы, подобные показанным на рис. 6.1.2, широко используются, использование предохранителей для защиты сложных низковольтных полупроводниковых цепей может не обеспечить подходящей защиты.Однако улучшенная схема, которая может предотвратить ситуации перенапряжения без перегорания предохранителей и которая зависит только от почти мгновенного действия полупроводников, описана в нашем модуле источников питания 2.2 на последовательных регуляторах напряжения.

.