Как пользоваться ардуино: Подключение Arduino и настройка

первые шаги в электронике / Амперка

Arduino — это небольшая плата с собственным процессором и памятью. На плате также есть пара десятков контактов, к которым можно подключать всевозможные компоненты: лампочки, датчики, моторы, чайники, роутеры, магнитные дверные замки и вообще всё, что работает от электричества.

В процессор Arduino можно загрузить программу, которая будет управлять всеми этими устройствами по заданному алгоритму. Таким образом можно создать бесконечное количество уникальных классных гаджетов, сделанных своими руками и по собственной задумке. Чтобы понять общую идею, взгляните на иллюстрацию. Она не отражает и миллионной доли всех возможностей, но всё же даёт первичное представление.

Сложно ли это?

Свою бешеную популярность Arduino приобрела благодаря простоте и дружелюбности. Даже полный ноль в программировании и схемотехнике может освоить основы работы с Arduino за пару часов. Этому поспособствуют тысячи публикаций, учебников, заметок в интернете и отличная серия видеоуроков по Arduino на русском языке.

Программы для Arduino пишутся на обычном C++, дополненным простыми и понятными функциями для управления вводом-выводом на контактах. Если вы уже знаете C++ — Arduino станет дверью в новый мир, где программы не ограничены рамками компьютера, а взаимодействуют с окружающим миром и влияют на него. Если же вы новичок в программировании — не проблема, вы с лёгкостью научитесь, это просто.

Для удобства работы с Arduino существует бесплатная официальная среда программирования Arduino IDE, работающая под Windows, Mac OS и Linux. С помощью неё загрузка новой программы в Arduino становится делом одного клика, только лишь подключите плату к компьютеру через USB. Хотя для более пытливых умов возможна работа и через Visual Studio, Eclipse, другие IDE или командную строку, а новичкам подойдёт визуальная среда программирования XOD IDE.

Вам не понадобится паяльник. Полноценные устройства можно собирать, используя специальную макетную доску, перемычки и провода абсолютно без пайки.Как пользоваться ардуино: Подключение Arduino и настройка Конструирование ещё не было таким быстрым и простым.

Принцип бутерброда

Ещё одной отличительной особенностью Arduino является наличие плат расширения, так называемых shields или просто «шилдов». Это дополнительные платы, которые ставятся подобно слоям бутерброда поверх ардуинки, чтобы дать ей новые возможности. Так например, существуют платы расширения для подключения к локальной сети и интернету (Ethernet Shield), для управления мощными моторами (Motor Shield), для получения координат и времени со спутников GPS (приёмник GPS/ГЛОНАСС) и многие другие.

Так что же такое Arduino

Arduino — это сердце конструктора, в котором нет конечного, определённого набора деталей, и нет ограничений в разнообразии того, что можно собрать. Всё ограничено лишь вашей фантазией. Это новый мир, убойное хобби и отличный подарок. Десятки тысяч людей в мире уже поняли это.

Взгляните лишь на несколько примеров того, что возможно. Ведь это грандиозно!

С чего начать

Вам понадобится сам Arduino. Arduino Uno — это самая популярная модель в настоящий момент. Для начала экспериментов её хватит с головой. Хотя если брать «на вырост», можно рассмотреть более мощную Arduino Mega 2560.

Также вам понадобится USB-кабель, макетная доска, перемычки, резисторы, транзисторы… и ещё десяток подручных вещей. Чтобы не утомлять себя поисками необходимого, возьмите всё, что потребуется в виде одного из готовых наборов. Например, «Матрёшка Y» или «Матрёшка Z» — мы собрали в них всё, что нужно для старта.

● Уроки и проекты Arduino






































Что такое Arduino?

Платформа Ардуино пользуется огромной популярностью во всем мире благодаря удобству и простоте языка программирования, а также открытой архитектуре и программному коду. Плата Arduino состоит из микроконтроллера Atmel AVR и элементов обвязки для программирования и интеграции с другими схемами.  Подробнее …

Первое включение.Как пользоваться ардуино: Подключение Arduino и настройка Установка Arduino IDE

Разработка собственных приложений на базе плат, совместимых с архитектурой Arduino, осуществляется в официальной бесплатной среде программирования Arduino IDE. Среда предназначена для написания, компиляции и загрузки собственных программ в память микроконтроллера.  Подробнее …

Умный дом и интернет вещей. Элементы, решения, системы управления, проекты

Самый главный компонент любой «умной» системы – его контроллер. Контроллер предназначен для получения информации и управления «умным» домом. В нашем наборе два контроллера! Это плата Arduino MEGA и модуль NodeMCU v3 Lua WI-FI ESP8266 Ch440. Вы можете выбрать любой из них. Подробнее …

Arduino проект 34: Организация подключения к сети Интернет с помощью модуля Ai-Thinker A6

В предыдущих главе мы рассмотрели мы сделали большие шаги построения «умного дома» –  оснастили его датчиками и исполнительными устройствами и создали и обеспечили определенную степень автоматизации для создания комфорта и безопасности. Теперь пришло время сделать наш «умный дом» устройством IoT (Интернета вещей), чтобы получить доступ к нему для мониторинга и управления из любой точки мира по сети интернет. Организуем доступ контроллеров нашего дома к сети интернет. Подробнее …

Arduino проект 33:  Модуль GPS. Принцип работы, подключение, примеры

В этом эксперименте рассмотрим работу модуля GPS-приемника, позволяющего определять наше местоположение с помощью глобальной системы GPS, и подключение данного приемника к плате Arduino. GPS (Global Positioning System) – это система, позволяющая с точностью не хуже 100 м определить местоположение объекта.  Подробнее …

Arduino проект 32: Беспроводная связь. Модуль GSM/GPRS SIM900

В этом эксперименте рассмотрим работу модуля GSM/GPRS Shield – платы расширения, позволяющей Arduino работать в сетях сотовой связи по технологиям GSM/GPRS для приёма и передачи данных, SMS и голосовой связи.Как пользоваться ардуино: Подключение Arduino и настройка GSM/GPRS Shield на базе модуля SIMCom SIM900 выпускают несколько производителей, и платы имеют незначительные отличия. Также на некоторых платах расположены: слот для SIM-карты, стандартные 3,5 мм джек для аудиовхода и выхода и разъём для внешней антенны. На плате GSM/GPRS shild имеется несколько перемычек, позволяющих выбрать тип serial-соединения.  Подробнее …

Arduino проект 31: Беспроводная связь. Модуль Bluetooth HC-05

В этом эксперименте рассмотрим работу модуля Bluetooth HC-05, позволяющего плате Arduino установить беспроводную связь и обмениваться данными с другими устройствами по протоколу Bluetooth. Bluetooth позволяет объединять в локальные сети любую технику: от мобильного телефона и компьютера до холодильника. При этом одним из немаловажных параметров новой технологии являются низкая стоимость устройства связи (в пределах 20 долларов), его небольшие размеры.  Подробнее …

Arduino проект 30:  Беспроводная связь. Модуль Wi-Fi ESP8266

В этом эксперименте мы познакомимся с модулем ESP8266, с помощью которого можно подключить плату Arduini к сетям Wi-Fi, и напишем скетч для передачи данных датчика температуры на веб-сервис Народный мониторинг. Платы на ESP8266 – это не просто модули для связи по Wi-Fi. Чип, по сути, является микроконтроллером со своими интерфейсами SPI, UART, а также портами GPIO, а это значит, что модуль можно использовать автономно без Arduino и других плат с микроконтроллерами.  Подробнее …

Arduino проект 29: Работа с Интернетом на примере Arduino Ethernet Shield W5100

В этом эксперименте мы покажем, как нашей плате Arduino получить доступ к сети Интернет с помощью модуля Ethernet shield W5100. Ethernet Shield позволяет легко подключить вашу плату Arduino к локальной сети или сети Интернет. Он предоставляет возможность Arduino отправлять и принимать данные из любой точки мира с помощью интернет-соединения.Как пользоваться ардуино: Подключение Arduino и настройка   Подробнее …

Arduino проект 28:  Считыватель RFID на примере RC522. Принцип работы, подключение

В этом эксперименте мы покажем, как плата Arduino получает доступ к данным RFID-карт и брелоков Mifare с помощью RFID-считывателя RC522C. Идентификация объектов производится по уникальному цифровому коду, который считывается из памяти электронной метки, прикрепляемой к объекту идентификации. Считыватель содержит в своем составе передатчик и антенну, посредством которых излучается электромагнитное поле определенной частоты.  Подробнее …

Arduino проект 27:  SD-карта. Чтение и запись данных

В этом эксперименте мы покажем, как к плате Arduino подключить SD-карту. Если вашим Аrduino-проектам не хватает памяти, а объем энергонезависимой памяти EEPROM в платах Arduino совсем небольшой, можно использовать внешние носители. Один из самых простых по подключению к платам Arduino – это SD-карта. Можно подсоединиться к SD-карте напрямую, а можно использовать модули.  Подробнее …

Arduino проект 26:  Часы реального времени. Принцип работы, подключение, примеры

В этом эксперименте мы рассмотрим модуль часов реального времени на микросхеме DS1307. Микросхема Dallas DS1307 представляет собой часы реального времени с календарем и дополнительной памятью NW SRAM (56 байт). Микросхема подключается к микроконтроллеру при помощи шины I2C. Количество дней в месяце рассчитывается с учетом високосных лет до 2100 г. В микросхеме DS1307 имеется встроенная схема, определяющая аварийное отключение питания  Подробнее …

Arduino проект 25:  ИК-фотоприемник и ИК-пульт. Обрабатываем команды от пульта

В этом эксперименте мы организуем беспроводную ИК-связь, которая нам позволит отправлять на плату Arduino команды с помощью любого ИК-пульта. В качестве приемника будем использовать микросхему TSOP31236. В одном корпусе она объединяет фотодиод, предусилитель и формирователь.Как пользоваться ардуино: Подключение Arduino и настройка На выходе формируется обычный ТТЛ-сигнал без заполнения, пригодный для дальнейшей обработки микроконтроллером.  Подробнее …

Arduino проект 24:  3-осевой гироскоп + акселерометр на примере GY-521

В этом эксперименте мы познакомимся с акселерометром и гироскопом и будем с помощью Arduino получать показания с этих датчиков. Модуль GY-521 на микросхеме MPU6050 содержит гироскоп, акселерометр и температурный сенсор. На плате модуля GY-521 расположена необходимая обвязка MPU6050, в том числе подтягивающие резисторы, стабилизатор напряжения на 3,3 В с малым падением напряжения с фильтрующими конденсаторами. Обмен с микроконтроллером осуществляется по шине I2C.  Подробнее …

Arduino проект 23:  Ультразвуковой датчик расстояния HC-SR04. Принцип работы, подключение, пример

В этом эксперименте мы рассмотрим ультразвуковой датчик для измерения расстояния и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Ультразвуковой дальномер HC-SR04 – это помещенные на одну плату приемник и передатчик ультразвукового сигнала. Излучатель генерирует сигнал, который, отразившись от препятствия, попадает на приемник. Измерив время, за которое сигнал проходит до объекта и обратно, можно оценить расстояние.  Подробнее …

Arduino проект 22:  Датчики газов. Принцип работы, пример работы

В этом эксперименте мы рассмотрим ультразвуковой датчик для измерения расстояния и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. Серия MQ-сенсоров для Ардуино, построены на базе мини-нагревателя внутри и используют электрохимический сенсор. Они чувствительны для определенных диапазонов газов и используются в помещениях при комнатной температуре.  Подробнее …

Arduino проект 21:  Датчик влажности и температуры DHT11

В этом эксперименте мы рассмотрим датчик для измерения относительной влажности воздуха и температуры DHT11 и создадим проект вывода показаний датчика на экран ЖКИ Wh2602.Как пользоваться ардуино: Подключение Arduino и настройка Датчик DHT11 состоит из емкостного датчика влажности и термистора. Кроме того, датчик содержит в себе простенький АЦП для преобразования аналоговых значений влажности и температуры.  Подробнее …

Arduino проект 20:  Датчик температуры DS18B20



В этом эксперименте мы рассмотрим популярный цифровой датчик температуры DS18B20, работающий по протоколу 1-Wire, и создадим проект вывода показаний датчика на экран ЖКИ Wh2602. DS18B20 – цифровой термометр с программируемым разрешением от 9 до 12 битов, которое может сохраняться в EEPROM-памяти прибора. DS18B20 обменивается данными по шине 1-Wire и при этом может быть как единственным устройством на линии, так и работать в группе. Все процессы на шине управляются центральным микропроцессором.  Подробнее …
 

Arduino проект 19:  Шаговый двигатель 4-фазный, с управлением на ULN2003 (L293)

В этом эксперименте мы рассмотрим подключение к Arduino шагового двигателя. Шаговые двигатели представляют собой электромеханические устройства, задачей которых является преобразование электрических импульсов в перемещение вала двигателя на определенный угол. ШД нашли широкое применение в области, где требуется высокая точность перемещений или скорости.  Подробнее …

Arduino проект 18:  Обрабатываем данные от джойстика. Управление Pan/Tilt Bracket с помощью джойстика

В этом эксперименте мы рассмотрим подключение к Arduino двухосевого аналогового джойстика. Для плат Arduino существуют модули аналогового джойстика, имеющие ось X, Y (потенциометры 10 кОм) и дополнительную кнопку – ось Z. Джойстик позволяет плавно и точно отслеживать степень отклонения от нулевой точки. Сам джойстик подпружиненный, поэтому он будет возвращаться в центральное состояние после его отпускания из определенной позиции.  Подробнее …

Arduino проект 17:  Сервопривод.Как пользоваться ардуино: Подключение Arduino и настройка Крутим потенциометр, меняем положение

Сервопривод управляется с помощью импульсов переменной длительности. Угол поворота определяется длительностью импульса, который подается по сигнальному проводу. Это называется широтно-импульсной модуляцией. Сервопривод ожидает импульса каждые 20 мс. Длительность импульса определяет, насколько далеко должен поворачиваться мотор.  Подробнее …

Arduino проект 16:  Графический индикатор. Подключение дисплея Nokia 5110

В этом эксперименте мы рассмотрим графический дисплей Nokia 5110, который можно использовать в проектах Arduino для вывода графической информации. Жидкокристаллический дисплей Nokia 5110 – монохромный дисплей с разрешением 84×48 на контроллере PCD8544, предназначен для вывода графической и текстовой информации. Питание дисплея должно лежать в пределах 2.7–3.3 В (максимум 3.3 В, при подаче 5 В на вывод VCC дисплей может выйти из строя). Но выводы контроллера толерантны к +5 В, поэтому их можно напрямую подключать к входам Arduino. Немаловажный момент – низкое потребление, что позволяет питать дисплей от платы Arduino без внешнего источника питания.  Подробнее …

Arduino проект 15:  Индикатор LCD1602. Принцип подключения, вывод информации на него



В этом эксперименте мы познакомимся с жидкокристаллическими индикаторами Winstar для вывода символьной информации. Научимся в Arduino-проектах применять библиотеки и создадим проект вывода показаний датчика температуры LM335 на экран дисплея. Жидкокристаллические индикаторы (ЖКИ, англ. LCD) являются удобным и недорогим средством для отображения данных ваших проектов. Символьный индикатор Wh2602 позволяет выводить на экран 2 строки по 16 символов (размером 5×7 или 5×10 и дополнительная строка под курсор). Управляет работой дисплея контроллер.  Подробнее …

Arduino проект 14:  Датчик температуры аналоговый LM335. Принцип работы, пример работы

В этом эксперименте мы познакомимся с аналоговым датчиком для измерения температуры LM335.Как пользоваться ардуино: Подключение Arduino и настройка LM335 – это недорогой температурный чувствительный элемент с диапазоном от –40 °C до +100 °C и точностью в 1 °C. По принципу действия датчик LM335 представляет собой стабилитрон, у которого напряжение стабилизации зависит от температуры.  Подробнее …

Arduino проект 13:  Фоторезистор. Обрабатываем освещённость, зажигая или гася светодиоды

В этом эксперименте мы познакомимся с аналоговым датчиком для измерения освещенности – фоторезистором. Распространённое использование фоторезистора – измерение освещённости. В темноте его сопротивление довольно велико. Когда на фоторезистор попадает свет, сопротивление падает пропорционально освещенности.  Подробнее …

Arduino проект 12:  Управляем реле через транзистор

В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока. При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток – поставить транзистор. Для усиления удобнее применять n-p-n-транзистор.  Подробнее …

Arduino проект 11:  Транзистор MOSFET. Показываем усилительные качества транзистора. На примере электродвигателя изменяем обороты

В этом эксперименте мы познакомимся с транзистором MOSFET и с помощью него будем управлять мощной нагрузкой – электродвигателем. Выводы Arduino, сконфигурированные как OUTPUT, находятся в низкоимпедансном состоянии и могут отдавать 40 мА в нагрузку и не в состоянии обеспечить питание мощной нагрузки и большого напряжения. Одним из способов управления мощной нагрузкой является использование полевых MOSFET-транзисторов.  Подробнее …

Arduino проект 10:  Управляем пьезоизлучателем: меняем тон, длительность, играем музыку

В этом эксперименте мы произведем генерацию звуков на Arduino c помощью пьзоизлучателя.Как пользоваться ардуино: Подключение Arduino и настройка Пьезоизлучатели бывают двух типов – со встроенным генератором и без. Пьезоизлучатели со встроенным генератором излучают фиксированный тональный сигнал сразу после подачи на них номинального напряжения. Они не могут воспроизводить произвольного сигнала.  Подробнее …

Arduino проект 9:  Матрица светодиодная 8×8

В этом эксперименте мы рассмотрим каскадное подключение нескольких микросхем 74HC595, что позволит, используя 3 вывода Arduino, управлять множеством контактов, что будет продемонстрировано в примере вывода фигур на экран светодиодной матрицы 8×8. В эксперименте будем использовать двухцветную светодиодную матрицу FYM-23881BUG-11.  Подробнее …

Arduino проект 8:  Микросхема сдвигового регистра 74НС595. Управляем матрицей из 4 разрядов, экономим выходы Arduino



В этом эксперименте мы рассмотрим работу Arduino с микросхемой 74HC595 – расширителем выходов, позволяющей уменьшить количество выводов Arduino для управления 4-разрядной семисегментной матрицей. Цифровых выводов Arduino Nano и UNO, а иногда даже и Arduino Mega может не хватить, если требуется управлять большим количеством выводов. В этом случае можно использовать микросхему 74HC595.  Подробнее …

Arduino проект 7: Матрица 4-разрядная из 7-сегментных индикаторов. Делаем динамическую индикацию

В этом эксперименте мы рассмотрим работу Arduino с 4-разрядной семисегментной матрицей. Получим представление о динамической индикации, позволяющей использовать одни выводы Arduino при выводе информации на несколько семисегментных индикаторов. Предназначена для одновременного вывода на матрицу 4 цифр, также есть возможность вывода десятичной точки.  Подробнее …

Arduino проект 6:  Семисегментный индикатор одноразрядный. Выводим цифры



В этом эксперименте мы рассмотрим работу с семисегментным светодиодным индикатором, которая позволяет Arduino визуализировать цифры.Как пользоваться ардуино: Подключение Arduino и настройка Светодиодный семисегментный индикатор представляет собой группу светодиодов, расположенных в определенном порядке и объединенных конструктивно. Светодиодные контакты промаркированы метками от a до g (и дополнительно dp – для отображения десятичной точки), и один общий вывод, который определяет тип подключения индикатора (схема с общим анодом ОА, или общим катодом ОК).  Подробнее …

Arduino проект 5: RGB-светодиод. Широтно-импульсная модуляция. Переливаемся цветами радуги



В этом эксперименте мы рассмотрим широтно-импульсную модуляцию, которая позволяет Arduino выводить аналоговые данные на цифровые выводы, и применим эти знания для создания прозвольных цветов свечения с помощью RGB-светодиода.  Подробнее …

Arduino проект 4: Светодиодная шкала 10 сегментов. Вращением потенциометра меняем количество светящихся светодиодов



В этом эксперименте мы рассмотрим работу аналоговых входов Arduino, работу потенциометра в качестве аналогового датчика и будем демонстрировать показания аналогового датчика с помощью светодиодной шкалы. ля получения аналоговых данных Arduino имеет аналоговые входы, оснащенные 10-разрядным аналого-цифровым преобразователем для аналоговых преобразований.  Подробнее …

Arduino проект 3: Потенциометр. Показываем закон Ома на примере яркости светодиода

В этом эксперименте мы познакомимся с потенциометром и будем управлять яркостью светодиода и изменением сопротивления потенциометра. Сейчас мы рассмотрим, как подобрать ограничительный резистор и как будет влиять номинал резистора на яркость светодиода.  Подробнее …

Arduino проект 2: Обрабатываем нажатие кнопки на примере зажигания светодиода. Боремся с дребезгом контактов

Это эксперимент по работе с кнопкой. Мы будем включать светодиод по нажатии кнопки и выключать по отпускании кнопки.Как пользоваться ардуино: Подключение Arduino и настройка Рассмотрим понятие дребезга и программные методы его устранения. При использовании Arduino в качестве входов используют pull-up- и pulldown-резисторы, чтобы вход Arduino не находился в «подвешенном» состоянии (в этом состоянии он будет собирать внешние наводки и принимать произвольные значения), а имел заранее известное состояние (0 или 1).  Подробнее …

Arduino проект 1:  Мигаем светодиодом

В этом эксперименте мы научимся управлять светодиодом. Заставим его мигать. Светодиод – это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. По-английски светодиод называется light emitting diode, или LED.  Подробнее …

Как использовать breadboard?||Arduino-diy.com

Breadboard (макетная (монтажная) беспаечная плата) – один из основных инструментов как для познающих основы схемотехники, так и для профессионалов.

В этой статье вы познакомитесь с тем, где и как использовать breadboard и какие они бывают. После ознакомления с приведенными основами, вы сможете собрать свою электросхему с использовнием макетной беспаечной платы.

Исторический экскурс

В начале 1960 создание прототипов микросхем выглядело примерно так:

На платформе устанавливались металлические стойки, на которые наматывались проводники. Процесс прототипирования был достаточно длительным и сложным. Но человечество не стоит на месте и был придуман более элегантный подход: Беспечные монтажные платы — breadboards!

Откуда появилось название — breadboard?

Если знать, что bread переводится как хлеб, а board — доска, то одна из ассоциаций, которая может возникнуть при упоминании слова breadboard — это деревянная подставка, на которой нарезают хлеб (как на рисунке ниже).Как пользоваться ардуино: Подключение Arduino и настройка В принципе, вы недалеки от истины.

Так откуда появилось это название — breadboard? Много лет назад, когда электронные компоненты были большими и неуклюжими, многие «самодельщики» в своих «гаражах» собирали схемы с использованием подставок для нарезки хлеба (пример показан на рисунке ниже).

Постепенно электронные компоненты становились меньше и получилось свести прототипирование к использованию более ли менее стандартных проводников, коннекторов и микросхем. Подход несколько изменился , но название перекочевало.

Зачем использовать breadboard?

Breadboard — это беспаечная монтажная плата. Это отличная платформа для разработки прототипов или временных электросхем, с использованием которой вам не понадобится паяльник и все связанные с этим проблемы и затраты времени на распайку.

Прототипирование (prototyping) — это процесс разработки и тестирования модели вашего будущего устройства. Если вы не знаете как будет себя вести ваше устройство при определенных заданных условиях, лучше сначала создать прототип и проверить его работоспособность.

Беспаечные монтажные платы используют как для создания простеньких электросхем, так и для сложных прототипов.

Еще одна сфера применения breadbord’ов — проверка новых деталей и компонентов — например, микросхем (ICs).

Как уже упоминалось выше, созданная вами электросхема вполне может меняться и в этом основное преимущество использования беспаечных монтажных плат. Например, в любой момент вы можете включить в схему дополнительный светодиод, который будет реагировать на те или иные условия в вашей цепи. На рисунке ниже показан пример электросхемы для проверки работоспособности чипа Atmega, который используется в платах Arduino Uno.

“Анатомия беспаечных монтажных плат”

Лучший способ объяснить как именно работает breadboard — выяснить как плата выглядит изнутри. Рассмотрим на примере миниатюрной платы.

Рельсы для подключения оборудования

На рисунке ниже показан breadboard, на котором снято основание на нижней части.Как пользоваться ардуино: Подключение Arduino и настройка Как вы видите, на плате установлены ряды металлических пластин.

Каждая металлическая пластина имеет вид, приведенный на рисунке ниже. То есть, это не просто пластина, а пластина с клипсами, которые прячутся в пластиковой части монтажной платы. Именно в эти клипсы вы подключаете ваши провода.

То есть, как только вы подключили проводник к одному из отверстий в отдельном ряде, этот контакт будет одновременно подключен и к остальным контактам в отдельном ряде.

Обратите внимание, что на одной рельсе пять клипс. Это общепринятый стандарт. Большинство беспаечных монтажных плат реализуются именно таким образом. То есть, вы можете подключить до пяти компонентов включительно к отдельной рельсе на breadboard’е и они будут связаны между собой. Но ведь на плате десять отверстий в ряде!? Почему мы ограничены пятью контактами? Вы, наверное, обратили внимание, что по центру монтажной платы есть отдельная рельса без пинов? Эта рельса изолирует пластины друг от друга. Зачем это делается, мы разберем немного позже. Сейчас важно запомнить, что рельсы изолированы друг от друга и мы ограничены пятью связанными контактами, а не десятью.

На рисунке ниже показан светодиод, установленный на беспаечную монтажную плату. Обратите внимание, что две ноги светодиода установлены на изолированных параллельных рельсах. В результате не будет замыкания контактов.

Рельсы для источника питания

Давайте теперь рассмотрим breadboard больших размеров. На таких платах, как правило, предусматривают две вертикально расположенные рельсы. Так называемые рельсы для питания.

Эти рельсы аналогичны по исполнению с горизонтальными, но при этом соединены друг с другом по всей длине. При разработке проекта вам часто необходимо питание для многих компонентов. Именно эти рельсы используются для питания. Обычно их отмечают ‘+’ и ‘-‘ и двумя разными цветами — красным и голубым. Как правило, рельсы соединяют между собой, чтобы получить одинаковое питание по обоим сторонам макетки (смотрите на рисунке ниже).Как пользоваться ардуино: Подключение Arduino и настройка Кстати, нет необходимости подключать плюс именно к рельсе с обозначением ‘+’, это исключительно подсказка, которая поможет вам структурировать ваш проект.

Центральная рельса без контактов (для DIP-микросхем)

Центральная рельса без контактов изолирует две стороны беспаечной монтажной платы. Помимо изоляции, эта рельса выполняет вторую важную функцию. Большинство микросхем (ICs), изготавливаются в стандартных размерах. Для того, чтобы они занимали минимум места на монтажной плате, используется специальный форм-фактор под названием Dual in-line Package, или сокращенно — DIP.

У DIP-микросхем контакты расположены по двум сторонам и отлично садятся на две рельсы по центру breadboard’а. Именно в этом случае изоляция контактов — отличный вариант, который позволяет сделать разводку каждого контакта микросхемы на отдельную рельсу с пятью контактами.

На рисунке ниже показана установка двух DIP микросхем. Сверху — LM358, ниже — микроконтроллер ATMega328, который используется во многих платах Arduino.

Строки и столбцы (горизонтальные и вертикальные рельсы)

Наверняка вы обращали внимание, что на беспаечных монтажных платах нанесены числа и буквы возле строк (горизонтальных рельс) и столбцов (вертикальных рельс). Эти обозначения нанесены исключительно для удобства. Прототипы ваших устройств очень быстро обрастают дополнительными компонентами, а одна ошибка в подключении приводит к неработоспособности электрической схемы или даже к выходу из строя отдельных компонентов. Гораздо проще подключить контакт к рельсе, которая отмечена цифрой и буквой, чем отсчитывать контакты «на глаз».

Кроме того, во многих инструкциях номера рельс тоже указываются, что значительно облегчает сборку вашей схемы. Но не забывайте, что даже если вы используете инструкцию, номера контактов на макетке не обязаны совпадать!

Колки на макетках

Некоторые монтажные платы изготавливаются на отдельной подставке, на которой установлены специальные колки.Как пользоваться ардуино: Подключение Arduino и настройка Эти колки используются для подключения источника питания к вашему breadboard ‘у. Более детально подобные макетки рассмотрены ниже.

Другие фичи

Когда вы разрабатываете электрическую схему, не обязательно ограничиваться одним breadboard ‘ом. На многих монтажных платах предусмотрены специальные пазы и выступы по бокам. С помощью этих слотов, вы можете соединить несколько макеток и сформировать необходимое для вас рабочее пространство. На рисунке ниже показаны четыре мини breadboard ‘а, соединенных вместе.

На некоторых монтажных беспаечных платах предусмотрена самоклеющаяся основа на задней части. Очень полезная фича, если вы хотите надежно установить макетку на какой-то поверхности.

На некоторых больших макетках вертикальные рельсы, на которые подается питание, состоят из двух изолированных друг от друга частей. Очень удобно, если в вашем проекте надо два разных источника питания: например, 3.3 В и 5 В. Но надо быть предельно осторожным и перед использованием breadboard ‘а подключить один источник питания и проверить напряжение на двух концах вертикальной рельсы с помощью мультиметра.

Подаем питание на breadboard

Подавать питание на breadboard можно по разному.

Запитатываем от другого источника питания

Если вы работаете с Arduino, вы можете соединить пины 5 В (3.3 В) и Gnd с двумя разными рельсами макетки. На рисунке ниже показано подключение контакта Gnd с Arduino к рельсе мини макетной монтажной платы.

Как правило, Arduino запитывается от USB порта на компьютере или от внешнего источника питания, которые мы можем предать на рельсу макетки.

Монтажные беспаечные платы с колками

Выше уже упоминалось, что на некоторых монтажных платах устанавливают колки для подключения внешнего источника питания.

Для начала работы, необходимо подключить колки к рельсам на breadboard ‘е с помощью проводников. Колки не связаны ни с одной рельсой, что дает вам пространство для маневра: на какую именно рельсу подавать питание и землю.Как пользоваться ардуино: Подключение Arduino и настройка

Для подключения провода к колку, открутите пластиковый колпачок и поместите конец провода в отверстие (смотрите на фото ниже). После этого, закрутите колпачок обратно.

Как правило, вам будут необходимы два колка: для питания и для земли. Третий колок можно использовать, если вам понадобится альтернативный источник питания.

Колки соединены с рельсами, но это не конец. Теперь надо подключить внешний источник питания. Вариантов несколько.

Можно использовать специальные джеки, как это показано на фото ниже.

Можно использовать «крокодилов» и даже обычные проводники. Зависит исключительно от ваших предпочтений и деталей, которые есть у вас в наличии.

Один из достаточно универсальных вариантов — распаять контакты на джеке под ваш источник питания и подключить провода к колкам, как это показано ниже.

Можно использовать и специальные модули-стабилизаторы питания, которые выпускаются под беспаечные монтажные платы. Некоторые модули дают возможность запитывать макетку от USB порта, некоторые изготавливаются со стандартными джеками под блоки питания. На большинстве подобных модулей стабилизаторов питания предусмотрена регулировка напряжения. Например, можно выбрать напряжение, которое пойдет на рельсу: 3.3 В или 5 В. Один из вариантов подобных модулей регуляторов/стабилизаторов напряжения показан на рисунке ниже.

Простая электросхема с использованием беспаечной монтажной платы

Основы работы с беспаечной монтажной платой мы рассмотрели. Давайте рассмотрим пример простой электрической цепи, в которой будем использовать breadboard.

Ниже приведен список узлов, которые понадобятся для нашей цепи. Если у вас нет именно этих деталей, можете заменить их на аналогичные. Не забывайте: одну и ту же электрическую цепь можно собрать, используя разные компоненты.

  • Breadboard
  • Регулятор/стабилизатор напряжения
  • Блок питания
  • Светодиоды
  • Резисторы на 330 Ом 1/6 Вт
  • Коннекторы
  • Тактовые кнопки (квадрат 12 мм)

Собираем электрическую цепь

Фотография собранной электрической цепи с использованием беспаечной монтажной платы приведена ниже.Как пользоваться ардуино: Подключение Arduino и настройка В проекте используются две кнопки, резисторы и светодиоды. Обратите внимание, что две аналогичные цепи собраны по разному.

Красная плата слева — стабилизатор напряжения, который обеспечивает питание 5 В на рельсах макетки.

Схема собирается следующим образом:

  • К позитивной ноге (аноду) светодиода подключается питание 5 В от соответствующей рельсы breadboard ‘а.
  • Отрицательная нога (катод) светодиода, подключена к резистору 330 Ом.
  • Резистор подключен к тактовой кнопке.
  • Когда кнопка нажата, цепь замыкается с землей и светодиод зажигается.

Электрическая схема проекта

При прототипировании важно разбираться в электрических схемах. Давайте кратко рассмотрим электрическую схему нашей небольшой электрической цепи.

Электрическая схема — это схематическое изображение, в котором используются универсальные обозначения для отдельных электрических компонентов и отображается последовательность их подключения. Подобные элекрические схемы можно получить, используя программу Fritzing.

. К слову, рекомендуем уделить этой программе отдельное внимание. Особенно если вы хотите поделиться своими проектами с другими людьми.

Электрическая схема нашего проекта показана на рисунке ниже. Питание 5 В изображено стрелкой в верхней части схемы. 5 В подключается к светодиоду (треугольник и горизонтальная линия со стрелками). После этого светодиод подключается к резистору (R1). После этого установлена кнопка (S1), которая замыкает цепь. И в конце цепи — земля (Gnd — горизонтальная линия снизу).

Наверняка возникает вопрос: а зачем нам электрические схемы, если можно просто создать принципиальную схему подключения с использованием того же Fritzing? Например, как на подобном рисунке:

Как уже упоминалось выше, собрать одну и ту же схему можно по-разному, а вот электрическая принципиальная схема останется одинаковой. То есть, практическая имплементация может отличаться, что дает вам пространство для фантазии и более общее понимание процессов, которые происходят в вашем проекте.Как пользоваться ардуино: Подключение Arduino и настройка

Ардуино что это и зачем? / Arduino / RoboCraft. Роботы? Это просто!

Как мы узнали — это “аппаратная вычислительная платформа”, а по-русски — контроллер.

А что такое контроллер?

Для тех кто немного в курсе: не путать с микроконтроллером — МК это atmega, PIC и прочие “микросхемы” – однокристальные микро-ЭВМ,а контроллер это плата такая, на которую этот самый МК запаян.

Для тех кто совсем не в курсе: контроллер это такое электронное устройство которое что- нибудь контролирует — то есть реагирует на изменения одних параметров изменением других. Ну вот например кондиционер на стене видишь? (я тоже не вижу, но у кого-то он наверняка есть) так вот там тоже стоит умная плата-контроллер включающая/выключающая подогрев/охлаждение/осушение/увлажнение воздуха когда нужно.

Кондиционер, mp3 плеер, велокомпьютер, сигнализация, мобильник, навигатор — всё это (грубо говоря) специализированные контроллеры. А вот комп настольный это контроллер универсальный, да ещё и расширяемый, и с его помощью всё вышеперечисленное можно реализовать. Нужны будут только соответствующие платы расширения и софт.

Ардуино

Так вот ардуино тоже универсальный контроллер, который можно заточить под какую-нибудь задачу и превратить в законченное электронное устройство произвольного назначения, от часов с будильником до робота. Или просто играться — собирая разбирая всякие приблуды=)

Радиоконструктор в общем.

К самой плате можно подключать различную периферию – кнопки, некоторые виды датчиков (температуры, давления, освещённости, ускорения и т.п.), светодиоды, жидкокристаллические индикаторы (цифро-буквенные, а не LCD-монитор конечно =) написать программу и заставить взаимодействовать всё это как угодно. Масса применений кстати.

Системы сбора данных (чёрный ящик для аквариума – пишет температуру раз в 5 минут)

Таймеры-Счётчики событий (сколько раз и во сколько кот подходил к пустой миске)

Сигнализации-Извещатели (кот превысил разрешенное количество подходов к миске, температура в аквариуме ниже 0, кто-то покинул туалет не выключив свет/не смыв/не опустив стульчак =)

В таком духе.Как пользоваться ардуино: Подключение Arduino и настройка Cкучновато конечно. Прям как древний пустой комп — ну клава, ну моник, ну часы, ну пасьянс какой-нибудь… А вот если воткнуть звуковушку, модем, мышь с джойстиком, да тв-тюнер с веб-камерой присобачить… уже больший полёт фантазии можно наблюдать.

Так же подключая к ардуино различные устройства – шилды(shields) добавляем различные функции — так можно управлять всякими двигателями, сервомашинками, сетевой нагрузкой наконец (свет, обогреватель, чайник и т.п.). Можно подключить GPS или GSM модуль и получать координаты со спутника или отправлять данные на свой телефон – координаты своей машины которую кореш взял покататься, или угнали не дай бог, или в командировке узнать что твой любимый кактус никто не поливает. Можно воткнуть Ethernet-модуль и выпустить свой девайс в интернет — пусть шлёт данные на твой сайт, или пусть пишет всё на SD-карту воткнутую в соответствующий шилд. Можно добавить каналы связи – ИК, радиоканал, а то и вообще Bluetooth, со всеми вытекающими.

Ещё примеры что в голову приходит:

Автокормушка для домашних животных
Контроллер аквариума
Дебаггер для машины (все температуры, давления, обороты твоего жигуля на красивом экранчике, расшифровка блинк-кодов)
Системы удалённой телеметрии
Велокомпьютер
Элементы умного дома (управление светом, шторами, вентиляцией, кондиционированием, отоплением, прочими электроприборами)
Элементы хобби-чпу
Простые промышленные контроллеры
Ну и конечно робототехника! (для этого сайта — основное направление развития =)

И всё это в произвольных комбинациях — ограничивает только фантазия и владение железом/софтом.

Почему ардуино? Да, есть ещё немало универсальных контроллеров и плат развития позволяющих осуществлять и более амбициозные проекты. Но! Ардуино имеет ряд преимуществ:
Не нужен программатор
Не нужны особо глубокие познания в программирования микроконтроллеров
Проект ардуино полностью открытый
Платформа набирает популярность — куча сайтов с библиотеками, схемами и проектами
Стандартизация расположения выводов — это делает её привлекательной для производителей – появляются всё новые шилды
Кроссплатформенная среда разработки

Вообще полазив по интернету возникает ощущение что ардуино становится стандартом для целого класса хоум-мейдеров=)

далее: ХоумМейд Arduino — как сделать Arduino своими руками

По теме
Почему Arduino побеждает и почему он здесь, чтобы остаться?
Arduino, термины, начало работы
КМБ для начинающих ардуинщиков
Состав стартера (точка входа для начинающих ардуинщиков)
Возможные ошибки при работе с Arduino

Купить Arduino или CraftDuino — можно в нашем Магазине.Как пользоваться ардуино: Подключение Arduino и настройка

Ваниль, Arduino Uno, программируемы контроллер на базе ATmega328P-PU, +16 цифровых входов-выходов

Описание

Проект Ваниль. Classification level UNO наш клон платформы Arduino Uno,
построен на микроконтроллере ATmega328P-PU в корпусе DIP-28. Расположение выводов по периметру платы и её размеры обеспечивают простоту применения для начинающих электронщиков и программистов.
Оригинальная UNO разработана Итальянской компанией Arduino LLC.
Дополнительно на нашей плате установлена микросхема PCA9555PW, которая формирует дополнительные 16 цифровых входов — выходов. Преобразователь USB / UART собран на чипе CP2102.
Ваниль может получать питание через разъем Mini USB, или от внешних источников: 6-12 В (вывод Vin), или 5 В (вывод 5V).
Напряжение на выводе 3.3 В генерируемое встроенным регулятором на плате.

Технические характеристики:

Микроконтроллер Atmega328
FLASH память 32 Кб
EEPROM память 1 Кб
SRAM память 2 Кб
14 цифровых входов / выходов,
Из них 6 с ШИМ
6 аналоговых входов
16 дополнительных цифровых входов PCA9555PW
Максимальный нагрузочный ток одного вывода – 40 мА
Тактовая частота – 16 МГц
Размеры — 5.3 см x 6.9 см

Попробуйте самостоятельно собрать этот модуль. Перечень компонентов в Документации.
Многое у вас уже есть! А плату можно найти здесь.

Пять дней в одном письме — расскажем, что это было и как это работает. Подписаться на новости из Лаборатории CHIPDIP.

Это открытый проект! Лицензия, под которой он распространяется – Creative Commons — Attribution — Share Alike license.

Технические параметры









Микроконтроллерatmega328
FLASH память, КБ32
EEPROM память, КБ1
SRAM память, КБ2
Цифровые входы/ выходы14(6 с шим)
Аналоговые входы6
USB интерфейсcp2102
Вес, г33

Техническая документация

Дополнительная информация


CP210x USB to UART Bridge VCP Drivers

Видео



8:27



2:11

Proteus.

Как пользоваться ардуино: Подключение Arduino и настройка Как добавить платы Arduino и получить прошивку hex в IDE

Наверное, если вы только начали изучать микроконтроллеры, вам тяжело сделать печатную плату и запрограммировать её usbasp, к примеру. Для этого есть много отладочных плат или ещё проще – Arduino. Но чтобы попробовать, есть совсем простые пути, и они такие же наглядные.

Попробуем некий такой hello_world на микроконтроллере – помигаем светодиодом, не имея в наличии реальной платы. Для этого понадобится Proteus – как мне кажется, лучшая программа для эмуляции электронных процессов. В 8 версии Proteus есть уже встроенные библиотеки arduino, но мне они не очень нравятся в плане удобства работы. Найти их просто, при создании нового проекта, нужно перейти на вкладку “from development board”.

Как я уже и сказал, я использую более удобную и визуально красивую библиотеку, для которой можно создать обычный проект. Это платы от проекта theengineeringprojects. Качаем библиотеки по ссылке

На странице нужно найти жирную кнопку “Download Library for Proteus” и скачать архив. В нём будут два файла –
ArduinoTEP.LIB and ArduinoTEP.IDX. В случае с версией Proteus 8, чтобы установить библиотеки Arduino, необходимо будет пройти в папку программы, а конкретно Proteus 8 Professional\LIBRARY и туда положить эти два файла. Путь самой программы конечно у вас будет отличаться от моего

Теперь запускаем программу, создаём новый проект и открываем библиотеку компонентов. Там в поиске, вводим название библиотеки – arduinotep и выбираем понравившийся чип.

Теперь вернёмся к Arduibo IDE. Откроем самый простой пример мигания светодиода, и сделаем некоторые настройки, чтобы понять, куда программа сохраняет hex файл. Пройдём в настройки

И выберем пункт “Компиляция” в подробно выводе. Кстати ещё тут можно включить другие полезные плюшки – например вывод номера строк или сворачивание отдельных кусков кода.

Я решил, что буду в Proteus использовать NANO, поэтому выбираю её в компиляторе, а в примере мигания диода заменяю вывод диода со встроенного на ножку 12. Жму компиляция, и теперь в окне информации можно увидеть, куда сохранился hex файл.

Теперь мы знаем, где хранится этот файл. Соберём в Proteus схему из наших свежих добавленных плат, и подключим светодиод.

Теперь, если нажать два раза по нашей плате Arduino – можно попасть в меню настроек, где и нужно указать прошивку. Также можно заметить, что частота стоит верная – фьюзы Arduino заточены под 16Мгц внешний кварц.

Как мы увидели выше, путь hex файла находится во временных пользовательских папках. Жмём на кнопку “Program File” – и ищем наш hex. Выбираем, который без bootloader’а.

Ну теперь жмём кнопку play снизу, слева – и видим, что всё работает.

Если вы не устанавливали дополнительные библиотеки, а решили воспользоваться стандартными – рабочее поле с платой будет выглядеть так

Можно нажать на контроллер и увидеть меню настроек. Точно также в поле Program File выбирается прошивка, работает всё аналогично.

Также здесь будет один небольшой нюанс – нужно выставить частоту 16Мгц, потому-что по-умолчанию выставлено 8Мгц от внутренней RC цепочки.

Естественно, можно поставить и голый МК AtMega328, и всё тоже заработает. Только нужно найти какому пину будет соответствовать на голом МК, тот, что вы выбрали в среде Arduino. Для этого смотрим распиновку Arduino Nano. Например 12, который выбрали мы, будет соответствовать 16 пину голого МК (PB4).

На этом же сайте, есть до кучи интересных библиотек от дисплеев до датчиков газа. Если интересно, можно добавить в папку библиотек аналогичным образом.

Пробуйте, тестируйте, пока ваши отладочные платы едут с Китая.

Как пользоваться avrdude, быстрый старт | avr

Наверняка у Вас уже есть макетная плата на микроконтроллере AVR (скорее всего Arduino Uno на микроконтроллере ATmega328P или какая-нибудь аналогичная), и Вы хотите научиться её программировать, т. е. прошивать программу в память кристалла микроконтроллера. Есть множество различных способов, здесь будет рассмотрен вариант использования такого универсального инструмента как avrdude.

Почему следует использовать avrdude? По многим причинам — он бесплатен, работает на любых операционных системах (Linux, Windows, MacOS), поддерживает все популярные протоколы программирования. Т. е. может работать с любым программатором (USBasp, AVR-mkII и т. д. [3]), в том числе и с загрузчиками Arduino и USBasp [4,5].


Avrdude это утилита командной строки, так что для её использования придется изучить её опции, которыми настраивается тип программатора, задается программируемый чип, файл прошивки и фьюзы. Поначалу это может показаться сложным, но если разобраться, то окажется, что командная строка это очень удобно, потому что предоставляет универсальный способ работы со многими средами программирования. Например, можно писать программы для AVR даже в среде Microsoft Visual Studio, запуская процесс компиляции с помощью команд makefile, и прошивать память микроконтроллера настройкой запуска внешней команды прямо из Visial Studio (подробнее см. [6]). Утилиту avrdude использует также среда программирования Arduino для прошивки памяти микроконтроллера платы через загрузчик UART.

[Где взять avrdude]

Ссылки для загрузки AVRDUDE лучше всего найти с помощью Google. Обычно avrdude.exe находится в пакете утилит разработчика WinAVR, также она входит в пакет среды разработки Arduino IDE. Поэтому скачайте и установите либо WinAVR, либо среду разработки Arduino. Как вариант, можете скачать архив [12], там найдете все необходимое для этой статьи, в том числе и утилиту avrdude.

Различные версии avrdude и PDF-документацию можно найти по ссылке http://download.savannah.gnu.org/releases/avrdude/.

Онлайн-документация: http://www.nongnu.org/avrdude/user-manual/avrdude.html.

[Запуск avrdude]

В операционной системе Windows требуется открыть окно интерпретатора команд cmd.exe. Для этого в Start Menu (кнопка ПУСК) выберите команду Run… (Выполнить…), в окне приглашения введите cmd и кликните по кнопке OK.

В операционной системе MacOS X можете использовать программу Terminal для получения доступа к интерфейсу ввода команд. Программа Terminal находится в папке Utilites.

Теперь в окне терминала введите команду avrdude и нажмите Ender, в результате утилита avrdude выдаст подсказку в виде списка основных опций.

[Описание опций AVRDUDE]

Опций довольно много. Не пытайтесь их все запомнить, нужно просто иметь общее представление о том, что эти опции могут делать.

-p partno: эта опция просто говорит утилите, какой микроконтроллер AVR будет программироваться. Например, если Вы собрались программировать ATtiny2313, то в качестве partno введите attiny2313.

-b baudrate: эта опция используется для настройки скорости последовательной передачи данных (через RS-232, UART) для программаторов, работающих по протоколам наподобие STK200 или STK500 STK500. Часто эту опцию использовать необязательно, потому что подходит скорость, настроенная по умолчанию.

-B bitrate: эта опция меняет скорость следования бит, на которой программатор общается с программируемым чипом. Если Ваш микроконтроллер тактируется очень низкой частотой, то потребуется снизить скорость данных программирования. Обычно микроконтроллер работает на высокой частоте (8 МГц и выше, особенно если используется кварцевый резонатор), так что эта опция применяется редко.

-C config-file: это файл конфигурации, который говорит avrdude о различных способах, как ему общаться с программатором. Имеется файл конфигурации по умолчанию, который используется без указания -C опции, так что эта опция обычно не нужна.

Если путь до файла имеет пробелы, то его следует брать в двойные кавычки. Например: -C»C:\Program Files\Arduino1.0.6\hardware\tools\avr\etc\avrdude.conf».

-c programmer: эта опция задает тип программатора (его протокол). Например, если используете STK500, то укажите stk500, если используете программатор DT006, то укажите dt006, и т. д.

-D: опция запрещает очистку памяти чипа перед программированием. Скорее всего, эта опция Вам никогда не потребуется.

-P port: опция задает порт обмена данными между компьютером и программатором. Это может быть COM1, LPT1 или USB.

-F: опция отменяет проверку сигнатуры, которая позволяет убедиться, что программируемый чип именно тот, который нужен. Настоятельно рекомендуется выполнять эту проверку для тестирования соединения, поэтому не используйте эту опцию.

-e: опция очистки памяти чипа. Обычно её использовать не нужно, потому что очистка FLASH выполняется автоматически перед программированием.

-U memtype:r|w|v:filename[:format]: а вот эта команда уже по-настоящему важна. Именно одна задает, какое именно программирование будет произведено. Здесь memtype может быть flash или eeprom для памяти, либо hfuse, lfuse или efuse для конфигурационных фьюзов чипа. Буквы r|w|v обозначают операцию над памятью, т. е. r (read, чтение), w (write, запись) или v (verify, проверка памяти). Часть команды filename задает имя файла, который будет прочитан или записан во время выполнения команды. [:format] задает опцию формата файла. Чаще всего используется формат Intel Hex [7], и файл данных обычно получает расширение *.hex». Если Вы хотите записать, например, файл test.hex в память flash, то должны использовать -U flash:w:test.hex:i. Если хотите прочитать память eeprom в файл «eedump.hex», то должны использовать команду -U eeprom:r:eedump.hex:i.

Если путь до файла имеет пробелы, то его следует брать в двойные кавычки.

-n: это означает, что никаких действий записи производиться не будет. Команда полезна, когда Вы хотите гарантировать, что ни одна из отправляемых команд не повредит содержимое памяти чипа. Это разновидность ‘блокировки безопасности’.

-V: выключает автоматическую проверку содержимого памяти при записи. Не советую использовать эту опцию, потому что проверка дает дополнительную уверенность, что память записана правильно.

-u: запрет режима безопасности. Это установка по умолчанию, когда avrdude запускается из скрипта. Если хотите модифицировать биты фьюзов, то используйте эту опцию, чтобы явно подтвердить свои намерения (подавляет дополнительный запрос подтверждения).

-t: запускает режим терминала, когда Вы вводите команды строка за строкой. Не используйте этот режим, поскольку это добавляет сложности.

-E: выводит некоторые спецификации программатора, не используйте эту опцию.

-v: опция включает подробный вывод сообщений. Это может потребоваться для диагностики, чтобы получить дополнительную информацию. Обычно эта опция не нужна.

-q: действие этой опции дает противоположный эффект по сравнению с опцией -v, т. е. количество выводимой информации уменьшается. Обычно эта опция также не используется.

В этом списке красным цветом выделены те опции, которые скорее всего Вам понадобятся. Давайте рассмотрим подробнее использование этих опций.

[-c programmer]

Чтобы получить список поддерживаемых программаторов (и найти тот, который у Вас), введите команду avrdude -c qwerty (здесь qwerty это произвольный набор символов, который не соответствует ни одному из поддерживаемых программаторов). Как результат выполнения команды будет выведен список поддерживаемых программаторов.


Найдите в этом списке имя, соответствующее Вашему используемому программатору. Это имя следует подставлять в опцию -c programmer.

[-p partno]

Чтобы получить список программируемых микроконтроллеров AVR, введите команду avrdude -c avrisp (при этом не имеет значения, используете ли Вы реально программатор avrisp) без указания имени микроконтроллера. Не следует запоминать этот длинный список, он используется только для того, чтобы узнать нужное имя для программируемого микроконтроллера, которое следует подставлять в командную строку вместе с опцией -p partno.


В этом списке указаны псевдонимы всех чипов микроконтроллеров, о которых знает avrdude. Большинство из них программируются через интерфейс ISP.

Обратите внимание, что названия моделей чипов t2313 и 2313, m8 и m88, c128 и m128 выглядят очень похоже, но на самом деле это абсолютно разные модели микроконтроллеров! Поэтому во избежание ошибки советую Вам вместо псевдонима чипа ввести его полное имя. Т. е. вместо t2313 используйте attiny2313, или вместо m8 используйте atmega8. Avrdude достаточно умен, чтобы распознать правильно тип чипа по его полному имени.

Внимательно проверьте модель программируемого чипа по маркировке на его верхней стороне корпуса. К примеру, там может быть написано ATTINY2313 и ATMEGA8, Суффиксы -20PI и -16PC в маркировке просто указывают скоростные параметры микроконтроллера, и при программировании на эти суффиксы не стоит обращать внимания.


[-P port]

Эта опция говорит avrdude, где искать Ваш подключенный программатор. Если Вы используете устройство, подключенное через USB, то просто примените опцию -P usb или вообще не указывайте её. Утилита avrdude автоматически распознает подключение для программатора, который является устройством USB.

Если Вы используете параллельный (LPTx) или последовательный (COMx) порт для подключения программатора (что сейчас уже почти не актуально, потому что компьютеры с такими портами уже практически не выпускаются), то должны использовать эту опцию, чтобы показать порт, к которому подключен программатор. На операционной системе Windows в 99% случаев это будет lpt1 (для параллельного порта) или com1 (для последовательного порта), но Вы можете всегда проверить это через просмотр раздела «Ports (COM & LPT)», по-русски это раздел «Порты (COM и LPT)» дерева Device Manager (Менеджер Устройств). Откройте управляющую панель System Properties (Свойства Системы), и выберите закладку Hardware (Оборудование):


Кликните на кнопке Device Manager (Менеджер Устройств), и разверните пункт Ports (Порты).

Здесь будут перечислены все имеющиеся на компьютере параллельные и последовательные порты. Может быть несколько последовательных портов, но обычно параллельный порт (так называемый порт принтера) только один.

На компьютерах Mac не бывает традиционных параллельных и последовательных портов. Однако если Вы используете адаптер USB-serial (что делает возможным использовать программаторы STK500 или AVRISP v1 вместе с компьютером Mac), то для avrdude нужно указать последовательный порт. Не пока знаю надежного способа определять порт подключения, однако использую для этого окно терминала, где нужно ввести команду ls -l /dev/cu.* (скорее всего, на Linux подойдет примерно такой же способ, или можно использовать команду dmesg). Ниже приведен скриншот примера вывода этой команды.

/dev/cu.Bluetooth это встроенный порт bluetooth, он не нужен. /dev/cu.modem это модем (если он имеется на Вашем компьютере), его также не нужно использовать. Обратите внимание на порты наподобие /dev/cu.usbserial или /dev/cu.KeySerial1. В моем случае это порт /dev/cu.usbserial-FTCTYG5U.

[-U memtype:r|w|v:filename:format]

Это опция, которая описывает, как реально будут записываться данные в программируемый микроконтроллер. Команда выглядит довольно сложной, но мы рассмотрим её по частям.

memtype может быть либо flash, либо eeprom, либо hfuse (старший байт фьюзов), либо lfuse (младший байт фьюзов) или efuse (расширенный байт фьюзов).

r|w|v может быть либо r (read, чтение), w (write, запись), v (verify, проверка).

filename имя входного (для записи или проверки) или выходного (для чтения) файла.

[:format] не обязательная опция, указывающая формат файла. Можно опустить эту опцию при записи, но для чтения указывайте i, чтобы выходной файл получил формат Intel Hex [7] (это наиболее распространенный формат файла).

Для примера, чтобы записать файл firmware.hex в память программ (flash), используйте команду -U flash:w:firmware.hex, чтобы проверить содержимое памяти eeprom на соответствие файлу mydata.eep, используйте команду -U eeprom:v:mydata.eep, и для чтения младшего байта фьюзов используйте команду -U lfuse:r:lfusefile.hex:i.

[Как программировать]

В примерах ниже я буду использовать программатор mkII-slim [8] (это клон фирменного AVRISP-mkII компании Atmel) и загрузчик USBasp на примере программирования чипов ATmega328P и ATmega32A через интерфейс ISP и через интерфейс USB. Само собой, Вы должны будете ориентироваться на Ваш конкретный программатор, программируемый чип и его фьюзы.

Подготовьте Вашу программируемую плату, удостоверьтесь, что можете подключить к ней питание (для программирования требуется наличие питания на программируемом микроконтроллере). Плата может питаться как от отдельного внешнего источника питания, так и от коннектора программатора, если он это позволяет.

Прошивать я буду тестовый пример, мигающий светодиодом на плате (так называемый Hello World для мира микроконтроллеров). Если кому-то интересно, то код этого примера приведен во врезке, или можете скачать его проект AVR Studio по ссылке [12] (см. папку HelloWorld архива).


Запишите файл прошивки (Hello-World-Arduino-ATmega328.hex, Hello-World-metaboard-ATmega328.hex или Hello-World-ATmega32A.hex, или другой, в зависимости от микроконтроллера, который будете программировать) в заранее известный каталог на диске, например C:\temp. Этот путь до файла будем использовать для команды -U. Готовые прошивки можно взять из папке HEX архива [12].

Все платы Arduino обычно программируются одинаково, через интерфейс USB. При этом используется загрузчик UART (интерфейс USB организован аппаратно, с помощью специального отдельного чипа). В этом примере в плату Arduino Nano будет записана прошивка HEX\Hello-World-Arduino-ATmega328.hex. Загрузчик использует функцию самопрограммирования памяти программ AVR [9]. Обратите внимание, что фьюзы таким способом записать нельзя (самопрограммирование памяти программ микроконтроллера AVR не распространяется на фьюзы).

При компилировании прошивки Hello-World-Arduino-ATmega328.hex было учтено, что светодиод подключен к порту PB5 (цифровой порт D13 Arduino).

#define LED    PB5      //Для плат Arduino Uno и metaboard.

Подключите плату Arduino Nano через USB (при этом на микроконтроллер ATmega328 будет подано питание), и выполните команду:

avrdude -C"C:\Program Files\Arduino1.0.6\hardware\tools\avr\etc\avrdude.conf" -pm328p -carduino
 -PCOM20 -b57600 -Uflash:w:c:\temp\HEX\Hello-World-Arduino-ATmega328.hex:i

Примечание: здесь подразумевается, что виртуальный COM-порт, через который подключена плата Arduino, имеет имя COM20.

При компилировании прошивки Hello-World-ATmega2560.hex было учтено, что светодиод подключен к порту PB7 (цифровой порт D13 Arduino).

#define LED    PB7      //Для платы Arduino MEGA 2560

Подключите плату Arduino MEGA 2560 через USB (при этом на микроконтроллер платы будет подано питание), и выполните команду:

avrdude -C"C:\Program Files\Arduino1.0.6\hardware\tools\avr\etc\avrdude.conf"
 -patmega2560 -cwiring -P\\.\COM155 -b115200 -D -Uflash:w:c:\temp\Hello-World-ATmega2560.hex.hex

Примечание: здесь подразумевается, что виртуальный COM-порт, через который подключена плата Arduino, имеет имя COM155.

В плату metaboard [11] записан загрузчик USBasp, эмулирующий поведение программатора USBasp. Интерфейс USB реализован программно, с помощью библиотеки V-USB. Как и в предыдущем примере с Arduino, фьюзы записать нельзя, мы будем записывать только память программ.

При компилировании прошивки Hello-World-metaboard-ATmega328.hex было учтено, что светодиод подключен к порту PB5.

#define LED    PB5      //Для плат Arduino Uno и metaboard.

Для записи прошивки подключите плату metaboard через USB, удерживая при подключении кнопку S1 Reset, после подключения к USB кнопку отпустите (это активирует работу загрузчика), и выполните команду:

avrdude -patmega328 -cusbasp -Uflash:w:c:\temp\Hello-World-metaboard-ATmega328.hex:i

Чтобы убедиться, что записанная программа работает и светодиод мигает, подключите его через резистор 330..470 ом к порту PB5 (ножка 6 коннектора IP2 платы metaboard), что соответствует цифровому порту D13 Arduino.


На плату AVR-USB-MEGA16 установлен микроконтроллер ATmega32A, и также используется загрузчик USBasp на основе все той же библиотеки V-USB. Поэтому программирование будет осуществляться аналогично. Перед подключением платы AVR-USB-MEGA16 к USB установите перемычку между контактами 4 и 6 коннектора U1 ISP, это активирует работу загрузчика:

И запустите следующую команду:

avrdude -patmega32 -cusbasp -Uflash:w:c:\temp\Hello-World-ATmega32A.hex:i

После программирования будет мигать светодиод D1, подключенный к ножке PB1 микроконтроллера, см. схему платы в статье [10]. При компилировании прошивки Hello-World-ATmega32A.hex было учтено, что светодиод подключен к порту PB0.

#define LED    PB0      //Для платы AVR-USB-MEGA16.

Здесь рассматривается другой способ программирования — через интерфейс ISP, с помощью программатора mkII-slim [8]. Этот способ позволяет программировать также и фьюзы, однако требует наличия программатора.

Подключите сначала программируемую плату к программатору через интерфейс ISP. Перемычка питания на программаторе mkII-slim должна быть установлена в положение «5V». Обратите внимание, что в данном примере питание на программируемую плату подается через программатор, поэтому подключать плату AVR-USB-MEGA16 к USB не обязательно.

Для подключения через ISP понадобится плоский кабель из 6 проводов мама-мама:

1 ————-MISO———— 1
2 ————-VCC————- 2
3 ————-SCK————- 3
4 ————-MOSI———— 4
5 ————-~RST———— 5
6 ————-GND————- 6

После того, как соединили кабелем ISP программируемую плату и программатор, подключите программатор через USB и для программирования памяти программ выполните команду:

avrdude -p atmega32 -P usb -c avrispmkii -e -U flash:w:c:\temp\Hello-World-ATmega32A.hex

Как программировать фьюзы:

avrdude -p atmega32 -P usb -c avrispmkii -U lfuse:w:0xCF:m -U hfuse:w:0x98:m

Программирование платы Arduino Uno, на которой установлен микроконтроллер ATmega168, плата подключена к компьютеру через виртуальный порт COM4:

avrdude -F -v -pm168 -cstk500v1 -P\\.\COM4 -b19200 -D -Uflash:w:"firmware.hex":i

Программирование ATtiny2313 с помощью программатора USBtiny [2]:

type in avrdude -c usbtiny -p attiny2313 -U flash:w:firmware.hex

Программирование через параллельный bitbang-программатор DT006 (такой как MiniPOV2):

avrdude -c dt006 -P lpt1 -p attiny2313 -U flash:w:firmware.hex

Программирование через последовательный bitbang-программатор DASA (такой как MiniPOV3):

avrdude -c dasa -P com1 -p attiny2313 -U flash:w:firmware.hex

Программирование платы разработчика STK500 (она работает как одноименный программатор):

avrdude -c stk500 -P com1 -p attiny2313 -U flash:w:firmware.hex

Программирование через программатор AVRISP v2 USB:

avrdude -c avrispv2 -p attiny2313 -U flash:w:firmware.hex

[Ссылки]

1. Starting out with avrdude site:ladyada.net.
2. USBtiny site:dicks.home.xs4all.nl.
3. Программаторы для AVR.
4. Arduino bootloader.
5. AVR-USB-MEGA16: USB bootloader USBasp для микроконтроллера ATmega32.
6. Использование MS Visual Studio IDE для программирования AVR/Arduino.
7. Intel HEX: описание формата файла.
8. AVR-USB162MU: макетирование и изготовление программатора AVRISP-MKII в домашних условиях.
9. AVR109: самопрограммирование AVR.
10. Макетная плата AVR-USB-MEGA16.
11. Макетная плата metaboard.
12. 170305avrdude.zip.

Arduino Uno для начинающих — проекты, программирование и детали (учебник)

Узнайте об Arduino и Arduino UNO и о том, как вы можете интегрировать эту плату в свое рабочее пространство и программу кодирования. Создавайте интерактивные проекты в Makerpace, одновременно обучаясь программированию и решению проблем.
Все больше и больше рабочих мест по всему миру стремятся добавить программирование и электронику в свои образовательные программы для производителей. Один из лучших способов сделать это — интегрировать плату Arduino в проекты и уроки makerspace.

Мы обнаружили, что многие преподаватели-разработчики не окунулись в кодирование или Arduino, потому что думают, что программирование — это страшно. Из-за этого мы хотели убедиться, что это руководство было написано для абсолютного новичка без какого-либо опыта.

Это руководство представляет собой высокоуровневый обзор всех частей и частей экосистемы Arduino. В следующих статьях мы шаг за шагом познакомим вас с созданием вашего первого простого проекта Arduino.

БЕСПЛАТНАЯ электронная книга (PDF) — полное руководство для начинающих по Arduino

Arduino — это программируемая печатная плата с открытым исходным кодом, которая может быть интегрирована в самые разные производственные проекты, как простые, так и сложные.Эта плата содержит микроконтроллер, который может быть запрограммирован на обнаружение и управление объектами в физическом мире. Реагируя на датчики и входы, Arduino может взаимодействовать с большим количеством выходных сигналов, таких как светодиоды, двигатели и дисплеи. Благодаря своей гибкости и невысокой стоимости, Arduino стал очень популярным выбором для производителей и производителей, желающих создавать интерактивные проекты оборудования.

Arduino был представлен еще в 2005 году в Италии Массимо Банци как способ для людей, не являющихся инженерами, получить доступ к недорогому и простому инструменту для создания проектов оборудования.Поскольку плата имеет открытый исходный код, она выпущена под лицензией Creative Commons, которая позволяет любому создавать свою собственную доску. Если вы поищете в Интернете, вы найдете сотни доступных клонов и вариаций, совместимых с Arduino, но только на официальных платах есть Arduino в названии.

В следующем разделе мы собираемся обсудить несколько доступных плат Arduino и их отличия друг от друга.

Arduino — отличная платформа для прототипирования проектов и изобретений, но может сбивать с толку при выборе правильной платы.Если вы новичок в этом, вы, возможно, всегда думали, что существует только одна плата «Arduino», и все. На самом деле существует множество разновидностей официальных плат Arduino, а есть еще сотни от конкурентов, предлагающих клоны. Но не волнуйтесь, позже в этом руководстве мы покажем вам, с чего начать.

Ниже приведены несколько примеров различных типов плат Arduino. Платы с названием Arduino являются официальными платами, но на рынке также есть много действительно отличных клонов.Одна из лучших причин купить клон — это то, что он, как правило, дешевле, чем его официальный аналог. Например, Adafruit и Sparkfun продают варианты плат Arduino, которые стоят меньше, но при этом имеют то же качество, что и оригиналы. Одно предостережение: будьте осторожны при покупке досок у компаний, которых вы не знаете.

Изображение предоставлено — Sparkfun.com

Еще один фактор, который следует учитывать при выборе доски, — это тип проекта, которым вы собираетесь заниматься. Например, если вы хотите создать носимый электронный проект, вы можете рассмотреть доску LilyPad от Sparkfun.LilyPad разработан так, чтобы его можно было легко вшить в электронный текстиль и носимые предметы. Если ваш проект имеет небольшой форм-фактор, вы можете использовать Arduino Pro Mini, который занимает очень мало места по сравнению с другими платами. Ознакомьтесь с руководством по сравнению Arduino от Sparkfun, чтобы ознакомиться с разбивкой и сравнением лучших плат.

Далее мы сосредоточимся на нашей любимой плате Arduino, с которой мы рекомендуем начинать.

Одна из самых популярных плат Arduino — это Arduino Uno.Хотя на самом деле это была не первая выпущенная плата, она остается наиболее активно используемой и широко документированной на рынке. Из-за своей чрезвычайной популярности Arduino Uno имеет множество руководств по проектам и форумов в Интернете, которые могут помочь вам начать работу или выбраться из затруднительного положения. Мы большие поклонники Uno из-за его прекрасных функций и простоты использования.

Разбивка платы

Вот компоненты, из которых состоит плата Arduino, и их функции.

  1. Кнопка сброса — перезапускает любой код, загруженный на плату Arduino
  2. .

  3. AREF — Стенды для «Analog Reference» и используется для установки внешнего опорного напряжения
  4. Ground Pin — на Arduino есть несколько заземляющих контактов, и все они работают одинаково.
  5. Цифровой ввод / вывод — контакты 0-13 могут использоваться для цифрового ввода или вывода
  6. PWM — контакты, отмеченные символом (~), могут имитировать аналоговый выход
  7. USB-соединение — используется для включения вашего Arduino и загрузки эскизов
  8. TX / RX — Светодиоды индикации передачи и приема данных
  9. Микроконтроллер ATmega — это мозг, и здесь хранятся программы
  10. Светодиодный индикатор питания — этот светодиод загорается каждый раз, когда плата подключена к источнику питания
  11. Регулятор напряжения

  12. — контролирует величину напряжения, поступающего на плату Arduino
  13. .
    Разъем питания постоянного тока

  14. — используется для питания Arduino от источника питания
  15. 3.Вывод 3V — этот вывод обеспечивает питание ваших проектов на 3,3 В
  16. Вывод

  17. 5V — этот вывод обеспечивает питание 5 В для ваших проектов
  18. Штыри заземления

  19. — на Arduino есть несколько контактов заземления, и все они работают одинаково.
  20. Аналоговые выводы — эти выводы могут считывать сигнал с аналогового датчика и преобразовывать его в цифровой.

Arduino Uno нуждается в источнике питания для работы и может получать питание различными способами. Вы можете сделать то же самое, что и большинство людей, и подключить плату напрямую к компьютеру через USB-кабель.Если вы хотите, чтобы ваш проект был мобильным, подумайте об использовании аккумуляторной батареи 9 В, чтобы дать ему заряд энергии. Последний метод — использовать источник питания переменного тока 9 В.

Еще один очень важный момент при работе с Arduino — это беспаечный макет. Это устройство позволяет вам создавать прототипы вашего проекта Arduino без необходимости постоянно спаять схему. Использование макета позволяет создавать временные прототипы и экспериментировать с различными схемами. Внутри отверстий (точек крепления) пластикового корпуса находятся металлические зажимы, которые соединены друг с другом полосками из проводящего материала.

Кстати, макетная плата не питается сама по себе и нуждается в подаче питания от платы Arduino с помощью перемычек. Эти провода также используются для формирования схемы путем соединения резисторов, переключателей и других компонентов.

Вот визуальное изображение того, как выглядит законченная схема Arduino при подключении к макетной плате.

После того, как схема будет создана на макетной плате, вам нужно будет загрузить программу (известную как эскиз) в Arduino.Эскиз — это набор инструкций, которые сообщают плате, какие функции она должна выполнять. Плата Arduino может содержать и выполнять только один эскиз за раз. Программное обеспечение, используемое для создания эскизов Arduino, называется IDE, что означает интегрированная среда разработки. Программное обеспечение можно загрузить бесплатно, его можно найти по адресу https://www.arduino.cc/en/Main/Software

.

Каждый скетч Arduino состоит из двух основных частей программы:

void setup () — Устанавливает действия, которые нужно сделать один раз, а затем больше не повторяться.

void loop () — Содержит инструкции, которые повторяются снова и снова, пока плата не будет выключена.

Следующее 15-секундное видео дает вам быстрое представление о том, как макетная плата, Arduino, перемычки и эскиз работают вместе для выполнения определенной функции. В этом примере мы используем кнопочный переключатель мгновенного действия для мигания светодиода. В одной из следующих статей мы более подробно рассмотрим создание схем и программ для нескольких проектов для начинающих.

БЕСПЛАТНАЯ электронная книга (PDF) — полное руководство для начинающих по Arduino

Вам может быть интересно, что может делать плата Arduino, кроме мигания светодиода.Ниже приведены несколько примеров проектов, которые помогают продемонстрировать, насколько поистине удивительна эта доска и ее возможности. Если вам нужны другие идеи для проектов, посетите такие сайты, как Instructables или Make Magazine, где есть полезные руководства.

Робот слежения за светом Arduino — инструкции

Дрон Arduino, который следует за вами — инструкции

Светодиодный куб с Arduino Uno — Инструкции

Управление дверным замком с помощью Arduino и Bluetooth — журнал MAKE

Далее мы поможем выделить некоторые из наиболее распространенных инструментов, которые вам понадобятся при работе с проектами Arduino.

Если вы хотите добавить в свой Arduino очень специфический функционал, вам понадобится щит. Экраны Arduino подключаются к верхней части платы Arduino и могут добавлять такие возможности, как Wi-Fi, Bluetooth, GPS и многое другое. Есть буквально сотни щитов на выбор, и вот несколько примеров.

GPS Shield подключен к Arduino Uno — Sparkfun.com

Если вы хотите, чтобы ваш Arduino чувствовал окружающий мир, вам нужно добавить датчик. Существует широкий выбор датчиков, каждый из которых имеет определенное назначение.Ниже вы найдете некоторые из наиболее часто используемых в проектах датчиков.

Примеры датчиков Arduino

Ниже приведены некоторые из наших любимых мест, куда мы обычно ходим, когда нам нужны материалы для производственных помещений или электронные компоненты.

Готовы ли вы создать свой первый проект Arduino? В нашем следующем посте под названием «Простые проекты Arduino для начинающих» вы шаг за шагом проведете вас от установки до завершения. Эти простые проекты Arduino — отличный способ познакомиться с платой и языком программирования.

Получать уведомления о будущих публикациях в блоге

С чего начать — Real Python

Микроконтроллеры

существуют уже давно и используются во всем, от сложных машин до обычных бытовых приборов. Однако работа с ними традиционно предназначена для тех, кто имеет формальное техническое образование, например техников и инженеров-электриков. Появление Arduino сделало дизайн электронных приложений намного более доступным для всех разработчиков.В этом руководстве вы узнаете, как использовать Arduino с Python для разработки собственных электронных проектов.

Платформа Arduino

Arduino — это платформа с открытым исходным кодом, состоящая из аппаратного и программного обеспечения, которая позволяет быстро разрабатывать проекты интерактивной электроники. Появление Arduino привлекло внимание профессионалов из самых разных отраслей, что способствовало зарождению Maker Movement.

С ростом популярности Maker Movement и концепции Интернета вещей, Arduino стала одной из основных платформ для электронного прототипирования и разработки MVP.

Arduino использует собственный язык программирования, похожий на C ++. Однако можно использовать Arduino с Python или другим языком программирования высокого уровня. Фактически, такие платформы, как Arduino, хорошо работают с Python, особенно для приложений, требующих интеграции с датчиками и другими физическими устройствами.

В целом, Arduino и Python могут способствовать созданию эффективной среды обучения, которая побуждает разработчиков заниматься проектированием электроники. Если вы уже знаете основы Python, вы сможете начать работу с Arduino, используя Python для управления им.

Платформа Arduino включает как аппаратные, так и программные продукты. В этом руководстве вы будете использовать оборудование Arduino и программное обеспечение Python, чтобы узнать об основных схемах, а также о цифровых и аналоговых входах и выходах.

Аппаратное обеспечение Arduino

Чтобы запустить примеры, вам необходимо собрать схемы, подключив электронные компоненты. Обычно вы можете найти эти предметы в магазинах электронных компонентов или в хороших стартовых наборах Arduino. Вам понадобится:

  1. Arduino Uno или другая совместимая плата
  2. Стандартный светодиод любого цвета
  3. Кнопка A
  4. A Потенциометр 10 кОм
  5. А Резистор 470 Ом
  6. Резистор 10 кОм
  7. Макет
  8. Перемычки разных цветов и размеров

Давайте подробнее рассмотрим некоторые из этих компонентов.

Component 1 — это Arduino Uno или другая совместимая плата. Arduino — это проект, который включает в себя множество плат и модулей для разных целей, и Arduino Uno — самый простой среди них. Это также самая используемая и наиболее документированная плата из всего семейства Arduino, поэтому это отличный выбор для разработчиков, которые только начинают работать с электроникой.

Примечание. Arduino — это открытая аппаратная платформа, поэтому есть много других поставщиков, которые продают совместимые платы, которые можно использовать для запуска примеров, которые вы видите здесь.В этом руководстве вы узнаете, как использовать Arduino Uno.

Компоненты 5 и 6 — резисторы. Большинство резисторов идентифицируются цветными полосами в соответствии с цветовым кодом. Как правило, первые три цвета представляют номинал резистора, а четвертый цвет — его допуск. Для резистора 470 Ом первые три цвета — желтый, фиолетовый и коричневый. Для резистора 10 кОм первые три цвета — коричневый, черный и оранжевый.

Компонент 7 — это макетная плата, которую вы используете для подключения всех других компонентов и сборки схем.Хотя макетная плата не требуется, рекомендуется получить ее, если вы собираетесь начать работать с Arduino.

Программное обеспечение Arduino

В дополнение к этим аппаратным компонентам вам потребуется установить некоторое программное обеспечение. Платформа включает в себя Arduino IDE, интегрированную среду разработки для программирования устройств Arduino, среди других онлайн-инструментов.

Arduino был разработан, чтобы позволить вам легко программировать платы. Обычно вам нужно выполнить следующие действия:

  1. Подключите плату к ПК
  2. Установите и откройте Arduino IDE
  3. Сконфигурируйте настройки платы
  4. Напишите код
  5. Нажмите кнопку на IDE, чтобы загрузить программу на плату

Чтобы установить Arduino IDE на свой компьютер, загрузите соответствующую версию для своей операционной системы с веб-сайта Arduino.Инструкции по установке см. В документации:

  • Если вы используете Windows, используйте установщик Windows, чтобы убедиться, что вы загрузили необходимые драйверы для использования Arduino в Windows. Обратитесь к документации Arduino для получения более подробной информации.
  • Если вы используете Linux, возможно, вам придется добавить своего пользователя в некоторые группы, чтобы использовать последовательный порт для программирования Arduino. Этот процесс описан в руководстве по установке Arduino для Linux.
  • Если вы используете macOS, вы можете установить Arduino IDE, следуя руководству по установке Arduino для OS X.

Примечание. В этом руководстве вы будете использовать IDE Arduino, но Arduino также предоставляет веб-редактор, который позволит вам программировать платы Arduino с помощью браузера.

Теперь, когда вы установили Arduino IDE и собрали все необходимые компоненты, вы готовы приступить к работе с Arduino! Затем вы загрузите «Hello, World!» программу на вашу доску.

«Привет, мир!» С Arduino

IDE Arduino поставляется с несколькими примерами эскизов, которые вы можете использовать для изучения основ Arduino.Эскиз — это термин, который вы используете для обозначения программы, которую вы можете загрузить на доску. Поскольку к Arduino Uno нет подключенного дисплея, вам понадобится способ увидеть физический вывод вашей программы. Вы воспользуетесь примером скетча Blink, чтобы заставить мигать встроенный светодиод на плате Arduino.

Загрузка эскиза примера Blink

Для начала подключите плату Arduino к компьютеру с помощью USB-кабеля и запустите Arduino IDE. Чтобы открыть пример скетча Blink, войдите в меню «Файл» и выберите «Примеры», затем «01».Основы и, наконец, Blink:

Пример кода Blink будет загружен в новое окно IDE. Но прежде чем вы сможете загрузить эскиз на плату, вам необходимо настроить IDE, выбрав плату и подключенный порт.

Чтобы настроить плату, войдите в меню «Инструменты», а затем в «Плата». Для Arduino Uno вы должны выбрать Arduino / Genuino Uno:

После выбора платы необходимо установить соответствующий порт. Снова войдите в меню Инструменты и на этот раз выберите Порт:

.

Имена портов могут отличаться в зависимости от вашей операционной системы.В Windows порты будут называться , COM4, ​​, , COM5, или что-то подобное. В macOS или Linux вы можете увидеть что-то вроде / dev / ttyACM0 или / dev / ttyUSB0 . Если у вас возникли проблемы с настройкой порта, загляните на страницу устранения неполадок Arduino.

После того, как вы настроили плату и порт, все готово для загрузки скетча в Arduino. Для этого вам просто нужно нажать кнопку «Загрузить» на панели инструментов IDE:

Когда вы нажимаете «Загрузить», IDE компилирует скетч и загружает его на вашу доску.Если вы хотите проверить наличие ошибок, вы можете нажать «Подтвердить перед загрузкой», что позволит скомпилировать только ваш скетч.

Кабель USB обеспечивает последовательное соединение для загрузки программы и питания платы Arduino. Во время загрузки на плате будут мигать светодиоды. Через несколько секунд загруженная программа запустится, и вы увидите, что светодиодный индикатор мигает раз в секунду:

После завершения загрузки USB-кабель продолжит питать плату Arduino. Программа хранится во флеш-памяти микроконтроллера Arduino.Вы также можете использовать аккумулятор или другой внешний источник питания для запуска приложения без USB-кабеля.

Подключение внешних компонентов

В предыдущем разделе вы использовали светодиод, который уже был на плате Arduino. Однако в большинстве практических проектов вам потребуется подключить к плате внешние компоненты. Для этих соединений Arduino имеет несколько контактов разных типов:

Хотя эти соединения обычно называют контактами, вы можете видеть, что это не совсем физические контакты.Скорее штыри — это отверстия в розетке, к которым можно подключить перемычки. На рисунке выше вы можете увидеть разные группы контактов:

  • Оранжевый прямоугольник: это 13 цифровых контактов, которые можно использовать как входы или выходы. Они предназначены только для работы с цифровыми сигналами, которые имеют 2 разных уровня:
    1. Уровень 0: представлен напряжением 0 В
    2. Уровень 1: представлен напряжением 5В
  • Зеленый прямоугольник: это 6 аналоговых контактов, которые можно использовать в качестве аналоговых входов.Они предназначены для работы с произвольным напряжением от 0 до 5 В.
  • Синий прямоугольник: это 5 контактов питания. В основном они используются для питания внешних компонентов.

Чтобы начать работу с внешними компонентами, вы подключите внешний светодиод, чтобы запустить пример скетча Blink. Встроенный светодиод подключается к цифровому выводу №13. Итак, давайте подключим к этому контакту внешний светодиод и проверим, мигает ли он. (Стандартный светодиод — это один из компонентов, которые вы видели в списке ранее.)

Перед тем, как что-либо подключать к плате Arduino, рекомендуется отключить ее от компьютера.Отключив USB-кабель, вы сможете подключить светодиод к своей плате:

Обратите внимание, что на рисунке показана плата с цифровыми контактами, обращенными к вам.

Использование макета

Проекты электронных схем обычно включают тестирование нескольких идей, при этом вы добавляете новые компоненты и вносите коррективы по ходу дела. Однако может быть сложно подключить компоненты напрямую, особенно если схема имеет большой размер.

Чтобы облегчить создание прототипа, вы можете использовать макетную плату для соединения компонентов.Это устройство с несколькими отверстиями, которые соединены определенным образом, чтобы вы могли легко соединять компоненты с помощью перемычек:

Вы можете увидеть, какие отверстия связаны между собой, посмотрев на цветные линии. Вы будете использовать отверстия по бокам макета для питания схемы:

  • Подключите одно отверстие на красной линии к источнику питания.
  • Подключите одно отверстие на синей линии к земле.

Затем вы можете легко подключить компоненты к источнику питания или заземлению, просто используя другие отверстия на красной и синей линиях.Отверстия в середине макета соединены, как показано цветами. Вы будете использовать их для соединения компонентов схемы. Эти две внутренние секции разделены небольшим углублением, через которое вы можете подключать интегральные схемы (ИС).

Вы можете использовать макетную плату для сборки схемы, использованной в скетче примера Blink:

Для этой схемы важно отметить, что светодиод должен быть подключен в соответствии с его полярностью, иначе он не будет работать.Положительный вывод светодиода называется анодом и обычно является более длинным. Отрицательный вывод называется катодом и короче. Если вы используете восстановленный компонент, вы также можете идентифицировать клеммы по плоской стороне самого светодиода. Это укажет на положение отрицательной клеммы.

Когда вы подключаете светодиод к выводу Arduino, вам всегда понадобится резистор, чтобы ограничить его ток и избежать преждевременного выгорания светодиода. Здесь для этого используется резистор 470 Ом.Вы можете проследить за подключениями и убедиться, что схема такая же:

  • Резистор подключен к цифровому выводу 13 на плате Arduino.
  • Анод светодиода подключен к другому выводу резистора.
  • Катод светодиода подключен к земле (GND) через синюю линию отверстий.

Более подробное объяснение см. В разделе «Как использовать макетную плату».

После завершения подключения снова подключите Arduino к ПК и повторно запустите скетч Blink:

Поскольку оба светодиода подключены к цифровому выводу 13, они мигают вместе во время выполнения скетча.

«Привет, мир!» С Arduino и Python

В предыдущем разделе вы загрузили скетч Blink на свою плату Arduino. Эскизы Arduino написаны на языке, похожем на C ++, и компилируются и записываются во флеш-память микроконтроллера при нажатии кнопки «Загрузить». Хотя вы можете использовать другой язык для непосредственного программирования микроконтроллера Arduino, это нетривиальная задача!

Однако есть несколько подходов, которые вы можете использовать для использования Arduino с Python или другими языками.Одна из идей — запустить основную программу на ПК и использовать последовательное соединение для связи с Arduino через USB-кабель. Скетч будет отвечать за чтение входных данных, отправку информации на ПК и получение обновлений с ПК для обновления выходов Arduino.

Чтобы управлять Arduino с ПК, вам нужно разработать протокол для связи между ПК и Arduino. Например, вы можете рассмотреть протокол с такими сообщениями, как:

  • ЗНАЧЕНИЕ КОНТАКТА 13 ВЫСОКОЕ: используется для сообщения ПК о состоянии цифровых входных контактов
  • SET PIN 11 LOW: используется для указания Arduino установить состояния выходных контактов

Определив протокол, вы можете написать скетч Arduino для отправки сообщений на ПК и обновления состояний контактов в соответствии с протоколом.На ПК вы можете написать программу для управления Arduino через последовательное соединение на основе разработанного вами протокола. Для этого вы можете использовать любой язык и библиотеки, которые вам нравятся, например Python и библиотеку PySerial.

К счастью, для всего этого существуют стандартные протоколы! Фирма — одна из них. Этот протокол устанавливает формат последовательной связи, который позволяет вам считывать цифровые и аналоговые входы, а также отправлять информацию на цифровые и аналоговые выходы.

IDE Arduino включает готовые эскизы, которые будут управлять Arduino через Python с протоколом Firmata.На стороне ПК есть реализации протокола на нескольких языках, включая Python. Чтобы начать работу с Firmata, давайте воспользуемся ею, чтобы реализовать «Hello, World!» программа.

Загрузка эскиза фирмы

Перед тем, как писать программу Python для управления Arduino, вы должны загрузить скетч Firmata, чтобы вы могли использовать этот протокол для управления платой. Эскиз доступен во встроенных примерах Arduino IDE. Чтобы открыть его, войдите в меню «Файл», затем «Примеры», затем «Фирмы» и, наконец, StandardFirmata:

.

Скетч будет загружен в новое окно IDE.Чтобы загрузить его в Arduino, вы можете выполнить те же действия, что и раньше:

  1. Подключите кабель USB к ПК.
  2. Выберите соответствующую плату и порт в среде IDE.
  3. Нажмите Загрузить.

После завершения загрузки вы не заметите никакой активности на Arduino. Чтобы управлять им, вам все еще нужна программа, которая может связываться с платой через последовательное соединение. Для работы с протоколом Firmata в Python вам понадобится пакет pyFirmata, который можно установить с помощью pip :

После завершения установки вы можете запустить эквивалентное приложение Blink, используя Python и Firmata:

  1импорт pyfirmata
 2импорт время
 3
 4board = pyfirmata.Ардуино ('/ dev / ttyACM0')
 5
 6 пока Верно:
 7 board.digital [13] .write (1)
 8 раз. Сон (1)
 9 board.digital [13] .write (0)
10 раз. Сон (1)
  

Вот как работает эта программа. Вы импортируете pyfirmata и используете его для установления последовательного соединения с платой Arduino, которая представлена ​​объектом board в строке 4. Вы также настраиваете порт в этой строке, передавая аргумент в pyfirmata.Arduino () . Вы можете использовать Arduino IDE, чтобы найти порт.

board.digital — это список, элементы которого представляют собой цифровые выводы Arduino. Эти элементы имеют методы read () и write () , которые будут читать и записывать состояние контактов. Как и большинство программ для встраиваемых устройств, эта программа в основном состоит из бесконечного цикла:

  • В строке 7 включен цифровой вывод 13, который включает светодиод на одну секунду.
  • В строке 9 этот вывод выключен, что выключает светодиод на одну секунду.

Теперь, когда вы знаете основы управления Arduino с помощью Python, давайте рассмотрим некоторые приложения для взаимодействия с его входами и выходами.

Чтение цифровых входов

Цифровые входы могут иметь только два возможных значения. В цепи каждое из этих значений представлено различным напряжением. В таблице ниже показано представление цифрового входа для стандартной платы Arduino Uno:

Значение уровень Напряжение
0 Низкий 0V
1 Высокая

Для управления светодиодом вы будете использовать кнопку для отправки цифровых входных значений в Arduino.Кнопка должна подавать 0 В на плату, когда она отпущена, и 5 В на плату при нажатии. На рисунке ниже показано, как подключить кнопку к плате Arduino:

Вы можете заметить, что светодиод подключен к Arduino на цифровом выводе 13, как и раньше. Цифровой вывод 10 используется как цифровой вход. Чтобы подключить кнопку, вы должны использовать резистор 10 кОм, который действует как понижающий в этой цепи. Понижающий резистор гарантирует, что цифровой вход получит 0 В при отпускании кнопки.

Когда вы отпускаете кнопку, вы размыкаете соединение между двумя проводами на кнопке. Поскольку через резистор не протекает ток, контакт 10 просто подключается к земле (GND). Цифровой вход получает 0 В, что соответствует состоянию 0 (или низкому уровню). Когда вы нажимаете кнопку, вы прикладываете 5 В как к резистору, так и к цифровому входу. Через резистор протекает ток, и на цифровой вход подается 5 В, что соответствует состоянию 1 (или высокому уровню).

Вы также можете использовать макетную плату для сборки вышеуказанной схемы:

Теперь, когда вы собрали схему, вам нужно запустить программу на ПК, чтобы управлять ею с помощью Firmata.Эта программа включает светодиод в зависимости от состояния кнопки:

  1импорт pyfirmata
 2импорт время
 3
 4board = pyfirmata.Arduino ('/ dev / ttyACM0')
 5
 6it = pyfirmata.util.Iterator (доска)
 7it.start ()
 8
 9board.digital [10] .mode = pyfirmata.INPUT
10
11 пока Верно:
12 sw = board.digital [10] .read ()
13, если sw имеет значение True:
14 board.digital [13] .write (1)
Еще 15:
16 board.digital [13] .write (0)
17 раз. Сон (0,1)
  

Давайте пройдемся по этой программе:

  • Строки 1 и 2 импортируют pyfirmata и time .
  • Строка 4 использует pyfirmata.Arduino () для установки соединения с платой Arduino.
  • Строка 6 назначает итератор, который будет использоваться для чтения состояния входов схемы.
  • Строка 7 запускает итератор, который поддерживает выполнение цикла параллельно с вашим основным кодом. Цикл выполняет board.iterate () для обновления входных значений, полученных с платы Arduino.
  • Строка 9 устанавливает вывод 10 как цифровой вход с pyfirmata.INPUT .Это необходимо, поскольку по умолчанию в качестве выходов используются цифровые выводы.
  • Строка 11 запускает бесконечный цикл и . Этот цикл считывает состояние входного контакта, сохраняет его в sw и использует это значение для включения или выключения светодиода путем изменения значения контакта 13.
  • Строка 17 ждет 0,1 секунды между итерациями цикла и . В этом нет строгой необходимости, но это хороший прием, позволяющий избежать перегрузки процессора, который достигает 100% нагрузки, когда в цикле нет команды ожидания.

pyfirmata также предлагает более компактный синтаксис для работы с входными и выходными контактами. Это может быть хорошим вариантом, когда вы работаете с несколькими выводами. Вы можете переписать предыдущую программу, чтобы иметь более компактный синтаксис:

  1импорт pyfirmata
 2импорт время
 3
 4board = pyfirmata.Arduino ('/ dev / ttyACM0')
 5
 6it = pyfirmata.util.Iterator (доска)
 7it.start ()
 8
 9digital_input = board.get_pin ('d: 10: i')
10led = доска.get_pin ('d: 13: o')
11
12 пока Верно:
13 sw = цифровой_вход.читать()
14, если sw имеет значение True:
15 светодиодов. Запись (1)
Еще 16:
17 светодиодов. Запись (0)
18 раз. Сон (0,1)
  

В этой версии вы используете board.get_pin () для создания двух объектов. digital_input представляет состояние цифрового входа, а светодиод представляет состояние светодиода. При запуске этого метода необходимо передать строковый аргумент, состоящий из трех элементов, разделенных двоеточиями:

  1. Тип вывода ( a для аналогового или d для цифрового)
  2. Номер шпильки
  3. Режим вывода ( i для входа или o для выхода)

Поскольку digital_input является цифровым входом, использующим контакт 10, вы передаете аргумент 'd: 10: i' .Состояние светодиода устанавливается на цифровой выход с помощью контакта 13, поэтому аргумент led равен 'd: 13: o' .

Когда вы используете board.get_pin () , нет необходимости явно настраивать контакт 10 в качестве входа, как вы делали раньше с pyfirmata.INPUT . После установки контактов вы можете получить доступ к состоянию цифрового входного контакта с помощью read () и установить состояние цифрового выходного контакта с помощью write () .

Цифровые входы широко используются в проектах электроники.Некоторые датчики выдают цифровые сигналы, такие как датчики присутствия или двери, которые можно использовать в качестве входных сигналов для ваших цепей. Однако в некоторых случаях вам необходимо измерить аналоговые значения, такие как расстояние или физические величины. В следующем разделе вы увидите, как читать аналоговые входы с помощью Arduino и Python.

Чтение аналоговых входов

В отличие от цифровых входов, которые могут быть только включены или выключены, аналоговые входы используются для считывания значений в некотором диапазоне. На Arduino Uno напряжение на аналоговом входе находится в диапазоне от 0 В до 5 В.Соответствующие датчики используются для измерения физических величин, например расстояний. Эти датчики отвечают за кодирование этих физических величин в правильном диапазоне напряжений, чтобы они могли считываться Arduino.

Для считывания аналогового напряжения Arduino использует аналого-цифровой преобразователь (АЦП), который преобразует входное напряжение в цифровое число с фиксированным количеством битов. Это определяет разрешение преобразования. Arduino Uno использует 10-битный АЦП и может определять 1024 различных уровня напряжения.

Диапазон напряжения для аналогового входа кодируется числами от 0 до 1023. Когда подается 0 В, Arduino кодирует его до числа 0. При приложении 5 В кодируется число 1023. Все промежуточные значения напряжения кодируются пропорционально. .

Потенциометр — это переменный резистор, который можно использовать для установки напряжения, подаваемого на аналоговый вход Arduino. Вы подключите его к аналоговому входу, чтобы контролировать частоту мигания светодиода:

В этой схеме светодиод настроен так же, как и раньше.Концевые клеммы потенциометра подключены к заземлению (GND) и контактам 5 В. Таким образом, центральный вывод (курсор) может иметь любое напряжение в диапазоне от 0 В до 5 В в зависимости от его положения, которое подключено к Arduino на аналоговом выводе A0.

Используя макетную плату, можно собрать эту схему следующим образом:

Перед тем, как управлять светодиодом, вы можете использовать схему для проверки различных значений, считываемых Arduino, в зависимости от положения потенциометра. Для этого запустите на своем ПК следующую программу:

  1импорт pyfirmata
 2импорт время
 3
 4board = pyfirmata.Ардуино ('/ dev / ttyACM0')
 5it = pyfirmata.util.Iterator (доска)
 6it.start ()
 7
 8analog_input = board.get_pin ('a: 0: i')
 9
10 пока правда:
11 аналоговое_значение = аналоговый_ввод.read ()
12 печать (аналоговое_значение)
13 time.sleep (0,1)
  

В строке 8 вы устанавливаете analog_input как аналоговый входной вывод A0 с аргументом 'a: 0: i' . Внутри бесконечного цикла while вы читаете это значение, сохраняете его в analog_value и выводите вывод на консоль с помощью print () .Когда вы перемещаете потенциометр во время работы программы, вы должны вывести примерно следующее:

  0,0
0,0293
0,1056
0,1838
0,2717
0,3705
0,4428
0,5064
0,5797
0,6315
0,6764
0,7243
0,7859
0,8446
0,9042
0,9677
1.0
1.0
  

Напечатанные значения изменяются от 0, когда потенциометр находится на одном конце, до 1, когда он находится на другом конце. Обратите внимание, что это значения с плавающей запятой, которые могут потребовать преобразования в зависимости от приложения.

Чтобы изменить частоту мигания светодиода, вы можете использовать analog_value , чтобы контролировать, как долго светодиод будет оставаться включенным или выключенным:

  1импорт pyfirmata
 2импорт время
 3
 4board = pyfirmata.Ардуино ('/ dev / ttyACM0')
 5it = pyfirmata.util.Iterator (доска)
 6it.start ()
 7
 8analog_input = board.get_pin ('a: 0: i')
 9led = доска.get_pin ('d: 13: o')
10
11 пока Верно:
12 аналоговое_значение = аналоговый_ввод.read ()
13, если analog_value не None:
14 задержка = аналоговое_значение + 0,01
15 светодиодов. Запись (1)
16 time.sleep (задержка)
17 светодиодов. Запись (0)
18 time.sleep (задержка)
19 еще:
20 раз. Сон (0,1)
  

Здесь вы вычисляете задержку как analog_value + 0.01 , чтобы избежать нулевой задержки . В противном случае обычно получается analog_value из None во время первых нескольких итераций. Чтобы избежать ошибки при запуске программы, вы используете условие в строке 13, чтобы проверить, равно ли analog_value None . Затем вы контролируете период мигания светодиода.

Попробуйте запустить программу и изменить положение потенциометра. Вы заметите, что частота мигания светодиода меняется:

К настоящему времени вы узнали, как использовать цифровые входы, цифровые выходы и аналоговые входы в ваших схемах.В следующем разделе вы увидите, как использовать аналоговые выходы.

Использование аналоговых выходов

В некоторых случаях необходим аналоговый выход для управления устройством, которому требуется аналоговый сигнал. Arduino не имеет реального аналогового выхода, на котором напряжение могло бы быть установлено на любое значение в определенном диапазоне. Однако в Arduino есть несколько выходов с широтно-импульсной модуляцией (PWM).

PWM — это метод модуляции, в котором цифровой выход используется для генерации сигнала с переменной мощностью.Для этого он использует цифровой сигнал постоянной частоты, в котором рабочий цикл изменяется в соответствии с желаемой мощностью. Рабочий цикл представляет собой часть периода, в течение которого сигнал устанавливается на высокий уровень.

Не все цифровые выводы Arduino можно использовать в качестве выходов ШИМ. Те, которые можно идентифицировать, обозначены тильдой ( ~ ):

Несколько устройств, в том числе некоторые двигатели, предназначены для управления сигналами ШИМ. Можно даже получить реальный аналоговый сигнал из сигнала ШИМ, если вы используете аналоговые фильтры.В предыдущем примере вы использовали цифровой выход для включения или выключения светодиода. В этом разделе вы будете использовать ШИМ для управления яркостью светодиода в соответствии со значением аналогового входа, заданным потенциометром.

Когда на светодиод подается сигнал ШИМ, его яркость изменяется в соответствии с рабочим циклом сигнала ШИМ. Вы собираетесь использовать следующую схему:

Эта схема идентична схеме, использованной в предыдущем разделе для проверки аналогового входа, за исключением одного отличия.Поскольку невозможно использовать ШИМ с контактом 13, цифровой выходной контакт, используемый для светодиода, — это контакт 11.

Вы можете использовать макетную плату для сборки схемы следующим образом:

Собрав схему, вы можете управлять светодиодом с помощью ШИМ с помощью следующей программы:

  1импорт pyfirmata
 2импорт время
 3
 4board = pyfirmata.Arduino ('/ dev / ttyACM0')
 5
 6it = pyfirmata.util.Iterator (доска)
 7it.start ()
 8
 9analog_input = board.get_pin ('a: 0: i')
10led = доска.get_pin ('d: 11: p')
11
12 пока Верно:
13 аналоговое_значение = аналоговый_вход.читать()
14, если analog_value не None:
15 led.write (аналоговое_значение)
16 раз. Сон (0,1)
  

Есть несколько отличий от программ, которые вы использовали ранее:

  1. В строке 10 вы устанавливаете led в режим ШИМ, передавая аргумент 'd: 11: p' .
  2. В строке 15 вы вызываете led.write () с analog_value в качестве аргумента. Это значение от 0 до 1, считываемое с аналогового входа.

Здесь вы можете увидеть поведение светодиода при перемещении потенциометра:

Чтобы показать изменения в рабочем цикле, осциллограф подключается к контакту 11.Когда потенциометр находится в нулевом положении, вы можете видеть, что светодиод не горит, поскольку на выводе 11 находится 0 В. Когда вы поворачиваете потенциометр, светодиод становится ярче по мере увеличения рабочего цикла ШИМ. Когда вы поворачиваете потенциометр до упора, рабочий цикл достигает 100%. Светодиод горит постоянно с максимальной яркостью.

В этом примере вы рассмотрели основы использования Arduino и его цифровых и аналоговых входов и выходов. В следующем разделе вы увидите приложение для использования Arduino с Python для управления событиями на ПК.

Использование датчика для запуска уведомления

Firmata — хороший способ начать работу с Arduino с Python, но необходимость в ПК или другом устройстве для запуска приложения может быть дорогостоящим, и в некоторых случаях такой подход может оказаться непрактичным. Однако, когда необходимо собрать данные и отправить их на ПК с помощью внешних датчиков, Arduino и Firmata станут хорошей комбинацией.

В этом разделе вы будете использовать кнопку, подключенную к вашему Arduino, чтобы имитировать цифровой датчик и запускать уведомление на вашем компьютере.Для более практического применения вы можете думать о кнопке как о датчике двери, который, например, запускает уведомление о тревоге.

Чтобы отобразить уведомление на ПК, вы собираетесь использовать Tkinter, стандартный набор инструментов Python GUI. При нажатии кнопки появится окно сообщения. Чтобы получить более подробное представление о Tkinter, ознакомьтесь с Python GUI Programming With Tkinter.

Вам нужно будет собрать ту же схему, что и в примере цифрового входа:

После сборки схемы используйте следующую программу для запуска уведомлений:

  1импорт pyfirmata
 2импорт время
 3импорт tkinter
 4 из окна сообщений импорта tkinter
 5
 6root = tkinter.Тк ()
 7root.withdraw ()
 8
 9board = pyfirmata.Arduino ('/ dev / ttyACM0')
10
11it = pyfirmata.util.Iterator (доска)
12it.start ()
13
14digital_input = board.get_pin ('d: 10: i')
15led = доска.get_pin ('d: 13: o')
16
17 пока Верно:
18 sw = digital_input.read ()
19, если sw имеет значение True:
20 светодиодов. Запись (1)
21 messagebox.showinfo («Уведомление», «Была нажата кнопка»)
22 root.update ()
23 светодиода. Запись (0)
24 time.sleep (0,1)
  

Эта программа аналогична программе, использованной в примере цифрового входа, с некоторыми изменениями:

  • Строки 3 и 4 импортируют библиотеки, необходимые для настройки Tkinter.
  • Строка 6 создает главное окно Tkinter.
  • Строка 7 указывает Tkinter не показывать главное окно на экране. В этом примере вам нужно только увидеть окно сообщения.
  • Строка 17 запускает , а цикл :
    1. Когда вы нажимаете кнопку, загорается светодиод, и messagebox.showinfo () отображает окно сообщения.
    2. Цикл приостанавливается, пока пользователь не нажмет OK. Таким образом, светодиод будет гореть, пока сообщение находится на экране.
    3. После того, как пользователь нажмет ОК, root.update () очищает окно сообщения с экрана, и индикатор гаснет.

Чтобы расширить пример уведомления, вы даже можете использовать кнопку для отправки электронного письма при нажатии:

  1импорт pyfirmata
 2импорт время
 3импорт smtplib
 4импорт SSL
 5
 6def send_email ():
 7 порт = 465 # для SSL
 8 smtp_server = "smtp.gmail.com"
 9 sender_email = "<ваш адрес электронной почты>"
10 Receiver_email = "<адрес электронной почты получателя>"
11 пароль = "<пароль>"
12 message = "" "Тема: Уведомление Arduino \ n Переключатель был включен."" "
13
14 контекст = ssl.create_default_context ()
15 с smtplib.SMTP_SSL (smtp_server, port, context = context) в качестве сервера:
16 print («Отправка электронного письма»)
17 server.login (sender_email, пароль)
18 server.sendmail (sender_email, получатель_email, сообщение)
19
20board = pyfirmata.Arduino ('/ dev / ttyACM0')
21 год
22it = pyfirmata.util.Iterator (доска)
23it.start ()
24
25digital_input = доска.get_pin ('d: 10: i')
26 год
27 пока Верно:
28 sw = digital_input.read ()
29, если sw имеет значение True:
30 send_email ()
31 раз.сон (0,1)
  

Вы можете узнать больше о send_email () в разделе «Отправка писем с помощью Python». Здесь вы настраиваете функцию с учетными данными почтового сервера, которые будут использоваться для отправки электронного письма.

Примечание. Если вы используете учетную запись Gmail для отправки электронных писем, вам необходимо включить параметр «Разрешить менее безопасные приложения». Для получения дополнительной информации о том, как это сделать, ознакомьтесь с отправкой писем с помощью Python.

В этих примерах приложений вы увидели, как использовать Firmata для взаимодействия с более сложными приложениями Python.Firmata позволяет использовать любой датчик, подключенный к Arduino, для получения данных для вашего приложения. Затем вы можете обрабатывать данные и принимать решения в основном приложении. Вы даже можете использовать Firmata для отправки данных на выходы Arduino, управляющие переключатели или устройства PWM.

Если вы заинтересованы в использовании Firmata для взаимодействия с более сложными приложениями, попробуйте некоторые из этих проектов:

  • Датчик температуры, предупреждающий вас, когда температура становится слишком высокой или низкой
  • Аналоговый датчик освещенности, который распознает перегорание лампочки
  • Датчик воды, который может автоматически включать дождеватели, когда земля слишком сухая

Заключение

Платформы микроконтроллеров

находятся на подъеме благодаря растущей популярности Maker Movement и Интернета вещей.Платформы, такие как Arduino, особенно привлекают много внимания, поскольку они позволяют разработчикам, таким же, как вы, использовать свои навыки и погружаться в электронные проекты.

Вы научились:

  • Разработка приложений с Arduino и Python
  • Используйте протокол Firmata
  • Управление аналоговыми и цифровыми входами и выходами
  • Интеграция датчиков с приложениями Python более высокого уровня

Вы также видели, что Firmata может быть очень интересной альтернативой для проектов, требующих ПК и зависящих от данных датчиков.Кроме того, это простой способ начать работу с Arduino, если вы уже знаете Python!

Дополнительная литература

Теперь, когда вы знаете основы управления Arduino с помощью Python, вы можете приступить к работе над более сложными приложениями. Есть несколько руководств, которые помогут вам разрабатывать интегрированные проекты. Вот несколько идей:

  • REST API: они широко используются для интеграции различных приложений. Вы можете использовать REST с Arduino для создания API-интерфейсов, которые получают информацию от датчиков и отправляют команды исполнительным механизмам.Чтобы узнать о REST API, ознакомьтесь с Python REST API с Flask, Connexion и SQLAlchemy.

  • Альтернативный графический интерфейс: в этом руководстве вы использовали Tkinter для создания графического приложения. Однако есть и другие графические библиотеки для настольных приложений. Чтобы увидеть альтернативу, ознакомьтесь с разделом «Как создать приложение с графическим интерфейсом пользователя Python с помощью wxPython».

  • Threading: бесконечный цикл и , который вы использовали в этом руководстве, является очень распространенной особенностью приложений Arduino.Однако использование потока для запуска основного цикла позволит вам одновременно выполнять другие задачи. Чтобы узнать, как использовать потоки, ознакомьтесь с «Введение в потоки в Python».

  • Распознавание лиц: в приложениях Интернета вещей обычно интегрируются алгоритмы машинного обучения и компьютерного зрения. С их помощью вы можете создать сигнал тревоги, который запускает уведомление, например, при обнаружении лиц на камере. Чтобы узнать больше о системах распознавания лиц, ознакомьтесь с традиционным распознаванием лиц с помощью Python.

Наконец, есть и другие способы использования Python в микроконтроллерах, помимо Firmata и Arduino:

  • pySerial: Arduino Uno не может запускать Python напрямую, но вы можете создать свой собственный эскиз Arduino и использовать pySerial для установления последовательного соединения. Затем вы можете управлять Arduino с помощью Python, используя свой собственный протокол.

  • MicroPython: если вы заинтересованы в запуске Python непосредственно на микроконтроллере, ознакомьтесь с проектом MicroPython.Он обеспечивает эффективную реализацию Python на некоторых микроконтроллерах, таких как ESP8266 и ESP32.

  • SBC: Другой вариант — использовать одноплатный компьютер (SBC), такой как Raspberry Pi, для запуска Python. SBC — это полноценные компьютеры размером с Arduino, которые могут работать под управлением операционной системы на базе Linux, что позволяет использовать ванильный Python. Поскольку большинство SBC имеют универсальные входные и выходные контакты, вы можете использовать их для замены Arduino в большинстве приложений.

Что такое Ардуино? | Академия Электроники Программирования

Вы думаете об использовании Arduino в своем проекте, но не уверены, подходит ли он вам? Вы когда-нибудь задумывались, почему Arduino так популярен? Вы просто задаетесь вопросом: «Что такое Ардуино !?»

Слышали ли вы в последнее время об этой штуке под названием Arduino? Может быть, вы видели какие-то проекты, в которых используется Arduino?

Что это вообще за штука Arduino? Похоже на дополнительный бутерброд.

В этом видео мы будем простым языком рассказать вам, что такое Arduino.

Вы узнаете

  • Что такое Arduino
  • Почему это так популярно
  • Если Arduino подходит для вашего проекта

Что это именно

Лучший способ объяснить, что такое Arduino, — это начать с того, для чего вы можете его использовать.

Проще говоря, Arduino — это инструмент для управления электроникой. Подумайте о карандаше.Карандаш — это инструмент, который поможет вам писать.

Вам нужно что-то записать, чтобы вы могли взять карандаш. Та же идея с Arduino. Но Arduino — это инструмент для управления электроникой.

Если вам нужно управлять какой-то электроникой, возьмите Arduino. Но что мы подразумеваем под электроникой?

Что ж, давайте определим две общие группы «электроники». У нас есть входы, и это будут электронные устройства, собирающие информацию.

У нас также есть выходы, это электронные устройства, которые что-то делают.

Что касается входов, вы можете думать обо всех типах датчиков: датчики температуры, датчики света, сенсорные датчики, гибкие датчики, датчики влажности, инфракрасные датчики, датчики расстояния и многие другие.

Вы можете рассматривать эти датчики как устройства ввода, и эти типы датчиков могут считываться платой Arduino.

Теперь на выходе будут такие вещи, как двигатели постоянного тока, шаговые двигатели, серводвигатели, соленоиды, ЖК-дисплеи, светодиодные индикаторы, динамики и электрические устройства, которые имеют какое-то действие в мире.

Итак, Arduino можно использовать для чтения входов и управляющих выходов. Это вроде того, что может делать Arduino, но как работает Arduino?

Итак, когда мы говорим об Arduino, мы на самом деле говорим о трех вещах: Arduino Hardware, Arduino IDE и Arduino Code.

Оборудование Arduino

Во-первых, у нас есть физический компонент Arduino — платы Arduino. Существует множество различных типов плат Arduino. Когда кто-то говорит о плате Arduino, это может означать несколько разных плат.

Очень популярная плата Arduino называется Arduino UNO.

Все платы Arduino имеют одну общую черту: все они имеют микроконтроллер. Микроконтроллер — это, по сути, очень маленький компьютер.

Итак, когда вы учитесь использовать Arduino, вы учитесь использовать микроконтроллер. Микроконтроллер — это то, что позволяет нам считывать эти разные входы и управлять этими разными выходами.

Когда кто-то говорит о плате Arduino, они говорят о чем-то физическом. Это печатная плата, на которой есть электрические компоненты.

Программное обеспечение Arduino

Arduino — это больше, чем просто аппаратное обеспечение, это еще и программное обеспечение.

Есть такая штука, которая называется Arduino IDE (интегрированная среда разработки). Это программное приложение, которое вы загружаете на свой компьютер, а затем используете его для программирования плат Arduino.

Это полностью бесплатное программное обеспечение, и им довольно легко пользоваться. Он очень похож на текстовый редактор. Arduino IDE — это то место, где вы пишете свой код, который фактически загружается на саму плату Arduino.

Код Ардуино

Третья часть этой тройки Arduino — это код Arduino. Код, который вы пишете внутри Arduino IDE, в конечном итоге загружается в микроконтроллер, который находится на этих платах Arduino.

Код Arduino, который вы пишете, называется скетчем. Сам код Arduino в основном является производным от языков программирования C и C ++, но с некоторыми функциями и структурой, специфичными для Arduino.

Итак, если вы программируете Arduino, вы в основном программируете на языках программирования C и C ++.

Итак, это три компонента, из которых в основном состоит «Arduino» и примерно то, что она делает.

Почему Arduino так популярна?

Напомним, что мы сказали, что ключевым компонентом платы Arduino является микроконтроллер. Традиционно микроконтроллеры довольно сложны в использовании. Руководство пользователя для одного из них занимает более 300 страниц и наполнено тоннами технического жаргона.

Создатели Arduino максимально упростили использование микроконтроллеров.Таким образом, вместо того, чтобы использовать микроконтроллеры только инженеры-электрики и компьютерщики, теперь практически любой может запачкать их руками и начать создавать что-то.

Так как же они упростили использование микроконтроллеров?

Давайте вернемся к этой тройке Arduino.

Во-первых, сама плата Arduino предназначена для простоты использования. Вы можете подключить его к компьютеру с помощью простого USB-кабеля, а не специального кабеля, который обычно используется для подключения микроконтроллера.

Подключение электрических компонентов к микроконтроллеру также очень просто с помощью платы Arduino. Потому что у них есть пластиковые отверстия по периметру доски.

Они называются заголовками, и чтобы подключить электрический компонент к микроконтроллеру, вы просто вставляете компонент в отверстия, это буквально так просто.

И наша Arduino также имеет встроенный разъем для внешнего питания, поэтому, когда он не подключен к компьютеру, он все еще может питаться от аккумуляторной батареи. Вот почему аппаратная часть проста, но Arduino IDE также предназначена для простота использования.Существует множество интегрированных сред разработки, но IDE Arduino построена с учетом простоты.

На вашем пути нет наворотов, это просто базовое окно, в котором вы набираете код. А чтобы загрузить код, который вы написали в среде Arduino IDE, вы просто нажимаете кнопку, и он загружается.

Наконец, сам код Arduino имеет функции, специально предназначенные для таких вещей, как чтение входных данных и управление выходами. Если бы вам пришлось напрямую программировать микроконтроллер, вы бы постоянно обращались к руководству пользователя, чтобы получить очень конкретную информацию об управлении разными вещами.

Язык Arduino значительно упростил эту сложность, создав для вас простые функции программирования.

Кроме того, существует множество библиотек кода Arduino, которые вы можете установить и использовать, и эти библиотеки упрощают использование всех различных типов компонентов от взаимодействия с различными датчиками до управления множеством различных выходных сигналов.

Итак, оборудование Arduino простое, IDE Arduino проста, а сам код гораздо легче понять (чем пытаться запрограммировать стандартный микроконтроллер).Это большая часть того, почему Arduino так популярен.

Еще одна причина, по которой Arduino так популярна, заключается в том, что ее используют много людей, а это значит, что существует множество примеров для работы.

Кроме того, сама плата Arduino представляет собой оборудование с открытым исходным кодом. Это означает, что, хотя есть компания под названием Arduino, которая производит платы Arduino и поддерживает Arduino IDE, есть также множество других компаний, которые производят платы, совместимые с Arduino, которые также могут быть запрограммированы в Arduino IDE.

Существует огромная экосистема оборудования и кода, с которой вы можете работать.

Наконец, оборудование Arduino, как правило, довольно недорогое, и это также помогает поддерживать его популярность.

Подходит ли Arduino для вашего проекта?

Итак, вот хорошее эмпирическое правило: есть ли в вашем проекте вход и выход, и требуется ли вам какая-то простая логика между ними?

Например, возможно, у вас есть датчик температуры (вход), и если показание датчика температуры превышает определенный порог (логика), вы хотите включить охлаждающий вентилятор (выход).

У вас также может быть несколько входов и выходов. Например, у нас может быть что-то вроде «если температура находится в этом диапазоне, а время такое, а солнце не светит, тогда вы хотите включить выключатель света на радио и переместить этот рычаг обратно в положение. исходное положение ».

Итак, если ваш проект следует этой основной идее, что у вас есть входы и выходы, и вам нужно ими управлять, тогда да, Arduino, вероятно, подойдет.

Мы уже упоминали, что Arduino использует микроконтроллер.Микроконтроллер похож на маленький компьютер. Поэтому, если ваш проект предполагает использование огромных входных потоков, таких как запись видео или большие вычисления, то Arduino, вероятно, не подходит для него.

Можете ли вы потенциально использовать Arduino для таких приложений? Может быть, но есть технологии лучше для подобных вещей.

Мы действительно надеемся, что ваши колеса сейчас крутятся, и вы в восторге от того, что вы можете делать с Arduino.

Если да, то вам обязательно захочется посмотреть это следующее видео, в котором мы рассказываем об 11 потрясающих проектах Arduino.Это даст вам отличное представление о том, на что способна Arduino. Если вы хотите посмотреть следующее видео, нажмите здесь.

Пожалуйста, дайте нам знать, что вы хотите построить с помощью Arduino, в комментариях ниже, мы будем рады услышать, о чем вы думаете.

20 потрясающих проектов Arduino, которые вы должны попробовать в 2021 году!

Только что получил Arduino, но не знаешь, что с ним делать? Не беспокойтесь, сегодня мы собрали 20 крутых проектов Arduino, чтобы вы могли начать работу! Эти 20 проектов были тщательно отобраны и являются одними из моих личных фаворитов!

Не знаете, что такое Ардуино? Вы можете ознакомиться с нашим руководством о том, что такое Arduino, чтобы познакомиться с Arduino!


Для тех, кто не знает, что такое Arduino UNO, это идеальный инструмент для начала работы с кодированием, электроникой или Arduino!

Почему так?

Это потому, что на этой доске есть все, что нужно для начала, и ничего лишнего.Он имеет 14 цифровых входов / выходов (из которых 6 могут использоваться как выходы ШИМ), 6 аналоговых входов, USB-соединение, разъем питания, кнопку сброса и многое другое. Он содержит все необходимое для поддержки микроконтроллера; просто подключите его к компьютеру с помощью кабеля USB или включите адаптер переменного тока в постоянный или аккумулятор, чтобы начать работу.

Не говоря уже о том, что Arduino UNO Rev3 также является одной из наиболее часто используемых плат Arduino среди производителей и хорошо документирована множеством обучающих программ, доступных в Интернете, что делает ее очень подходящей для новичков.Это также означает больше проектов!

Однако, если вы чувствуете, что цена Arduino UNO выше и рассматриваете другие более дешевые и лучшие альтернативы, мы настоятельно рекомендуем наш:

Seeeduino V4.2 (6,90 $) — альтернатива Arduino UNO

Seeeduino V4.2 — это Arduino-совместимая плата, основанная на микроконтроллере ATmga328P, основанном на загрузчике Arduino UNO. Он не только лучше UNO с большим количеством функций, но и намного дешевле — 6 долларов.90!

  • Существует переключатель для выбора напряжения питания системы, 3,3 В или 5 В, что очень полезно, если вы хотите установить для системы значение 3,3 В для экономии энергии.
  • Кроме того, Seeeduino V4.2 имеет три встроенных интерфейса Grove, которые позволяют легко подключать вашу плату к модулям Grove.
    • Для тех, кто не знает, что такое Grove, Grove — это собственная модульная электронная платформа Seeed для быстрого создания прототипов. Каждый модуль выполняет одну функцию, например, распознавание касания, создание звукового эффекта и т. Д.
    • Многие конфигурации могут быть собраны без пайки или макетирования. Просто подключите модули, и все готово!
    • Наш стандартизованный соединитель Grove позволяет пользователям собирать блоки Grove с использованием строительных блоков, по сравнению с системой на основе перемычек или пайки, их намного проще собирать или разбирать, что упрощает систему обучения для экспериментов, сборки и создания прототипов.
  • По сравнению с Arduino Uno, Seeeduino V4.2:
    • Использует micro USB для питания и программирования платы вместо обычного USB
    • 3 встроенных разъема Grove
    • Системный переключатель питания 3,3 / 5 В
    • Схема постоянного тока постоянного тока вместо LDO, что повышает эффективность
    • Улучшенная схема
    • Дешевле!

Без лишних слов, давайте сразу перейдем к 20 лучшим проектам Arduino UNO R3 2020 года!


Ссылка: LanmiLab

Хотите использовать управление жестами и махом руки для управления вашим Arduino UNO R3? С этим проектом вы можете воплотить это в реальность! В этом проекте вы будете использовать плату под названием Flick, которая представляет собой печатную плату, способную обнаруживать ваши жесты на расстоянии до 15 см в трехмерном пространстве.Нарисуйте круг, проведите рукой — Flick будет отслеживать его.

С Flick возможности безграничны! Теперь вы можете управлять своим компьютером, телевизором, музыкальной системой и многим другим одним движением руки! В этом проекте мы будем использовать Flick с Arduino UNO для создания музыкального инструмента!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете ознакомиться с полным руководством LanmiLabs на Arduino Project Hub!


Ref: 卢伟聪

Всегда теряете ключи, но не хотите устанавливать дверной замок с отпечатком пальца из-за его высокой цены? Что, если бы я сказал вам, что вы можете построить свой собственный дверной замок с защитой от отпечатков пальцев всего за 70 долларов! С этим проектом вам больше не нужно беспокоиться о потере ключей, поскольку эта дверь открывается по касанию ваших отпечатков пальцев.

Что вам нужно? (Кроме Arduino UNO)

Если вам интересно, вы можете найти полное руководство от loovee на Seeed Project Hub!


Комбинация двигателей постоянного тока и Arduino — это всегда весело. А когда дело доходит до двигателей постоянного тока, одна из многих вещей, которые мы можем с ними сделать, — это, конечно, создать автомобиль! Благодаря этому руководству вы узнаете, как создать свой собственный автомобиль-робот с нуля и управлять им с помощью Arduino UNO вместе с драйвером двигателя L298N!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство по HowtoMechatronics!


Ref: DIYTech

Игры для смартфонов и iPad — это здорово, и ничто не может сравниться с очарованием создания собственной игровой консоли и игры с ней.Используя UNO, вы можете легко создать игровую консоль, разработать свою собственную игру и играть в нее. В этом проекте мы узнаем, как загрузить и разработать популярную «Snake Game» в качестве демонстрации.

Что вам нужно? (Кроме Arduino UNO)

  • Литий-ионная батарея
  • Микроконтроллер ATmega328P
  • 2 x MAX7219CNG
  • Двухцветный матричный дисплей
  • 6 x кнопок / тактильный переключатель
  • Grove — зуммер
  • 5 x 5 мм LED
  • 15 x резистор 10 кОм
  • 4 конденсатора 10 пФ
  • 2 конденсатора 1 мкФ
  • 3 основания IC
  • Печатная плата 165 мм x 73 мм

Если вам требуются базовые компоненты, такие как резисторы, светодиод и конденсатор, вы можете рассмотреть наши 20 в 1 ! Смешанный пакет основных компонентов, в который входят все основные компоненты!

Заинтересованы в этом проекте? Вы можете ознакомиться с полным руководством Md.Хайрул Алам на нашем проектном хабе!


Хотите автоматизировать бытовую технику и сделать дом умнее? С помощью простого приложения для Android, Arduino UNO и нескольких модулей вы можете управлять электроприборами с помощью щелчков мыши или голосовых команд с помощью Bluetooth! Теперь вы можете спокойно сидеть на диване и включать или выключать любое устройство, не вставая!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полный учебник на electronicsforu!


В духе Сайласа Паркера

Знаете ли вы, что существует технология CAN (Controller Area Network), позволяющая микроконтроллерам и устройствам, таким как Arduino, связываться друг с другом в транспортном средстве без главного компьютера, который позволяет управлять и собирать данные? Хотите узнать больше? Вы можете ознакомиться с нашим руководством по введению в CAN-BUS и тому, как использовать его с Arduino!

В рамках этого проекта мы собираемся использовать технологию CAN и создать симулятор автомобиля / грузовика с реальной приборной панелью на вашем ПК с UNO и CAN-BUS Shield!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете ознакомиться с полным руководством в сообществе SeeedStudio!


У вас есть несколько пультов дистанционного управления? Хотите избавиться от них и заменить их одним универсальным пультом дистанционного управления? С этим проектом это возможно!

В рамках этого проекта вы превратите обычный инфракрасный (ИК) пульт Keyes в программируемый универсальный пульт.

Что вам нужно? (Кроме Arduino UNO)

Хотите узнать больше? Вы можете ознакомиться с полным руководством ScottC на Hackster.io!


Ссылка: SurtrTech

Системы безопасности часто дороги в установке и обслуживании. Почему бы не создать себя с Arduino вместе с несколькими другими модулями менее чем за 30 долларов!

В рамках этого проекта вы создадите лазерную систему аварийной сигнализации, в которой после того, как лазерные лучи будут отсечены, сигнализация сработает и не остановится, пока не будет нажата кнопка.Кроме того, вы также можете настроить пароль, чтобы сделать его еще более безопасным, поскольку теперь для отключения сигнала тревоги требуется ввести пароль.

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете ознакомиться с полным руководством SurtrTech на Hackster.io!


С помощью дисплея Nextion вы можете создать свою собственную систему информации о погоде, где вы можете легко определять температуру и влажность погоды! Если вы не знаете, что такое дисплей Nextion, вы можете ознакомиться с нашим руководством «Введение в человеко-машинный интерфейс с Nextion».

Благодаря простому в использовании программному обеспечению вы также можете легко добавить на свой дисплей дополнительные функции и возможности!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полный учебник от Educ8s на Instructables!


Не хотите покупать новые часы? Почему бы не построить их с добавлением модуля RTC (часы реального времени), чтобы легко сделать себе цифровые часы OLED с UNO, чтобы показывать дату, время и день!

Интересно, зачем вам нужен отдельный модуль для учета времени, когда в вашем Arduino уже есть встроенный хронометрист? Узнайте ответ в нашем руководстве по RTC!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство по Простым проектам!


Вы когда-нибудь задумывались, сколько мощности в вашем ударе? Почему бы не попробовать сделать боксерскую грушу с измерителем силы, чтобы измерить силу вашего удара в ньютонах! В рамках этого проекта вы узнаете, как измерить силу своего кулака с помощью тензодатчика и HX711 вместе с Arduino.

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство от Electropeak на Arduino Project Hub!


Хотите улучшить свою игру с роботом-автомобилем? Почему бы не построить плавучий корабль на воздушной подушке, которым можно управлять с помощью пульта дистанционного управления!

Узнайте, как можно поднять в воздух судно на воздушной подушке, и многое другое с помощью этого проекта!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство с полными инструкциями от 3D-печати, принципиальной схемы до кодов на HowToMechatronics.


Помните эту популярную ретро-игру в пинг-понг? Что ж, вы можете легко создавать и контролировать его с помощью UNO и нескольких общих компонентов.

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете ознакомиться с полным руководством на Electronicsforu!


Ref: Ric2011A

Хотите весело и круто общаться с друзьями? Почему бы не попробовать эту портативную рацию, вдохновленную Могучими Рейнджерами Морфинов!

Что вам нужно? (Кроме 2 Arduino UNO)

Заинтересованы? Вы можете найти полное руководство по этому проекту от ohoilett на Instructables!

Есть много способов сделать ваш традиционный дверной замок интеллектуальным с помощью отпечатка пальца, пароля и т. Д.а также этот дверной замок RFID!

Принцип работы таков: если бирка / карта находится рядом со сканером, дверца автоматически откроется, а после того, как вы ее закроете, она автоматически заблокируется. Удобный способ! Больше не нужно возиться с ключами, просто коснитесь карты, и дверь откроется. Не говоря уже о том, что это дешево в строительстве!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство по этому проекту RFID на сайте Howtomechatronics!


Вы устали от гибели ваших растений и хотите, чтобы ваши растения были няньками? Собираетесь куда-то и не можете позаботиться о своих драгоценных растениях?

Если ваш ответ утвердительный, этот проект Arduino будет именно для вас! С помощью этой автоматизированной системы полива она будет автоматически подавать регулируемый объем воды до 4 растений каждый день или один раз каждые «x» дней, в зависимости от того, что вы укажете (до семи дней).Он даже идет с искусственным солнечным светом, чтобы ваши растения росли здоровыми.

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство от rbates4 на Instructables!


Вы когда-нибудь открывали пакетик чая / кофе без чая или кофейных зерен? Это один из самых печальных моментов, который можно пережить, поэтому у нас есть решение, чтобы его решить! В рамках этого проекта мы создадим интеллектуальный датчик контейнера для чайных пакетиков, который будет оценивать количество оставшихся чайных пакетиков и сообщать нам, если они закончатся.

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство на All About Circuits!


Вам кажется, что ваш мобильный телефон слишком тяжелый или слишком дорогой? Почему бы не попробовать самому сделать такой легкий, с национальными и международными функциями!

Этот мобильный телефон Arduino может совершать звонки, принимать звонки, а также отправлять и получать SMS. Он использует модуль GSM для подключения к мобильной сети и дисплей Nextion для визуализации интерфейсов GUI.

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство Avishek на Hackster.io!


Ref: Technovation Projects

Поскольку профессиональная установка для аэрохоккея обычно доступна только в игровых автоматах из-за ее сложной системы, трудно получить удовольствие от игры, не выходя из дома.

Но что, если бы я сказал вам, что вы можете построить его самостоятельно легко и по невысокой цене! Этот проект настраивается и легко масштабируется там, где, если вы хотите, чтобы ваш стол для аэрохоккея был большего размера, вы можете!

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство по этому проекту, сделанное Technovation, на Instructables!


В довершение всего, у нас есть автомат для коктейлей! Этот автомат для приготовления коктейлей — не обычный автомат для раздачи алкоголя.Он состоит из 4 разных станций, чтобы ваш коктейль был таким же вкусным, как и тот, что вы получаете в баре. Станции:

  • Автоматический дозатор мяты, сахара и лайма для раскрытия всех вкусов
  • Автоматизированный слайсер и дозатор извести
  • Автоматический дозатор мяты и сахара
  • Автоматический дозатор жидкости

Этот проект определенно удовлетворит все ваши потребности в алкоголе 🙂

Что вам нужно? (Кроме Arduino UNO)

Заинтересованы? Вы можете найти полное руководство по этому проекту, сделанное CamdenS5, на Instructables!


Сводка

Это всего лишь несколько проектов Arduino UNO R3, которые помогут вам разогнать мозг и начать работу с Arduino UNO.

Если эти проекты не то, что вы ищете, вы можете заглянуть в Seeed Project Hub, Hackster.io, Instructables или Arduino Project Hub, где представлено более 200+ проектов Arduino UNO с исходными кодами, схемами, а также инструкциями для самостоятельной сборки!

Здесь, в Seeed, мы также предлагаем различные платы Arduino, такие как Nano, MKR1000, Mega, Micro, Pro Mini и многие другие! Не говоря уже о том, что у нас также есть собственная линейка совместимых плат под названием Seeeduino, которая очень рентабельна.

Ищете Arduino Shield или модули и датчики? У нас они тоже есть!

Следите за нами и ставьте лайки:

Теги: Arduino, Проекты Arduino, Arduino uno, Проекты Arduino UNO, Проекты Arduino Uno R3, Проекты Arduino Uno R3, Arduino Uno rev3, Лучшие проекты Arduino, крутые проекты Arduino, Проекты Uno R3, Проекты Uno Rev3

Продолжить чтение

30+ проектов Arduino с инструкциями, схемами и кодами DIY

Добро пожаловать в мою коллекцию проектов Arduino.Даже если вы только начинаете работать с Arduino, вам не о чем беспокоиться. Каждый из следующих проектов DIY Arduino покрыт подробным пошаговым руководством о том, как сделать это самостоятельно, и включает принципиальные схемы, исходные коды и видео.

В этой коллекции проектов Arduino представлены:

  • Беспроводное управление
  • Автоматика
  • Управление двигателями
  • Робот
  • Станки с ЧПУ
  • Светодиоды
  • и более.

Наряду с моими проектами DIY Arduino здесь вы также можете найти идеи проектов, подкрепленные моими подробными руководствами по Arduino для различных датчиков и модулей. Используя раздел комментариев ниже, вы также можете предложить свои идеи, а также обсудить все, что связано с этими проектами Arduino.

Я буду постоянно обновлять эту статью, добавляя все новые материалы, которые я делаю.

Arduino Projects с подробным пошаговым руководством


Роботизированные проекты Arduino

Как энтузиаст Arduino, я обнаружил, что создание роботов с Arduino было для меня самым увлекательным занятием.У них как у производителя и инженера есть чему поучиться. Итак, вот мои проекты Arduino, связанные с робототехникой, чтобы вы тоже могли учиться.

Рука робота Arduino

Когда дело доходит до автоматизированного производства, роботизированные манипуляторы играют большую роль во многих сферах применения. Они часто используются для сварки, сборки, упаковки, покраски, подбора и размещения и многого другого. Этот проект Arduino на самом деле представляет собой роботизированный манипулятор, сделанный из деталей, напечатанных на 3D-принтере, шарниров серводвигателей и управляемый с помощью Arduino Nano.Что еще круче, мы можем управлять манипулятором робота по беспроводной сети через смартфон и специальное приложение для Android.

Рука робота имеет 5 степеней свободы, поэтому нам нужно 5 серводвигателей плюс дополнительный сервопривод для механизма захвата. Для связи со смартфоном мы используем Bluetooth-модуль HC-05.

Сложность: средняя

Робот Mecanum Wheels

Следующий проект — один из самых крутых проектов Arduino в этом списке.Это роботизированная машина Arduino, в которой вместо обычных колес используются колеса с двусторонним движением или механические колеса, которые позволяют роботу двигаться в любом направлении.

Колеса прикреплены к четырем шаговым двигателям, которые управляются индивидуально. Вращая колеса в определенном порядке, они создают диагональные силы из-за диагональных роликов по окружности колес, и поэтому они могут двигаться в любом направлении. Машиной-роботом можно дистанционно управлять либо через Bluetooth-соединение и специальное приложение для Android, либо с помощью передатчика DIY RC с помощью модуля приемопередатчика NRF24L01.

Сложность: Продвинутый

Робот-манипулятор Arduino и платформа Mecanum Wheels, автоматическая работа

Вот обновленная версия предыдущего проекта робота Mecanum Wheels. Поверх платформы я добавил упомянутый выше проект DIY Arduino Robot Arm, и теперь они могут работать вместе.

Поскольку робот использует шаговые двигатели для колес и серводвигатели для манипулятора робота, мы можем точно управлять ими с помощью специального приложения для Android.Что еще круче, мы можем записывать движения робота, а затем робот может их автоматически повторять. Конечно, как и для любого из моих проектов Arduino, код Arduino, приложение для пользовательской сборки Android, а также файлы 3D-модели можно найти и загрузить из статьи о конкретном проекте.

Сложность: Продвинутый

Робот Arduino Hexapod

Создание роботов, вдохновленных биологией, очень популярно среди студентов инженерных специальностей. Этот проект Arduino полностью посвящен этому, мы создадим робота-гексапода, который будет иметь шесть ног, хвост или живот, голову, антенны, нижние челюсти и даже функциональные глаза.Все это делает робота похожим на муравья.

У каждой ноги по три сустава, и для каждого сустава нам нужен серводвигатель. Это означает, что нам нужно всего 18 сервоприводов для этого проекта, а также дополнительно 3 сервопривода для движений головы и 1 сервопривод для хвоста. Мозг робота — это Arduino Mega, потому что это единственная плата, которая может управлять более чем 12 сервоприводами с помощью библиотеки сервоприводов. Я также разработал специальную печатную плату, которая действует как Arduino Mega Shield, поэтому мы можем легко подключить все сервоприводы.Мы можем управлять роботом-муравьем через Bluetooth и смартфон или по радиосвязи. У муравья также есть встроенный ультразвуковой датчик в голове, поэтому он может обнаруживать объекты впереди и даже ударить, если объект находится перед ним.

Сложность: Продвинутый

Робот SCARA, напечатанный на 3D-принтере

Робот

SCARA или шарнирно-сочлененная рука робота Selective Compliance является наиболее распространенным и подходящим вариантом, когда дело доходит до захвата и размещения и небольших сборочных операций, которые требуют перемещения детали из точки A в точку B.

Этот робот SCARA на базе Arduino является большим шагом вперед по сравнению с предыдущими проектами во всех аспектах. Он имеет лучшую и более прочную конструкцию с точно управляемыми шаговыми двигателями и настраиваемым графическим интерфейсом для управления им.

В качестве контроллера он имеет плату Arduino UNO в сочетании с экраном ЧПУ и четырьмя шаговыми драйверами A4988. Он имеет 4 степени свободы, приводимый в движение четырьмя шаговыми двигателями NEMA 17.

Сложность: Продвинутый

Станки с ЧПУ Arduino Projects


Следующие проекты показывают, насколько способна Arduino.ЧПУ или компьютерное числовое управление — это автоматизированное управление машинами, такими как фрезерные, токарные, плазменные резаки, 3D-принтеры и т. Д. Таким образом, используя Arduino в качестве контроллера, мы действительно можем построить любое из этих станков с ЧПУ.

В настоящее время у меня в этом списке только два проекта ЧПУ, но в будущем их будет намного больше.

Станок для резки пенопласта с ЧПУ с ЧПУ

Создание собственного станка с ЧПУ может показаться большой проблемой для многих из вас, но следующий проект Arduino CNC Machine показывает, что создание станка с ЧПУ на самом деле не так уж и сложно.

Этот станок с ЧПУ на самом деле является станком для резки пенопласта. Вместо бит или лазеров основным инструментом этого станка с ЧПУ является горячая проволока. Это особый тип резистивного провода, который сильно нагревается при прохождении через него тока. Горячая проволока расплавляет пену при прохождении через нее, поэтому мы можем точно придать пенопласту любую форму.

Сложность: Продвинутый

Станок для гибки проволоки Arduino

Управление шаговыми двигателями с помощью Arduino, без сомнения, одна из самых приятных вещей для энтузиастов Arduino.Существует так много машин, основанных на этих двигателях, таких как станки с ЧПУ, 3D-принтеры, различные машины автоматизации и т. Д. Этот проект Arduino полностью посвящен этому, он описывает, как вы можете построить такую ​​машину. Это машина для гибки проволоки, где с помощью шаговых двигателей мы можем точно гнуть проволоку и делать из нее различные формы и формы.

Машина оснащена тремя шаговыми двигателями. Первым степпером подаем проволоку к гибочному механизму. Здесь у нас есть еще один шаговый двигатель, используемый для сгибания проволоки под прямым углом.Существует также другой шаговый двигатель для управления осью Z, или этот шаговый двигатель позволяет машине создавать трехмерные формы. С помощью этого проекта мы также можем увидеть, насколько полезны 3D-принтеры для проектов Arduino этого типа или для создания прототипов.

Сложность: Продвинутый

Радиоуправление (RC) Arduino Projects


Сделай сам на базе Arduino RC-передатчик

Многие проекты Arduino, которые я делаю, требуют беспроводного управления, поэтому я создаю этот беспроводной радиоконтроллер на базе Arduino.С помощью этого радиоуправляемого передатчика я могу управлять практически без проводов на расстоянии до 700 м в открытом космосе. Он имеет 14 каналов, 6 из которых являются аналоговыми и 8 цифровых входов.

Мозгом этого проекта Arduino является плата Arduino Pro Mini, которая является самой маленькой платой Arduino, радиосвязь основана на модуле NRF24L01, имеет 2 джойстика, 2 потенциометра и 4 кнопки мгновенного действия, а также модуль акселерометра и гироскопа, который можно использовать для управления объектами, просто перемещая или наклоняя контроллер.Я установил все электронные компоненты на печатную плату нестандартной конструкции и сделал крышку из прозрачного акрила.

Сложность: средняя

Сделай сам Arduino RC-приемник для RC-моделей и проектов Arduino

Это следующий проект вышеупомянутого. Как и DIY RC-передатчик, этот DIY-RC-приемник Arduino можно использовать во многих приложениях. Мы можем легко объединить два проекта вместе и управлять чем угодно по беспроводной сети. Среди прочего, я сделал пример управления коммерческой моделью радиоуправляемого автомобиля с помощью этих самодельных передатчика и приемника.

Специальная печатная плата, которую я сделал, использует тот же модуль NRF24L01 для радиосвязи. Контроллер представляет собой Arduino Pro Mini и имеет 9 каналов ввода / вывода.

Сложность: средняя

Самолет на воздушной подушке на базе Arduino

Следующий проект Arduino — отличный пример использования передатчика DIY RC сверху. Это 3D-печатное судно на воздушной подушке, которое я полностью спроектировал самостоятельно, и, конечно же, файлы для 3D-печати доступны для загрузки.В судне на воздушной подушке используются два бесщеточных двигателя, один для создания воздушной подушки для подъемника, а другой для создания тяги или движения вперед.

Для беспроводного управления мы используем модуль NRF24L01, который принимает данные, поступающие от RC-передатчика. Затем, используя Arduino и два ESC (электронный регулятор скорости), мы контролируем скорость двигателей BLDC. На задней стороне корабля на воздушной подушке также есть сервопривод для управления рулями направления или для управления рулевым управлением.Надо сказать, что управлять этим самодельным судном на воздушной подушке очень весело.

Сложность: Продвинутый

Самолет Arduino RC

Любой, кому довелось поиграть с радиоуправляемыми самолетами, знает, насколько это круто и весело. Еще круче и приятнее, если вы сами соберете радиоуправляемый самолет. Следующий проект еще больше повысит вашу удовлетворенность, потому что здесь я покажу вам, как построить свой собственный радиоуправляемый самолет, который на 100% собран своими руками. Также у нас есть полностью сделанная самодельная система радиоуправления на базе Arduino.

Самолет полностью сделан из пенопласта, и, что еще круче, формы созданы с помощью моей DIY-машины для резки пенопласта Arduino с ЧПУ, проект уже упоминался выше. Радиосвязь основана на модулях приемопередатчика NRF24L01. Для этого я использовал свой DIY Arduino RC Transmitter и DIY Arduino RC Receiver.

Сложность: Продвинутый

Робот Arduino с автомобильным беспроводным управлением

Этот проект Arduino является расширением предыдущего, и здесь мы узнаем, как по беспроводной сети управлять автомобилем-роботом Arduino.

Вы можете выбрать один из трех различных методов беспроводного управления, описанных в этом проекте, или это модуль HC-05 Blueooth, модуль приемопередатчика NRF24L01 и модуль беспроводной связи большого радиуса действия HC-12. Кроме того, вы можете узнать, как создать собственное Android-приложение для управления автомобилем-роботом Arduino.

Сложность: средняя

Беспроводная метеостанция Arduino

Идея этого проекта Arduino довольно практична, потому что она позволяет измерять температуру и влажность в помещении и на улице.Он основан на датчике DHT11 / DHT22, модуле приемопередатчика NRF24L01 для беспроводной связи и DS3231 RTC. Для дисплея мы можем использовать либо ЖК-дисплей 16 × 2 символов, либо сенсорный TFT-экран с диагональю 3,2 дюйма.

Наружный блок может питаться от батарей, а внутренний блок — от адаптера переменного тока. Наружный блок измеряет температуру и влажность и отправляет значения главному внутреннему блоку. Здесь эти значения выводятся на ЖК-дисплей вместе со значениями данных и времени из модуля часов реального времени DS3231.

Кроме того, мы можем использовать модуль SD-карты для хранения данных на Micro SD-карте.

Сложность: средняя

Управление двигателями Проекты Arduino


Ползунок камеры Arduino с механизмом поворота и наклона

Ползунок камеры

отлично подходит для съемки кинематографических снимков, а наличие на нем системы панорамирования и наклона еще больше увеличивает возможность получения лучших снимков. В этом проекте я покажу вам, как вы можете создать свой собственный, который стоит намного дешевле, чем тот, который можно найти в магазинах, и при этом вы можете получать отличные и супер-плавные снимки.

У слайдера есть три шаговых двигателя NEMA 17, управляемых шаговыми драйверами A4988 и платой Arduino Nano. Используя джойстик, мы можем управлять движениями панорамирования и наклона, а с помощью потенциометра мы можем управлять скользящими движениями. С помощью этого слайдера DIY камеры мы можем использовать кнопку Set, чтобы установить две разные точки IN и OUT, чтобы камера могла автоматически перемещаться из одной точки в другую. Лично, рассматривая все мои проекты Arduino до сих пор, я нашел, что это наиболее практично для меня.

Сложность: Продвинутый

Торговый автомат DIY

Если вы заинтересованы в создании чего-то более сложного с помощью Arduino, то этот проект для вас. Несмотря на сложность, вы можете легко воссоздать его, поскольку есть подробное пошаговое объяснение того, как все работает, включая принципиальные схемы и исходные коды.

Конструкция машины изготовлена ​​из МДФ. Для разгрузки предметов я использовал серводвигатели с непрерывным вращением, а для несущей системы я использовал два шаговых двигателя NEMA17.Для обнаружения монет автомат использует инфракрасный датчик приближения.

Сложность: Продвинутый

Подвес / самостабилизирующаяся платформа для самостоятельной сборки Arduino

Следующий проект Arduino представляет собой простой подвес или самостабилизирующуюся платформу, которую можно использовать для хранения объектов или верхнего уровня платформы. Проект довольно простой, состоит всего из нескольких электронных компонентов.

Основываясь на ориентации MPU6050 и его объединенных данных акселерометра и гироскопа, мы можем управлять 3 осями или сервоприводами, которые поддерживают уровень платформы.

Сложность: средняя

Автомобиль-робот Arduino

Комбинация двигателей постоянного тока и Arduino всегда доставляет удовольствие, и этот проект тоже. Здесь мы с нуля построим собственную машину-робот. Автомобиль будет питаться от литий-ионных аккумуляторов и двух двигателей постоянного тока на 12 В, а управлять им будет с помощью драйвера L298N и аналогового джойстика.

В рамках этого проекта мы также узнаем, как работает управление двигателем H-Bridge и PWM.

Сложность: средняя

Проекты Arduino для начинающих


Радар Arduino (сонар)

Это один из моих самых популярных проектов, и его действительно интересно создавать.Радар может обнаруживать объекты перед собой и отображать их на экране ПК с помощью Processing IDE.

Для этого проекта вам понадобятся всего два компонента вместе с платой Arduino, а именно ультразвуковой датчик и небольшой серводвигатель. Дальность действия радара может быть отрегулирована до 4 метров с поворотом на 180 градусов.

Сложность: Легкая

Измеритель дальности и цифровой уровень

Вот еще один проект, в котором используется ультразвуковой датчик HC-SR04.На этот раз мы будем использовать его для изготовления дальномера, который может измерять расстояния до 4 метров, а также измерять квадратную площадь.

Проект также включает акселерометр, который используется для функции цифрового спиртового уровня или для измерения угла. Результаты отображаются на ЖК-дисплее 16 × 2, и все компоненты прикреплены к специальной печатной плате.

Сложность: средняя

Сортировщик цветов Arduino

Сортировка предметов или продуктов по цвету имеет важное практическое применение.Эти типы машин часто используются для сортировки фруктов, семян, пластмасс и т. Д. Принцип работы этих машин довольно прост. Все, что вам нужно, это датчик определения цвета и, конечно же, система, которая подает объект на датчик, а затем сортирует его.

В этом проекте мы узнаем, как использовать датчик определения цвета вместе с Arduino. Мы собираемся разбирать цветные кегли, но вы можете использовать тот же датчик и метод для сортировки чего угодно.

Сложность: средняя

Система контроля доступа RFID

Технология

RFID имеет широкий спектр приложений, и контроль доступа является одним из них.Мы часто сталкиваемся с этим в отелях для доступа к нашему номеру или на работе для регистрации или доступа в зоны ограниченного доступа.

В этом проекте мы узнаем, как использовать Arduino для создания дверного замка, управляемого RFID. Система состоит из считывателя RFID MFRC522 и меток / карт RFID, основанных на протоколе MIFARE.

Сложность: средняя

Система сигнализации Arduino

Если вы когда-нибудь задумывались о создании собственной системы безопасности, этот проект станет отличной отправной точкой.Здесь мы будем использовать ультразвуковой датчик для обнаружения движения.

Если перед датчиком проходит человек или объект, срабатывает тревога. Для отключения будильника вам нужно будет ввести пароль с клавиатуры.

Сложность: средняя

Светодиодная матричная прокрутка текста Arduino

В этом проекте мы будем управлять светодиодными матрицами с помощью драйвера MAX7219. Этот драйвер может управлять до 64 отдельными светодиодами при использовании всего трех проводов.Также мы можем подключить до 8 драйверов последовательно, используя одни и те же провода.

Чтобы сделать этот проект более интересным, я также добавил пример, в котором вы можете обновлять текст на светодиодных матрицах через свой смартфон с помощью специального приложения для Android.

Сложность: средняя

Игровой проект Arduino

Игровой проект основан на популярной игре для смартфонов Flappy Bird. С помощью сенсорного экрана мы управляем птицей, стараясь избежать столбов.

Для этого проекта нам понадобится сенсорный экран TFT с диагональю 3,2 дюйма, адаптер экрана TFT Mega и плата Arduino Mega. Код немного длиннее, но все подробно объяснено.

Сложность: Продвинутый

Музыкальный проигрыватель Arduino и будильник с сенсорным экраном

В этом проекте мы узнаем, как создать собственный музыкальный проигрыватель. Он оснащен сенсорным экраном, MP3-плеером, датчиком температуры и будильником.

Код этого проекта немного сложнее, около 550 строк, но все подробно объясняется с комментариями для каждой строки.Также к этому есть подробное видео-объяснение.

Сложность: Продвинутый

Другие проекты Arduino

Интерактивный светодиодный журнальный столик на базе Arduino

На первый взгляд этот стол выглядит как обычный журнальный столик, но как только вы включаете питание, он выходит на совершенно новый уровень. Стол имеет 45 секций, которые могут светиться любым цветом, который мы захотим, плюс он реагирует на объекты, помещенные на него.

Сердце стола — это Arduino, который управляет 45 адресными светодиодами WS2812B, а объекты наверху стола обнаруживаются с помощью инфракрасных датчиков приближения.Что еще круче, он имеет встроенный модуль Bluetooth, который позволяет взаимодействовать со смартфоном для выбора цвета светодиодов.

Сложность: Продвинутый

DIY Монитор качества воздуха

Контроль качества воздуха в помещении очень важен, так как он может во многом повлиять на нас. Плохое качество воздуха в комнате, в которой мы останавливаемся, может привести к усталости, головным болям, потере концентрации, учащенному сердцебиению и так далее.

В этом проекте Arduino мы создаем монитор качества воздуха, который может измерять несколько важных параметров качества воздуха, таких как PM2.5, CO2, VOC, озон, а также температура и влажность. Я разработал специальную печатную плату, на которую мы можем легко прикрепить нужные нам датчики и показать результаты на 2,8-дюймовом сенсорном дисплее. Устройство также может отслеживать значения датчиков за последние 24 часа.

Идеи проектов Arduino


В следующем разделе этой статьи содержатся идеи проектов Arduino, основанные на моих подробных руководствах по различным датчикам и модулям, а также на ваших предложениях из раздела комментариев ниже.

Для каждой идеи проекта я укажу необходимые компоненты, а также отдельное руководство для каждого из них.

Розетка, управляемая смартфоном Android с использованием Arduino

Управление домашними розетками с помощью смартфона — первый шаг в домашней автоматизации. Вы можете легко сделать свои собственные розетки, управляемые Arduino, используя знания, которые вы можете почерпнуть из моих руководств по Arduino.

Для этого проекта вам понадобятся всего два компонента вместе с платой Arduino.Модуль Bluetooth HC-05 и модуль реле 5V, для которых у меня уже есть подробные руководства. Для питания Arduino и реле вы можете использовать преобразователь 220/110 В переменного тока в 5 В постоянного тока.

С помощью смартфона вы можете подключать розетку и управлять ею через Bluetooth. Вы можете использовать некоторые уже созданные приложения для управления Arduino из Play Store или создать свое собственное приложение. Таким образом, мы также можем управлять розетками с помощью голосовых команд.

Сложность: Продвинутый

Домашняя автоматизация с использованием Arduino

Домашняя автоматизация — один из самых популярных проектов Arduino на сегодняшний день.Цель этого проекта — удаленно управлять всем в вашем доме, например, освещением, приборами, температурой, устройствами безопасности и т. Д., С помощью одного устройства или вашего смартфона.

Для того, чтобы сделать такой проект, нам нужно приличное знание Arduino. Следующая концепция домашней автоматизации, которую я предлагаю, основана на моих подробных руководствах по Arduino для различных датчиков и модулей.

Итак, идея состоит в том, чтобы иметь главный блок, который включает в себя сенсорный дисплей, и несколько подчиненных блоков, которые будут выполнять команды, поступающие от главного.Что касается беспроводной связи, мы можем использовать радиочастотные модули NRF24L01, и каждое ведомое устройство может иметь различные функции, такие как мониторинг температуры, управление розеткой, управление освещением, охранная сигнализация и так далее.

Конечно, есть бесконечные возможности и комбинации для построения системы домашней автоматизации с использованием платы Arduino. Вы всегда можете поменять и добавить больше устройств. Вы также можете установить связь по Bluetooth, чтобы все это можно было контролировать с помощью смартфона и т. Д.

Сложность: Продвинутый

Управление жестами Arduino

Идея этого проекта состоит в том, чтобы удаленно управлять проектом Arduino с помощью жестов. Допустим, мы хотим управлять автомобилем-роботом Arduino, о котором мы упоминали выше. Поэтому вместо джойстика для управления мы будем использовать модуль MEMS.

Мы можем использовать модуль GY-80 с акселерометром, гироскопом и магнитометром. Затем данные, которые мы получаем от этих датчиков, позволяют контролировать управление автомобилем-роботом.Что касается беспроводной связи, мы можем использовать модули приемопередатчика NRF24L01.

Вы также можете проверить мой проект последнего года мехатроники, где я использовал аналогичный метод для управления 3D-моделью в Matab Simulink.

Сложность: Продвинутый


Не стесняйтесь задавать любой вопрос в разделе комментариев ниже и не забудьте предложить еще несколько проектов Arduino.

Как использовать Raspberry Pi и Arduino вместе

Arduino и Raspberry Pi — два очень разных продукта, но оба они обслуживают жаждущих хакеров и производителей.Что, если бы мы могли подключить Arduino к Raspberry Pi и использовать его в качестве ведомого устройства: того, которое реагирует на ввод и отправляет вывод на наш Raspberry Pi через Python?

В конце концов, Arduino, хотя и не является полноценным компьютером, имеет несколько вещей, которые он делает лучше, например, преобразование аналого-цифрового сигнала с помощью встроенного чипа АЦП. Чтобы подключить Arduino к Raspberry Pi, нам понадобится специальное программное обеспечение, и именно здесь начинается это руководство.

Настройка программного обеспечения для использования Raspberry Pi с Arduino

Прежде чем мы сможем написать какой-либо код Python, нам нужно загрузить и установить Arduino IDE для 32-разрядной версии ARM Linux.После его установки нам нужно добавить пользователя «pi» в нужную группу для отправки данных в Arduino. Итак, чтобы добавить пи в группу, откройте терминал и введите следующее:

  $ sudo usermod -a -G dialout pi  

Затем перезагрузите Raspberry Pi, прежде чем продолжить. После перезагрузки Pi откройте Arduino IDE и выберите «Файл»> «Примеры»> «Базовый»> «Мигание», затем перейдите в «Инструменты»> «Плата» и выберите свою плату. Для наших тестов мы использовали Arduino Uno.

Затем перейдите в Инструменты> Порт и убедитесь, что выбран порт для вашей платы.Теперь нажмите Sketch> Upload (или щелкните стрелку в меню), чтобы загрузить код в Arduino. Через несколько секунд встроенный светодиод Arduino должен медленно мигать / гаснуть. Это доказывает, что у нас есть рабочий агрегат.

По завершении теста мы можем запустить специальный скетч, который позволит нам общаться с нашей Arduino с помощью Python. Перейдите в File> Examples> Firmata> StandardFirmata и прошейте этот скетч на свой Arduino. Как только он будет прошит, вы можете закрыть Arduino IDE.Чтобы установить библиотеку pyFirmata, откройте новый терминал и введите следующее:

  $ sudo pip3 install pyfirmata  

Project Hello World на Raspberry Pi с Arduino

Чтобы проверить, будет ли наш Arduino работать с Python, мы напишем быстрое скрипт для включения светодиода, подключенного к контакту 12 Arduino. См. Схему соединений.

Схема, показывающая, как Arduino Uno подключается к светодиодной подсветке. (Изображение предоставлено: Future)

Подключите Arduino и введите в терминал следующий код.Ищите USB-устройства, такие как ttyUSB0 и ttyACM0. Сделайте заметку, прежде чем двигаться дальше.

  $ dmesg  

Используя ваш любимый редактор Python 3 (IDLE, Thonny, nano, Vim), создайте новый файл и назовите его LED_test.py. Теперь мы напишем в этот файл немного кода Python. Начните с импорта двух классов из библиотеки pyFirmata, что позволит нашему коду подключиться к Arduino. Затем мы можем импортировать функцию сна из библиотеки времени, набрав:

  из pyfirmata import Arduino, util
from time import sleep  

Следующим шагом будет создание объекта с именем board, который будет соединять наш Pi с Arduino.Для этого нам нужно будет использовать информацию об устройстве USB из dmesg. В нашем случае наш Arduino был на ttyUSB0.

  board = Arduino ('/ dev / ttyUSB0')  

Переменная под названием led используется для хранения номера вывода Arduino. Вы создаете его, добавляя строку:

  led = 12  

Внутри цикла while True мы можем написать код, который будет включать и выключать светодиод каждые 0,2 секунды. Мы вызовем объектную доску с классом для цифрового управления выводом (0,1), а затем запишем 1 на вывод, чтобы включить его.Обратите внимание, что мы используем переменную led для идентификации контакта. Затем мы спим 0,2 секунды, прежде чем выключить булавку и снова засыпать.

  пока True:
board.digital [led] .write (1)
 сон (0,2)
 board.digital [светодиод] .write (0)
 sleep (0.2)  

Сохраните код, а затем запустите его из вашего редактора (IDLE Run> Run Module / Thonny Run> Run Current Script), и через несколько секунд светодиод, подключенный к Arduino, будет мигать, доказывая, что у нас есть рабочее соединение.

Окончательный сценарий python должен выглядеть так:

  из pyfirmata import Arduino, util
от времени импортный сон
доска = Arduino ('/ dev / ttyUSB0')
светодиод = 12
в то время как True:
        доска.цифровой [светодиод] .write (1)
 сон (0,2)
 board.digital [светодиод] .write (0)
 sleep (0.2)  

Мигающие светодиодные фонари с Raspberry Pi и Arduino

Теперь давайте создадим новый проект. Это будет светодиод, который будет мигать, но интервал между каждой вспышкой регулируется с помощью потенциометра, аналогового электронного компонента — то, что Raspberry Pi обычно не может использовать без дополнительных плат АЦП (аналого-цифрового преобразования).

Мы можем использовать значение, возвращаемое Arduino, для управления скоростью, с которой мигает светодиод.Мы добавим потенциометр в существующую схему тестирования светодиодов, которую мы только что построили и протестировали. Пожалуйста, см. Диаграмму ниже для получения дополнительной информации об этом.

Плата Arduino Uno, подключенная к потенциометру и светодиодной подсветке. (Изображение предоставлено: Future)

Мы запустим код для этого проекта в новом пустом файле, используя те же строки для импорта и настройки вывода, используемого на Arduino.

  из pyfirmata import Arduino, util
от времени импортный сон
доска = Arduino ('/ dev / ttyUSB0')
led = 12  

Чтобы прочитать аналоговые значения из Arduino, нам нужно создать поток, который будет работать и не прерывать основной код.Мы должны создать объект под названием it, а затем подключить его к Arduino, прежде чем запускать поток.

  it = утилит. Итератор (плата)
it.start ()
board.analog [0] .enable_reporting ()  

Основная часть кода — это цикл while True, который считывает текущее значение аналогового вывода 0, подключенного к потенциометру, и сохраняет значение в переменной с именем ценить. Затем это значение будет напечатано в оболочке Python.

  пока True:
     значение = доска.аналог [0] .read ()
     print (value)  

Теперь к переменной value применяется условная проверка. Если значение не имеет данных, оно не вернет их, и это приведет к сбою кода. Следовательно, условие if проверяет значение, и если оно отсутствует, оно меняет его на 0.

  if value == None:
          value = 0  

Еще одно условие для проверки: если значение больше 0,05, возвращаемые аналоговые значения находятся в диапазоне от 0,0 до 1,0. Если значение больше 0.05 светодиод включается, а интервал ожидания, используемый для включения / выключения светодиода путем приостановки кода, регулируется значением.

  значение elif> 0,05:
          board.digital [led] .write (1)
          сон (значение)
          board.digital [светодиод] .write (0)
          сон (значение)
  

Последние строки кода — это условие else, которое выключает светодиод, если значение меньше 0,05. Сохраните код и запустите. Теперь поверните потенциометр и посмотрите, как загорится светодиод.Ваш окончательный код на Python должен выглядеть так:

  из pyfirmata import Arduino, util
от времени импортный сон
доска = Arduino ('/ dev / ttyUSB0')
светодиод = 12
it = util.Iterator (доска)
it.start ()
board.analog [0] .enable_reporting ()
в то время как True:
     значение = board.analog [0] .read ()
     печать (значение)
     если значение == Нет:
          значение = 0
     значение elif> 0,05:
          board.digital [led] .write (1)
          сон (значение)
          board.digital [светодиод] .write (0)
          сон (значение)
  

Эта статья впервые появилась в выпуске 260 журнала Linux Format Magazine.

Запуск программного обеспечения и тестирование Arduino Uno

Запустите приложение Arduino

Дважды щелкните приложение Arduino в папке, в которую вы его распаковали.

Открыть пример кода

Arduino IDE с тестовым кодом

NAROM имеет компиляцию программных кодов, которые будут использоваться во время курса.

Чтобы использовать код для тестирования Arduino Uno, скопируйте текст в текстовый файл Arduinotest (перейдите по ссылке) и вставьте его в только что открытое окно эскиза Arduino.(См. Рисунок справа)

Выберите свою доску

Выбор платы

Вам нужно будет выбрать в меню «Инструменты» → «Плата» запись (см. Рисунок слева), соответствующую вашему Arduino. В противном случае вы не сможете связаться с платой Arduino Uno.

Выберите свой последовательный порт

Выберите последовательное устройство платы Arduino в меню Инструменты → Последовательный порт.

Выбор последовательного COM-порта

Вероятно, у вас будет несколько доступных COM-портов.Скорее всего, у Arduino будет самый большой номер COM-порта. Чтобы убедиться в этом, вы можете отключить плату Arduino и снова открыть меню; пропадающая запись должна быть платой Arduino. Снова подключите плату и выберите правильный последовательный порт.

В версии 1.6.12 Arduino IDE правильный com-порт будет помечен (Arduino / Genuino Uno) в списке портов.

Загрузка программы

Загрузка кода

Теперь просто нажмите кнопку «Загрузить» (стрелка вправо слева, как отмечено на рисунке слева) в компиляторе.

При первом использовании нового эскиза вас иногда просят сохранить эскиз в папке с тем же именем, что и ваш эскиз, прежде чем он будет запущен должным образом.

Подождите несколько секунд — на плате Arduino должны мигать светодиоды RX и TX. Если загрузка прошла успешно, появится сообщение «Done uploading». появится в строке состояния.

Прочитать данные

Открытие последовательного монитора

Откройте Serial Monitor, чтобы посмотреть данные, полученные от платы Arduino Uno.
Последовательный монитор открывается щелчком по значку справа на панели инструментов (рисунок справа). Serial Monitor откроет новое окно, которое предоставит вам последовательный текстовый поток данных, напечатанных с платы Arduino.

Тестирование платы Arduino Uno

Чтобы убедиться, что вы получаете правильные данные, вы можете протестировать их, установив для каждого канала заземление и питание и считывая вывод в последовательном мониторе. Для этого вам понадобится провод для соединения входных разъемов и разъемов питания на плате Arduino Uno.

  • Подключите один конец провода к порту A0
  • Подключите другой конец к порту GND
  • Analog0 в последовательном мониторе теперь должно показывать 0,0 вольт
  • Снимите провод с GND и подключите его к 5V
  • Analog0 должен теперь показывать примерно 5,0 вольт
  • Отсоедините провод от 5V и подключите к 3.