Как работает трансформатор напряжения: Трансформаторы напряжения: описание, принцип действия

Трансформаторы напряжения: описание, принцип действия

Главная »
Статьи »
Трансформаторы напряжения: описание, принцип действия

Все трансформаторы тока — это конструкции, которые изменяют переменный ток и стабильно защищают от перепадов высокого напряжения. Он является механизмом только переменного тока, который не может работать с источником постоянного тока, так как при этом в его обмотках не будет электромагнитной индукции. Сейчас трансформаторы напряжения, работающие на маленьких мощностях, практически вытеснены более мощными модификациями.

Описание и составляющие

Трансформатор состоит из трех частей:

  • Электро-обмотка может быть первичной подводящей напряжение и вторичной снимающей напряжение. Первичная обвивка подключается по порядку и подсоединяется к ключу переменного тока. Вторичная обвивка должна быть замкнута на нагрузку и ее противодействие не превышает установленного значения, она никак не сопряжена с первичной. На вторичной обмотке вызывается крайне высокое напряжение и вследствие этого она обязана быть заземлена.
  • Системы охлаждения: естественное воздушное, масляное (трансформаторное масло циркулирует и отдает запасенное тепло через заднюю стенку бака в окружающую среду, охлаждаясь), по тому же принципу циркуляции происходит охлаждение водой и естественное жидким диэлектриком.
  • Сердечник. А еще его называют магнитопровод, чаще всего изготавливается из специальных сплавов штампованных пластин в виде буквы Ш и О. Могут быть броневые (катушки установлены на одной оси) и стержневые (занимают большую часть сердечника и сердечники являются раздельными их стягивают при сборке).

Принцип действия

Отдача мощности из одной обмотки во вторую совершается электромагнитным путем и основана на электромагнитной индукции. Непостоянный ток, идя по первичной обмотке, формирует электромагнитное течение в магнитопроводе и индуцирует во вторичной обмотке, пронизывая ее витки. В результате он становиться замкнутым в магнитопроводе и сцепляется с двумя обмотками. Витки обмотки имеют равное усилие и в случае если повысить количество витков на 2–ой обмотке, объединяя их поочередно между собою, то можно повысить вольтаж на выходе трансформатора. Таким же образом уменьшая количество витков уменьшить выходное напряжение. В сердечнике трансформатора неизбежны потери энергии за счет выделения тепла, но в современных мощных моделях эти потери невелики и не превышают 3%. Однофазные трансформаторы напряжения могут работать, на нагрузку, в режиме холостого хода и короткого замыкания. Как три отдельных однофазных трансформатора можно рассматривать трехфазные, но они работают на больших мощностях.

← Назад к списку новостей

Трансформатор напряжения — этого не знает более 80%!

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.


[contents]


Трансформаторы напряжения назначение  и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

 Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n<1), например, применяется в ламповых усилителях;
  3. согласующий – трансформатор параметры напряжения не изменяет, происходит только гальваническая развязка цепей (n~1), например, применяется в звуковых усилителях.

В основе работы трансформатора лежит принцип электромагнитной индукции и для наиболее полной передачи энергии, для уменьшения потерь при трансформации, устройство обычно выполняется на магнитопроводе.

Как правило, первичная катушка одна, а вот вторичных может быть несколько, все зависит от назначения трансформатора.

Как работает трансформатор напряжения?

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n».  Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

 При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

 Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Трансформаторы напряжения — устройство, принцип работы, расчет и характеристики

Трансформатор — устройство для преобразования величины напряжения переменного тока. Работа трансформатора основывается на законе электромагнитной индукции.

Ток, протекающий по одной из обмоток, вызывает возникновение переменного магнитного поле в сердечнике, а оно наводит ЭДС в остальных обмотках.

Именно наличие переменного магнитного поля создает условия для работы трансформатора. На постоянном токе трансформатор работать не может. В случае подключения трансформатора к источнику постоянного напряжения, переменное магнитное поле не создается, следовательно нет причины для образования ЭДС.

В таком случае ток первичной обмотки определяется только ее омическим сопротивлением.

Трансформатор преобразует напряжение при сохранении частоты и баланса мощностей на входе и выходе с учетом КПД. Также при помощи трансформаторов осуществляется гальваническая развязка по цепям питания.

Большинство электронной аппаратуры требует питания, отличного от напряжения сети. В большинстве случаев это напряжение значительно ниже и может иметь несколько различных значений.

Трансформатор с несколькими вторичными обмотками позволяет выполнить максимально простое преобразование величины напряжения с той оговоркой, что питающее напряжение переменное.

В случае необходимости преобразовывать постоянное напряжение, приходится сначала преобразовывать его в переменное, что требует определенных схемотехнических решений. В таком случае использование трансформаторов оправдано только наличием гальванической развязки между обмотками.

УСТРОЙСТВО ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

Основные узлы, которые входят в трансформатор это сердечник и обмотки. Сердечники трансформаторов бывают двух типов — броневые и стержневые. Для работы с низкочастотными напряжениями, в том числе и 50 Гц применяются стержневые магнитопроводы. В свою очередь они подразделяются на:

  • Ш-образные;
  • П-образные;
  • тороидальные.

Для изготовления сердечника используется специальное трансформаторное железо. От качества железа во многом зависят параметры трансформатора, такие как ток холостого хода (ТХХ) и КПД. Сердечник набирается из тонких листов железа, изолированных друг от друга слоем окиси или лака. Это делается для того, чтобы уменьшить потери в сердечнике за счет вихревых токов.

Как Ш-образный, так и П-образный сердечники могут собираться из отдельных пластин, а могут быть использованы уже готовые половинки, сделанные из навитых на специальную оправку сплошных лент железа, поклеенных и разрезанных на две части — витые сердечники. Такие сердечники называются ПЛ.

У каждого из типов свои достоинства и недостатки:

Наборные сердечники.
Наиболее часто используются для сборки магнитопровода произвольного сечения, которое ограничивается только шириной пластин. Следует иметь ввиду, что наилучшие параметры имеют трансформаторы с поперечным сечением сердечника, близким к квадратному.

Недостатки — необходимость в плотном стягивании, повышенное магнитное поле рассеивания трансформатора и низкий коэффициент заполнения окна катушки (реальная площадь металла в сердечнике меньше геометрических размеров из-за неплотного прилегания пластин).

Витые.
Собираются еще проще, поскольку весь сердечник состоит из двух частей для П-образного магнитопровода и четырех для Ш-образного. Характеристики значительно лучше, чем у наборного магнитопровода. Недостатки — соприкасающиеся поверхности должны иметь минимальный зазор во избежание ослабления магнитного поля.

При ударах пластины половинок зачастую отслаиваются и их очень трудно совместить для плотного прилегания. Существует только определенный ряд размеров магнитопроводов.

Тороидальные.
Представляют собой кольцо, свитое из ленты трансформаторного железа Имеют самые лучшие характеристики из всех типов сердечников, минимальный ТХХ и практически полное отсутствие магнитного поля рассеивания.

Основной недостаток — сложность намотки, особенно проводов большого диаметра.

Классический трансформатор имеет одну первичную обмотку и одну или несколько вторичных. Обмотки изолируются друг от друга для исключения вероятности между обмоточного пробоя. Как первичная, так и вторичные обмотки могут иметь отводы.

В Ш-образных трансформаторах все обмотки наматываются на центральном стержне, а в П-образном первичная может размещаться на одном стержне, а вторичная на другом. Гораздо чаще обмотки делятся пополам и наматываются на обеих стержнях. Затем обе половины обмоток соединяются последовательно.

Такая намотка улучшает характеристики трансформатора и сокращает количество провода для обмоток.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные характеристики трансформатора:

  • входное напряжение;
  • значения выходных напряжений;
  • мощность;
  • напряжение и ток холостого хода.

Отношение напряжений на первичной и вторичной обмотках представляет собой коэффициент трансформации. Он зависит только от соотношения количества витков в обмотках и остается постоянным в любых режимах работы.

Мощность трансформатора зависит от сечения сердечника и диаметра проводов в обмотках (соответственно — допустимого тока). Мощность со стороны первичной обмотки всегда равна сумме мощностей вторичных за вычетом потерь в обмотках и сердечнике.

Напряжение холостого хода — это напряжение на вторичных обмотках без нагрузки. Разница между ним и напряжением под нагрузкой характеризует потери в обмотках за счет сопротивления провода. Таким образом, чем толще проводники в обмотках, тем меньше будут потери и меньше разница в напряжениях.

Величина тока холостого хода зависит, в основном от качества сердечника. В идеальном трансформаторе ток, проходящий через первичную обмотку, создает переменное магнитное поле в сердечнике, которое, в свою очередь, за счет магнитной индукции создает ЭДС противоположного направления.

Индуцированная ЭДС компенсирует подаваемое напряжение и ТХХ равен нулю. В реальных условиях, за счет потерь в сердечнике, величина ЭДС всегда меньше первичного напряжения, в результате чего возникает ТХХ. Для уменьшения тока для изготовления сердечника нужен материал высокого качества, между пластинами должен отсутствовать немагнитный зазор.

Последнему требованию в максимальной степени соответствуют тороидальные сердечники — в них немагнитный зазор отсутствует.

РАСЧЕТ ТРАНСФОРМАТОРА НАПРЯЖЕНИЯ

Как показывает опыт и практика, точный расчет трансформатора напряжения себя не оправдывает. Точность нужна только при определении количества витков для получения нужного коэффициента трансформации. Диаметр проводов обмоток должен соответствовать или превосходить минимально допустимому по условиям нагрева.

Общая последовательность расчета трансформатора такова:

  • определение мощности трансформатора;
  • подбор сердечника с сечением максимально близкого к расчетному, но не меньше его;
  • определение количества витков катушек, приходящихся на один вольт напряжения;
  • расчет количества витков для каждой обмотки;
  • расчет сечения проводов обмоток.

Мощность трансформатора определяется суммированием мощностей всех обмоток за исключением первичной. Для каждой из них — это произведение напряжения на максимальный ток потребления. Для расчета сечения сердечника нужна габаритная мощность трансформатора, которая учитывает КПД.

Рассматриваемые трансформаторы имеют КПД от 70% при мощности до 150 Вт и до 90 % при большей мощности. Таким образом, чтобы получит габаритную мощность нужно мощность вторичных обмоток умножить на коэффициент 1.3 — 1.1.

Площадь поперечного сечения можно найти как квадратный корень из габаритной мощности. Имея значение площади можно подобрать из таблиц готовый сердечник. Если планируется разборный, то исходя из размеров имеющихся пластин можно вычислить необходимую толщину набора. Как уже говорилось выше, сечение должно быть близким к квадрату.

Наибольшие затруднения вызывает нахождение числа витков. Для этого нужно сначала рассчитать сколько витков должно приходиться на один вольт напряжения. Это значение будет различаться в зависимости от площади сечения сердечника. Следует иметь ввиду, что при одинаковом сечении у магнитопроводов разных типов это значение также будет различно.

Можно воспользоваться следующей формулой: N = К/S,

где N — количество витков на вольт, S — площадь сечения сердечника в см2, K — коэффициент, зависящий от материала и типа сердечника.

Значение коэффициента К:

  • для наборных сердечников — 60;
  • для типов ПЛ — 50;
  • для тороидальных сердечников 40.

Как видим, количество витков у тороидального трансформатора будет минимальным.
Умножая число витков на вольт на требуемое напряжение каждой обмотки, получим значение количества витков. Для компенсации потерь напряжения, количество витков вторичных обмоток нужно увеличить на 5%.

У мощных трансформаторов (более 150 Вт) этого делать не нужно.

Сечение проводов также определяется по упрощенной формуле: 0.7√I, где I — ток обмотки.

Провод нужно брать ближайшего к расчетному сечения (можно больше, но не меньше).

В случае сомнений по поводу того, поместится ли провод в обмотке, можно посчитать, сколько витков уложится в один слой и определить количество слоев и их общую толщину для каждой из обмоток. Это справедливо только для Ш-образных и П-образных трансформаторов.

В тороидальных количество витков в каждом последующем случае будет меньше, чем в предыдущем за счет уменьшения внутреннего диаметра.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Область применения и принцип действия трансформаторов напряжения

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей
    напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства.
Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Устройство и принцип действия трансформатора

С открытием и началом промышленного использования электричества возникла необходимость создания систем его преобразования и доставки к потребителям. Так появились трансформаторы, о принципе действия которых и пойдет речь.

Появлению их на свет предшествовало открытие явления электромагнитной индукции великим английским физиком Майклом Фарадеем почти 200 лет назад. Позже он и его американский коллега Д. Генри нарисовали схему будущего трансформатора.

Трансформатор Фарадея

Первое воплощение идеи в железо состоялось в 1848 году с создания индукционной катушки французским механиком Г. Румкорфом. Свою лепту внесли и российские ученые. В 1872 году профессор Московского университета А. Г. Столетов открыл петлю гистерезиса и описал структуру ферромагнетика, а 4 года спустя, выдающийся российский изобретатель П. Н. Яблочков получил патент на изобретение первого трансформатора переменного тока.

Как устроен и как работает трансформатор

Трансформаторы – это название огромного «семейства», куда входят однофазные, трехфазные, понижающие, повышающие, измерительные и множество других типов трансформаторов. Основное их назначение – преобразование одного или нескольких напряжений переменного тока в другое на основе электромагнитной индукции при неизменной частоте.

Итак, кратко, как работает простейший однофазный трансформатор. Он состоит из трех основных элементов – первичной и вторичной обмоток и объединяющего их в единое целое магнитопровода, на который они как бы нанизаны. Источник подключается исключительно к первичной обмотке, в то время, как вторичная снимает и передает уже измененное напряжение потребителю.

Принцип работы трансформатора

Подключенная к сети первичная обмотка создает в магнитопроводе переменное электромагнитное поле и формирует магнитный поток, который начинает циркулировать между обмотками, индуцируя в них электродвижущую силу (ЭДС). Ее величина зависит от числа витков в обмотках. К примеру, для понижения напряжения необходимо, чтобы в первичной обмотке витков было больше, чем во вторичной. Именно по такому принципу работают понижающие и повышающие трансформаторы.

Важная особенность конструкции трансформатора состоит в том, что магнитопровод имеет стальную структуру, а обмотки, как правило имеющие форму цилиндра, изолированы от него, непосредственно не связаны друг с другом и имеют свою маркировку.

Трансформаторы напряжения

Это, пожалуй, наиболее многочисленная разновидность семейства трансформаторов. В двух словах, их основная функция – сделать произведенную на электростанциях энергию доступной для потребления различными устройствами. Для этого существует система передачи электроэнергии, состоящая из повышающих и понижающих трансформаторных подстанций и линий электропередач.

Вначале электроэнергия, произведенная электростанцией, подается на повышающую трансформаторную подстанцию (к примеру, с 12 до 500 кВ). Это необходимо для того, чтобы компенсировать неизбежные потери электроэнергии при передаче на большие расстояния.

Следующий этап – понижающая подстанция, откуда электроэнергия уже по низковольтной линии подается на понижающий трансформатор и далее к потребителю в виде напряжения 220 в.

Но на этом работа трансформаторов не заканчивается. В большинстве окружающих нас бытовых электроприборов — в ПК, телевизорах, принтерах, стиральных машинах-автоматах, холодильниках, микроволновых печах, DVD и даже в энергосберегающих лампочках установлены понижающие трансформаторы. Пример индивидуального «карманного» трансформатора – зарядное устройство мобильного телефона (смартфона).

Гигантскому разнообразию современных электронных устройств и выполняемых ими функций соответствует множество различных типов трансформаторов. Это далеко не полный их список: силовые, импульсные, сварочные, разделительные, согласующие, вращающиеся, трехфазные, пик-трансформаторы, трансформаторы тока, тороидальные, стержневые и броневые.

Какие они, трансформаторы будущего

Считается, что трансформаторная отрасль весьма консервативна. Тем не менее и ей приходится считаться с революционными изменениями в области электротехники, где все громче о себе заявляют нанотехнологии. Как и множество других устройств, они постепенно «умнеют».

Элегазовые трансформаторы

Активно ведется поиск новых конструкционных материалов – изоляционных и магнитных, способных обеспечить более высокую надежность трансформаторного оборудования. Одним из направлений может стать использование аморфных материалов, что значительно повысит его пожарную безопасность и надежность.

Появятся взрыво- и пожаробезопасные трансформаторы, в которых хлордифенилы, используемые для пропитки электроизоляционных материалов, будут заменены нетоксичными жидкими, экологически безопасными диэлектриками.

Элегазовые трансформаторы

Примером тому — элегазовые силовые трансформаторы, где функцию хладагента выполняет негорючий элегаз гексафторид серы, вместо далеко не безопасного трансформаторного масла.

Вопрос времени – создание «умных» электросетей, оснащенных полупроводниковыми твердотельными трансформаторами с электронным управлением, с помощью которых появится возможность регулировать напряжение в зависимости от потребностей потребителей, в частности, подключать к домашней сети возобновляемые и промышленные источники питания, или наоборот отключать лишние, когда в них нет необходимости.

Еще одно перспективное направление – низкотемпературные сверхпроводимые трансформаторы. Работа по их созданию началась еще в 60-е годы. Главная проблема, с которой столкнулись ученые – огромные размеры криогенных систем, необходимых для изготовления жидкого гелия. Все изменилось в 1986 году, когда были открыты сверхпроводниковые высокотемпературные материалы. Благодаря им, появилась возможность отказаться от громоздких охлаждающих устройств.

Трансформатор с полупроводниковым преобразователем

Сверхпроводимые трансформаторы обладают уникальным качеством: при высокой плотности тока потери в них минимальны, зато, когда ток достигает критических значений, сопротивление от нулевого уровня резко увеличивается.

устройство, классификация, принцип работы, видео

Трансформатор напряжения – это один из видов трансформаторов, который еще называют измерительным, предназначеннный для отделения первичных цепей высокого и сверх высокого напряжений и цепей измерений, РЗ и А. Также их используют для понижения высоких напряжений (110, 10 и 6 кВ) до стандартных нормируемых величин напряжений вторичных обмоток – 100 либо 100/√3.

Помимо этого, применение трансформаторов напряжение в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.

Трансформаторы напряжения нашли широкое применение в силовых электроустановках высокого напряжения

От точности их работы зависит правильность коммерческого учета электроэнергии, селективность действия устройств РЗ и противоаварийной автоматики, также они служат для синхронизации и питания автоматики релейной защиты ЛЭП от коротких замыканий, и др.

Измерительный трансформатор конструктивно практически не отличается от стандартных силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу.

Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем.

Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже:

Потери намагничивания обуславливают некоторую погрешность в классах точности.

Погрешность определяется:

Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения

Классификация трансформаторов напряжения

Трансформаторы напряжения принято разделять по следующим признакам:

  1. По количеству фаз:
    • однофазные;
    • трехфазные.
  2. По числу обмоток:
    • 2-х-обмоточные;
    • 3-х-обмоточные.
  3. По способу действия системы охлаждения:
    • электрические устройства с масляным охлаждением;
    • электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие).
  4. По способу установки и размещения:
    • для наружной установки;
    • для внутренней;
    • для комплектных РУ.
  5. По классу точности: по нормируемым величинам погрешностей.

Виды трансформаторов напряжения

Рассмотрим несколько трансфомраторов напряжения разных производителей:

Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11

Производиель — Невский трансформаторный завод «Волхов».

Назначение и область применение ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

Рисунок — Габаритные размеры трансформатора

Рисунок — схемы подключения обмоток трансформаторов

Характеристики:

  1. Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27
  2. Наибольшее рабочее напряжение, кВ — 30 40,5 40,5
  3. Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5
  4. Номинальное напряжение основной вторичной обмотки, В — 57,7 100
  5. Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127
  6. Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3

Ещё одно интересное видео о работе трансформаторов тока:


Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)

Производитель «Свердловский завод трансформаторов тока»

Назначение 3хЗНОЛПМ(И)

Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150.

Рабочее положение — любое.

Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора.

Трехфазная группа может комплектоваться в 4-ех вариантах:

  • из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10;
  • из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10;
  • из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10;
  • из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.

Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя.

Срок службы — 30 лет.


НАМИТ-10-2

Производитель ОАО «Самарский Трансформатор»

Назначение и область применения

Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий

Технические параметры трансформатора напряжения НАМИТ-10-2
  1. Номинальное напряжение первичной обмотки, кВ — 6 или 10
  2. Наибольшее рабочее напряжение, кВ — 7,2 или 12
  3. Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110)
  4. Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3
  5. Класс точности основной вторичной обмотки — 0,2/0,5

Рисунок — Габаритные размеры и схема подключения.

Трансформатор: назначение, принципы работы и правила подключения


Автор Даниил Леонидович На чтение 9 мин. Просмотров 12.1k. Опубликовано
Обновлено

Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке. Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора. Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.

Трансформаторы напряжения: назначение и принцип действия

Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.

Состоит статический трансформатор из:

  • первичной и вторичной обмотки;
  • сердечника.

Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:

  • снижает потери энергии;
  • уменьшает площадь сечения проводов ЛЭП.

Разновидности прибора:

  • повышающий;
  • понижающий;
  • силовой;
  • вращающийся;
  • импульсный;
  • разделительный;
  • согласующий.

Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.

Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.

Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.

Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.

Принцип действия устройства основан на:

  • изменении магнитного потока;
  • создании электромагнитной индукции при прохождении через обмотку;
  • подаче напряжения на первичную обмотку;
  • воспроизведении магнетизма электрическим током, изменяющимся во времени.

Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток. Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.

Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Как работает трансформатор напряжения?

Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

Чем отличается трансформатор тока от трансформатора напряжения?

Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

Отличие между устройствами в разных электрических величинах и схемах включения.

Измерительные трансформаторы напряжения и тока

Приборы с работой под высоким напряжением нуждаются в периодическом измерении.

Для чего этих целей в помощь – измерительные устройства, которые:

  • снижают величину напряжения до нужного уровня;
  • обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Закон Фарадея

По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля. Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

Уравнения идеального трансформатора

В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

  • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
  • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

Как правильно подключить

Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.

Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

Стоит знать:

  1. При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
  2. Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
  3. Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
  4. Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Подключение трансформатора напряжения

Дополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно. Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 27 мая 2020 г.

Могучие линии электропередач, которые пересекаются
наша сельская местность или незаметное шевеление под улицами города несут электричество
при очень высоких напряжениях от источника питания
растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге.
от 400000 до 750000 вольт! Но бытовая техника в наших домах использует
напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт.Если
вы пытались включить тостер или телевизор от опоры электричества,
мгновенно взорваться! (Даже не думайте пытаться, потому что
электричество в воздушных линиях почти наверняка убьет вас.)
какой-то способ уменьшить высоковольтное электричество от электростанций до
электричество более низкого напряжения, используемое фабриками, офисами и домами.
Устройство, которое это делает, гудит от электромагнитных волн.
энергия, как она идет, называется трансформатором.
Давайте подробнее разберемся, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Ваш первый вопрос, наверное, такой: если наши дома и офисы
с помощью копировальных аппаратов,
компьютеры
стиральные машины и электробритвы
рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать
электричество при таком напряжении? Почему они используют такое высокое напряжение? К
Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу
проволока, электроны, которые несут свою энергию
покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о
обычно тратит энергию, как непослушный
школьники бегут по коридору. Вот почему провода нагреваются, когда
через них течет электричество (что очень полезно в электрических тостерах и других
приборы, использующие ТЭНы). Оказывается, что
чем выше напряжение электричества, которое вы используете, и тем ниже ток,
тем меньше энергии тратится таким образом.Итак, электричество, которое приходит
от электростанций передается по проводам под очень высоким напряжением в
экономить энергию.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики
машины, которые намного больше и более энергоемкие, чем все, что вы
есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна)
к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать
10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться
источники питания на 400 вольт или около того.Другими словами, разное электричество
пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные
электричество от электростанции, а затем преобразовать его в
более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции
по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию,
в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда
по проводу течет колеблющийся электрический ток, он создает магнитное
поле (невидимый образец магнетизма) или «магнитный поток» все
вокруг него. Сила магнетизма (которая имеет довольно
техническое название плотности магнитного потока)
непосредственно связанный с
величина электрического тока.Так что чем больше ток, тем
сильнее магнитное поле. Теперь есть еще один интересный факт о
электричество тоже. Когда магнитное поле колеблется вокруг
провод, он генерирует электрический ток в проводе. Итак, если мы поставим
вторая катушка проволоки рядом с первой, и посылает колеблющийся
электрический ток в первую катушку, мы создадим электрический
ток во втором проводе.
Ток в первой катушке обычно
называется первичным током, а ток
во втором проводе
это (сюрприз, сюрприз) вторичный ток.Что мы сделали
вот пропустить электрический ток через пустое пространство от одной катушки
провод к другому. Это называется электромагнитным
индукция, потому что ток в первой катушке
вызывает (или «индуцирует») ток во второй катушке.
Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к
другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или
(«повороты», как их любят называть физики).Если
вторая катушка
имеет такое же количество витков, что и первая катушка, электрический ток в
вторая катушка будет практически такого же размера, как и первая.
катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов
во второй катушке мы можем сделать вторичный ток и напряжение
больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если
электрический ток каким-то образом колеблется. Другими словами, у вас есть
использовать тип постоянно меняющегося электричества, называемый переменным
ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же
направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй, вторичная
напряжение меньше, чем
первичное напряжение:

Это называется понижающей
трансформатор. Если у второй катушки половина
столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше
величина первичного напряжения; если во второй катушке на одну десятую меньше
оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷
Первичное напряжение = Число витков вторичной обмотки ÷ Число витков
в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в
понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10
катушки во вторичной обмотке снизят напряжение в 10 раз, но
одновременно умножьте ток в 10 раз.Сила в
электрический ток равен току, умноженному на напряжение (Вт =
вольт x ампер — один из способов запомнить это), так что вы можете увидеть мощность в
вторичная катушка теоретически такая же, как мощность в
первичная обмотка. (На самом деле между
первичный и вторичный, потому что часть «магнитного потока» просачивается наружу.
сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед
трансформатор, который увеличивает
низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной
катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в
вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в
первичный, чтобы получить большее вторичное напряжение и меньшее вторичное
Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило:
катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков
имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки
слева вверху: модем-трансформер, белый трансформер в iPod.
зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов.
и города, где подведена высоковольтная электроэнергия от входящих линий электропередач.
преобразуется в более низкое напряжение. Но есть много трансформаторов в
Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение.
110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные
напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12
вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы
зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие
встроенные в них трансформаторы (часто устанавливаются в конце силового
свинца) для преобразования 110–240 вольт бытовой
питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему
у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что
они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Зарядные устройства индукционные

Многие домашние трансформаторы (например, те, что используются в iPod и
сотовые телефоны) предназначены для зарядки аккумуляторных батарей.
Вы можете точно увидеть, как они работают: течет электричество
в трансформатор из розетки на стене, попадает
преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем
iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет
кабель питания? Он заряжается немного другим типом
трансформатор, одна из катушек которого находится в основании щетки, и
другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать
О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашем верхнем фото, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником,
насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими)
компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии.
Так, например, поменяли местами переключающее и усилительное реле.
для транзисторов,
в то время как магнитные жесткие диски все чаще заменяются флэш-памятью
(в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и
КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше
реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников
возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы),
поэтому будут основным приложением. Несмотря на огромный интерес, SST
технологии по-прежнему используются относительно мало, но, вероятно, будут
самая захватывающая область проектирования трансформаторов будущего.

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний
Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Руководство по проектированию трансформаторов и индукторов полковника Уильяма Т.Маклайман. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • Электрические трансформаторы и силовое оборудование Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Ньюнес, 1997.Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
  • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера.Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих собственных книг описывает, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351,589: Система распределения электроэнергии Люсьена Голара и Джона Гиббса, 26 октября 1886 г.Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современной системы электроснабжения во всем мире.
  • Патент США 433702: Электрический трансформатор или индукционное устройство. Автор Никола Тесла, 5 августа 1890 года. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель Отто Титуса Блати, 9 мая 1893 г.Комбинированный трансформатор и двигатель, созданный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 года. Трансформатор с круговой шкалой, позволяющей регулировать выходное напряжение.

Новостные статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2007, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 27 мая 2020 г.

Могучие линии электропередач, которые пересекаются
наша сельская местность или незаметное шевеление под улицами города несут электричество
при очень высоких напряжениях от источника питания
растения в наши дома.Для линии электропередачи нет ничего необычного в рейтинге.
от 400000 до 750000 вольт! Но бытовая техника в наших домах использует
напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт. Если
вы пытались включить тостер или телевизор от опоры электричества,
мгновенно взорваться! (Даже не думайте пытаться, потому что
электричество в воздушных линиях почти наверняка убьет вас.)
какой-то способ уменьшить высоковольтное электричество от электростанций до
электричество более низкого напряжения, используемое фабриками, офисами и домами.Устройство, которое это делает, гудит от электромагнитных волн.
энергия, как она идет, называется трансформатором.
Давайте подробнее разберемся, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.
Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу.Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Ваш первый вопрос, наверное, такой: если наши дома и офисы
с помощью копировальных аппаратов,
компьютеры
стиральные машины и электробритвы
рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать
электричество при таком напряжении? Почему они используют такое высокое напряжение? К
Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу
проволока, электроны, которые несут свою энергию
покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о
обычно тратит энергию, как непослушный
школьники бегут по коридору. Вот почему провода нагреваются, когда
через них течет электричество (что очень полезно в электрических тостерах и других
приборы, использующие ТЭНы). Оказывается, что
чем выше напряжение электричества, которое вы используете, и тем ниже ток,
тем меньше энергии тратится таким образом.Итак, электричество, которое приходит
от электростанций передается по проводам под очень высоким напряжением в
экономить энергию.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики
машины, которые намного больше и более энергоемкие, чем все, что вы
есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна)
к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать
10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться
источники питания на 400 вольт или около того.Другими словами, разное электричество
пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные
электричество от электростанции, а затем преобразовать его в
более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции
по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию,
в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда
по проводу течет колеблющийся электрический ток, он создает магнитное
поле (невидимый образец магнетизма) или «магнитный поток» все
вокруг него. Сила магнетизма (которая имеет довольно
техническое название плотности магнитного потока)
непосредственно связанный с
величина электрического тока.Так что чем больше ток, тем
сильнее магнитное поле. Теперь есть еще один интересный факт о
электричество тоже. Когда магнитное поле колеблется вокруг
провод, он генерирует электрический ток в проводе. Итак, если мы поставим
вторая катушка проволоки рядом с первой, и посылает колеблющийся
электрический ток в первую катушку, мы создадим электрический
ток во втором проводе.
Ток в первой катушке обычно
называется первичным током, а ток
во втором проводе
это (сюрприз, сюрприз) вторичный ток.Что мы сделали
вот пропустить электрический ток через пустое пространство от одной катушки
провод к другому. Это называется электромагнитным
индукция, потому что ток в первой катушке
вызывает (или «индуцирует») ток во второй катушке.
Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к
другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или
(«повороты», как их любят называть физики).Если
вторая катушка
имеет такое же количество витков, что и первая катушка, электрический ток в
вторая катушка будет практически такого же размера, как и первая.
катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов
во второй катушке мы можем сделать вторичный ток и напряжение
больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если
электрический ток каким-то образом колеблется. Другими словами, у вас есть
использовать тип постоянно меняющегося электричества, называемый переменным
ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же
направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй, вторичная
напряжение меньше, чем
первичное напряжение:

Это называется понижающей
трансформатор. Если у второй катушки половина
столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше
величина первичного напряжения; если во второй катушке на одну десятую меньше
оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷
Первичное напряжение = Число витков вторичной обмотки ÷ Число витков
в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в
понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10
катушки во вторичной обмотке снизят напряжение в 10 раз, но
одновременно умножьте ток в 10 раз.Сила в
электрический ток равен току, умноженному на напряжение (Вт =
вольт x ампер — один из способов запомнить это), так что вы можете увидеть мощность в
вторичная катушка теоретически такая же, как мощность в
первичная обмотка. (На самом деле между
первичный и вторичный, потому что часть «магнитного потока» просачивается наружу.
сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед
трансформатор, который увеличивает
низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной
катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в
вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в
первичный, чтобы получить большее вторичное напряжение и меньшее вторичное
Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило:
катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков
имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки
слева вверху: модем-трансформер, белый трансформер в iPod.
зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов.
и города, где подведена высоковольтная электроэнергия от входящих линий электропередач.
преобразуется в более низкое напряжение. Но есть много трансформаторов в
Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение.
110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные
напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12
вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы
зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие
встроенные в них трансформаторы (часто устанавливаются в конце силового
свинца) для преобразования 110–240 вольт бытовой
питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему
у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что
они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Зарядные устройства индукционные

Многие домашние трансформаторы (например, те, что используются в iPod и
сотовые телефоны) предназначены для зарядки аккумуляторных батарей.
Вы можете точно увидеть, как они работают: течет электричество
в трансформатор из розетки на стене, попадает
преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем
iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет
кабель питания? Он заряжается немного другим типом
трансформатор, одна из катушек которого находится в основании щетки, и
другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать
О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашем верхнем фото, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником,
насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими)
компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии.
Так, например, поменяли местами переключающее и усилительное реле.
для транзисторов,
в то время как магнитные жесткие диски все чаще заменяются флэш-памятью
(в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и
КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше
реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников
возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы),
поэтому будут основным приложением. Несмотря на огромный интерес, SST
технологии по-прежнему используются относительно мало, но, вероятно, будут
самая захватывающая область проектирования трансформаторов будущего.

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний
Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Руководство по проектированию трансформаторов и индукторов полковника Уильяма Т.Маклайман. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • Электрические трансформаторы и силовое оборудование Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Ньюнес, 1997.Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
  • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера.Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих собственных книг описывает, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351,589: Система распределения электроэнергии Люсьена Голара и Джона Гиббса, 26 октября 1886 г.Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современной системы электроснабжения во всем мире.
  • Патент США 433702: Электрический трансформатор или индукционное устройство. Автор Никола Тесла, 5 августа 1890 года. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель Отто Титуса Блати, 9 мая 1893 г.Комбинированный трансформатор и двигатель, созданный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 года. Трансформатор с круговой шкалой, позволяющей регулировать выходное напряжение.

Новостные статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2007, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 27 мая 2020 г.

Могучие линии электропередач, которые пересекаются
наша сельская местность или незаметное шевеление под улицами города несут электричество
при очень высоких напряжениях от источника питания
растения в наши дома.Для линии электропередачи нет ничего необычного в рейтинге.
от 400000 до 750000 вольт! Но бытовая техника в наших домах использует
напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт. Если
вы пытались включить тостер или телевизор от опоры электричества,
мгновенно взорваться! (Даже не думайте пытаться, потому что
электричество в воздушных линиях почти наверняка убьет вас.)
какой-то способ уменьшить высоковольтное электричество от электростанций до
электричество более низкого напряжения, используемое фабриками, офисами и домами.Устройство, которое это делает, гудит от электромагнитных волн.
энергия, как она идет, называется трансформатором.
Давайте подробнее разберемся, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.
Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу.Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Ваш первый вопрос, наверное, такой: если наши дома и офисы
с помощью копировальных аппаратов,
компьютеры
стиральные машины и электробритвы
рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать
электричество при таком напряжении? Почему они используют такое высокое напряжение? К
Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу
проволока, электроны, которые несут свою энергию
покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о
обычно тратит энергию, как непослушный
школьники бегут по коридору. Вот почему провода нагреваются, когда
через них течет электричество (что очень полезно в электрических тостерах и других
приборы, использующие ТЭНы). Оказывается, что
чем выше напряжение электричества, которое вы используете, и тем ниже ток,
тем меньше энергии тратится таким образом.Итак, электричество, которое приходит
от электростанций передается по проводам под очень высоким напряжением в
экономить энергию.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики
машины, которые намного больше и более энергоемкие, чем все, что вы
есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна)
к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать
10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться
источники питания на 400 вольт или около того.Другими словами, разное электричество
пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные
электричество от электростанции, а затем преобразовать его в
более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции
по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию,
в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда
по проводу течет колеблющийся электрический ток, он создает магнитное
поле (невидимый образец магнетизма) или «магнитный поток» все
вокруг него. Сила магнетизма (которая имеет довольно
техническое название плотности магнитного потока)
непосредственно связанный с
величина электрического тока.Так что чем больше ток, тем
сильнее магнитное поле. Теперь есть еще один интересный факт о
электричество тоже. Когда магнитное поле колеблется вокруг
провод, он генерирует электрический ток в проводе. Итак, если мы поставим
вторая катушка проволоки рядом с первой, и посылает колеблющийся
электрический ток в первую катушку, мы создадим электрический
ток во втором проводе.
Ток в первой катушке обычно
называется первичным током, а ток
во втором проводе
это (сюрприз, сюрприз) вторичный ток.Что мы сделали
вот пропустить электрический ток через пустое пространство от одной катушки
провод к другому. Это называется электромагнитным
индукция, потому что ток в первой катушке
вызывает (или «индуцирует») ток во второй катушке.
Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к
другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или
(«повороты», как их любят называть физики).Если
вторая катушка
имеет такое же количество витков, что и первая катушка, электрический ток в
вторая катушка будет практически такого же размера, как и первая.
катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов
во второй катушке мы можем сделать вторичный ток и напряжение
больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если
электрический ток каким-то образом колеблется. Другими словами, у вас есть
использовать тип постоянно меняющегося электричества, называемый переменным
ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же
направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй, вторичная
напряжение меньше, чем
первичное напряжение:

Это называется понижающей
трансформатор. Если у второй катушки половина
столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше
величина первичного напряжения; если во второй катушке на одну десятую меньше
оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷
Первичное напряжение = Число витков вторичной обмотки ÷ Число витков
в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в
понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10
катушки во вторичной обмотке снизят напряжение в 10 раз, но
одновременно умножьте ток в 10 раз.Сила в
электрический ток равен току, умноженному на напряжение (Вт =
вольт x ампер — один из способов запомнить это), так что вы можете увидеть мощность в
вторичная катушка теоретически такая же, как мощность в
первичная обмотка. (На самом деле между
первичный и вторичный, потому что часть «магнитного потока» просачивается наружу.
сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед
трансформатор, который увеличивает
низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной
катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в
вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в
первичный, чтобы получить большее вторичное напряжение и меньшее вторичное
Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило:
катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков
имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки
слева вверху: модем-трансформер, белый трансформер в iPod.
зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов.
и города, где подведена высоковольтная электроэнергия от входящих линий электропередач.
преобразуется в более низкое напряжение. Но есть много трансформаторов в
Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение.
110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные
напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12
вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы
зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие
встроенные в них трансформаторы (часто устанавливаются в конце силового
свинца) для преобразования 110–240 вольт бытовой
питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему
у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что
они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Зарядные устройства индукционные

Многие домашние трансформаторы (например, те, что используются в iPod и
сотовые телефоны) предназначены для зарядки аккумуляторных батарей.
Вы можете точно увидеть, как они работают: течет электричество
в трансформатор из розетки на стене, попадает
преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем
iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет
кабель питания? Он заряжается немного другим типом
трансформатор, одна из катушек которого находится в основании щетки, и
другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать
О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашем верхнем фото, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником,
насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими)
компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии.
Так, например, поменяли местами переключающее и усилительное реле.
для транзисторов,
в то время как магнитные жесткие диски все чаще заменяются флэш-памятью
(в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и
КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше
реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников
возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы),
поэтому будут основным приложением. Несмотря на огромный интерес, SST
технологии по-прежнему используются относительно мало, но, вероятно, будут
самая захватывающая область проектирования трансформаторов будущего.

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний
Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Руководство по проектированию трансформаторов и индукторов полковника Уильяма Т.Маклайман. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • Электрические трансформаторы и силовое оборудование Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Ньюнес, 1997.Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
  • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера.Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих собственных книг описывает, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351,589: Система распределения электроэнергии Люсьена Голара и Джона Гиббса, 26 октября 1886 г.Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современной системы электроснабжения во всем мире.
  • Патент США 433702: Электрический трансформатор или индукционное устройство. Автор Никола Тесла, 5 августа 1890 года. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель Отто Титуса Блати, 9 мая 1893 г.Комбинированный трансформатор и двигатель, созданный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 года. Трансформатор с круговой шкалой, позволяющей регулировать выходное напряжение.

Новостные статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2007, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это

Реклама

Криса Вудфорда. Последнее изменение: 27 мая 2020 г.

Могучие линии электропередач, которые пересекаются
наша сельская местность или незаметное шевеление под улицами города несут электричество
при очень высоких напряжениях от источника питания
растения в наши дома.Для линии электропередачи нет ничего необычного в рейтинге.
от 400000 до 750000 вольт! Но бытовая техника в наших домах использует
напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт. Если
вы пытались включить тостер или телевизор от опоры электричества,
мгновенно взорваться! (Даже не думайте пытаться, потому что
электричество в воздушных линиях почти наверняка убьет вас.)
какой-то способ уменьшить высоковольтное электричество от электростанций до
электричество более низкого напряжения, используемое фабриками, офисами и домами.Устройство, которое это делает, гудит от электромагнитных волн.
энергия, как она идет, называется трансформатором.
Давайте подробнее разберемся, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси.
Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Фото: Спуск: эта старая подстанция (понижающий трансформатор) снабжает энергией небольшую английскую деревню, где я живу.Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Ваш первый вопрос, наверное, такой: если наши дома и офисы
с помощью копировальных аппаратов,
компьютеры
стиральные машины и электробритвы
рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать
электричество при таком напряжении? Почему они используют такое высокое напряжение? К
Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу
проволока, электроны, которые несут свою энергию
покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о
обычно тратит энергию, как непослушный
школьники бегут по коридору. Вот почему провода нагреваются, когда
через них течет электричество (что очень полезно в электрических тостерах и других
приборы, использующие ТЭНы). Оказывается, что
чем выше напряжение электричества, которое вы используете, и тем ниже ток,
тем меньше энергии тратится таким образом.Итак, электричество, которое приходит
от электростанций передается по проводам под очень высоким напряжением в
экономить энергию.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики
машины, которые намного больше и более энергоемкие, чем все, что вы
есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна)
к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать
10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться
источники питания на 400 вольт или около того.Другими словами, разное электричество
пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные
электричество от электростанции, а затем преобразовать его в
более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции
по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию,
в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда
по проводу течет колеблющийся электрический ток, он создает магнитное
поле (невидимый образец магнетизма) или «магнитный поток» все
вокруг него. Сила магнетизма (которая имеет довольно
техническое название плотности магнитного потока)
непосредственно связанный с
величина электрического тока.Так что чем больше ток, тем
сильнее магнитное поле. Теперь есть еще один интересный факт о
электричество тоже. Когда магнитное поле колеблется вокруг
провод, он генерирует электрический ток в проводе. Итак, если мы поставим
вторая катушка проволоки рядом с первой, и посылает колеблющийся
электрический ток в первую катушку, мы создадим электрический
ток во втором проводе.
Ток в первой катушке обычно
называется первичным током, а ток
во втором проводе
это (сюрприз, сюрприз) вторичный ток.Что мы сделали
вот пропустить электрический ток через пустое пространство от одной катушки
провод к другому. Это называется электромагнитным
индукция, потому что ток в первой катушке
вызывает (или «индуцирует») ток во второй катушке.
Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к
другой, обернув их вокруг прутка из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, мы просто скручиваем проволоку в петли или
(«повороты», как их любят называть физики).Если
вторая катушка
имеет такое же количество витков, что и первая катушка, электрический ток в
вторая катушка будет практически такого же размера, как и первая.
катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов
во второй катушке мы можем сделать вторичный ток и напряжение
больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если
электрический ток каким-то образом колеблется. Другими словами, у вас есть
использовать тип постоянно меняющегося электричества, называемый переменным
ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же
направление.

Понижающие трансформаторы

Если у первой катушки больше витков, чем у второй, вторичная
напряжение меньше, чем
первичное напряжение:

Это называется понижающей
трансформатор. Если у второй катушки половина
столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше
величина первичного напряжения; если во второй катушке на одну десятую меньше
оказывается, он имеет одну десятую напряжения.Всего:

Вторичное напряжение ÷
Первичное напряжение = Число витков вторичной обмотки ÷ Число витков
в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в
понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

Так понижающий трансформатор со 100 витками в первичной обмотке и 10
катушки во вторичной обмотке снизят напряжение в 10 раз, но
одновременно умножьте ток в 10 раз.Сила в
электрический ток равен току, умноженному на напряжение (Вт =
вольт x ампер — один из способов запомнить это), так что вы можете увидеть мощность в
вторичная катушка теоретически такая же, как мощность в
первичная обмотка. (На самом деле между
первичный и вторичный, потому что часть «магнитного потока» просачивается наружу.
сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед
трансформатор, который увеличивает
низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной
катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в
вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в
первичный ÷ Количество витков вторичного

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в
первичный, чтобы получить большее вторичное напряжение и меньшее вторичное
Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило:
катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков
имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки
слева вверху: модем-трансформер, белый трансформер в iPod.
зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов.
и города, где подведена высоковольтная электроэнергия от входящих линий электропередач.
преобразуется в более низкое напряжение. Но есть много трансформаторов в
Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение.
110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные
напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12
вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы
зарядить его аккумулятор.Таким образом, у таких электронных устройств есть небольшие
встроенные в них трансформаторы (часто устанавливаются в конце силового
свинца) для преобразования 110–240 вольт бытовой
питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему
у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что
они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Зарядные устройства индукционные

Многие домашние трансформаторы (например, те, что используются в iPod и
сотовые телефоны) предназначены для зарядки аккумуляторных батарей.
Вы можете точно увидеть, как они работают: течет электричество
в трансформатор из розетки на стене, попадает
преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем
iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет
кабель питания? Он заряжается немного другим типом
трансформатор, одна из катушек которого находится в основании щетки, и
другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать
О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашем верхнем фото, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником,
насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими)
компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии.
Так, например, поменяли местами переключающее и усилительное реле.
для транзисторов,
в то время как магнитные жесткие диски все чаще заменяются флэш-памятью
(в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и
КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше
реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников
возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы),
поэтому будут основным приложением. Несмотря на огромный интерес, SST
технологии по-прежнему используются относительно мало, но, вероятно, будут
самая захватывающая область проектирования трансформаторов будущего.

Если вам понравилась эта статья …

… вам могут понравиться мои книги. Мой последний
Breathess: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • Руководство по проектированию трансформаторов и индукторов полковника Уильяма Т.Маклайман. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • Электрические трансформаторы и силовое оборудование Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к рассмотрению соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Ньюнес, 1997.Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
  • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера.Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004. Одна из моих собственных книг описывает, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351,589: Система распределения электроэнергии Люсьена Голара и Джона Гиббса, 26 октября 1886 г.Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современной системы электроснабжения во всем мире.
  • Патент США 433702: Электрический трансформатор или индукционное устройство. Автор Никола Тесла, 5 августа 1890 года. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель Отто Титуса Блати, 9 мая 1893 г.Комбинированный трансформатор и двигатель, созданный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 года. Трансформатор с круговой шкалой, позволяющей регулировать выходное напряжение.

Новостные статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2007, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работает трансформатор напряжения ~ Изучение электротехники

Функция трансформатора основана на том принципе, что электрическая энергия эффективно передается за счет магнитной индукции от одной цепи к другой. В основном трансформатор состоит из двух или более обмоток, расположенных на одном магнитном пути.Обмотка, на которую подается электрическая энергия, называется первичной обмоткой, а обмотка, к которой подключена нагрузка, называется вторичной обмоткой. Типичное действие двухобмоточного трансформатора показано ниже:

Трансформатор Action

Когда первичная обмотка трансформатора запитана от источника переменного тока (AC), в сердечнике трансформатора создается переменное магнитное поле. Через сердечник циркулируют переменные магнитные силовые линии, называемые «потоком».Во второй (вторичной) обмотке вокруг того же сердечника напряжение индуцируется переменными магнитными линиями. Нагрузка, подключенная к выводам вторичной обмотки, вызывает протекание тока.

Детали трансформатора

Трансформатор состоит из двух основных неподвижных частей:

(а) Сердцевина из многослойного железа

(b) Обмотки (первичная и вторичная)

Сердечник из слоистого железа

Железный сердечник трансформатора состоит из листов проката.Это железо обрабатывают таким образом, чтобы оно обладало высокой магнитной проводимостью (высокой проницаемостью) по всей длине сердечника. Проницаемость — это термин, используемый для описания случая, когда материал будет проводить магнитные силовые линии.

Железо также имеет высокое омическое сопротивление на пластинах (по всей толщине сердечника). Стальные листы необходимо ламинировать, чтобы уменьшить нагрев сердечника. Существует два распространенных типа сердечников трансформаторов:

(а) Тип сердечника

(b) Корпус типа

Трансформаторы типа Core и Shell

В трансформаторе с сердечником (в форме сердечника) обмотки окружают сердечник.В трансформаторе кожухового типа стальная магнитная цепь (сердечник) образует кожух, окружающий обмотки. В форме сердечника обмотки находятся снаружи; в форме оболочки обмотки находятся внутри.

Обмотки

Трансформатор имеет две обмотки; первичная обмотка и вторичная обмотка.

Первичная обмотка — это катушка, которая получает энергию. Его формируют, наматывают и надевают на железный сердечник. Вторичная обмотка — это катушка, которая отводит энергию с преобразованным или измененным напряжением.

Типы трансформаторов

Трансформаторы классифицируются по разным критериям. Однако вот список наиболее распространенных универсальных типов трансформаторов:

(а) Однофазные трансформаторы

(б) Трехфазные трансформаторы

(c) Трансформаторы потенциала или напряжения

d) Автотрансформаторы

(e) Трансформаторы тока

(е) Силовые трансформаторы

Коэффициент напряжения трансформатора

Напряжение на обмотках трансформатора прямо пропорционально количеству витков на катушках обмоток.Эта связь выражается формулой:

Коэффициент напряжения трансформатора

Где:

Vp = напряжение на первичных обмотках, В

Vs = напряжение на вторичных обмотках, В

Np = количество витков первичной обмотки

Ns = количество витков вторичных обмоток

Отношение Vp / Vs называется отношением напряжений (VR). Отношение Np / Ns называется отношением оборотов (TR).

Соотношение напряжений 1: 4 (читается как от 1 до 4) означает, что на каждый вольт на первичной обмотке трансформатора приходится 4 В на вторичной. Когда вторичное напряжение больше первичного, трансформатор называется повышающим трансформатором.

Соотношение напряжений 4: 1 означает, что на каждые 4 В первичной обмотки приходится только 1 В. Когда вторичное напряжение меньше первичного, трансформатор называется понижающим трансформатором.

Коэффициент текущей ликвидности

Ток в катушках трансформатора обратно пропорционален напряжению в катушках.Эта связь выражается уравнением:

Коэффициент тока трансформатора

Где:

Ip = ток в первичной обмотке, А

Is = ток вторичной обмотки, А

В приведенном выше уравнении мы можем заменить Vp / Vs Np / Ns, так что мы имеем:

КПД трансформатора

КПД трансформатора равен отношению выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой.

Идеальный трансформатор имеет 100-процентный КПД, потому что он передает всю получаемую энергию.

Однако из-за потерь в сердечнике и меди КПД даже самого лучшего практичного трансформатора составляет менее 100 процентов. Выражается в виде уравнения:

КПД трансформатора

Где:

Eff = КПД

Ps = выходная мощность из вторичной обмотки = входная мощность — потери в сердечнике — потери в меди

Pp = потребляемая мощность первичной обмотки

Эффективность хорошо спроектированных трансформаторов очень высока, в среднем более 98 процентов (%) для силовых трансформаторов.Единственные потери в трансформаторе связаны с потерями в сердечнике, которые идут на поддержание переменного магнитного поля, потерями сопротивления в катушках и мощностью, используемой для охлаждения больших трансформаторов, требующих охлаждения.

Основная причина высокого КПД трансформаторов по сравнению с другим оборудованием — отсутствие движущихся частей. Трансформаторы называются статическими машинами переменного тока.

Что такое трансформатор, как он работает и разные типы трансформаторов

Если вы какое-то время знакомы с электрическими приборами, то наверняка слышали о трансформаторе.Да, это те огромные громоздкие вещи, которые можно найти на углах улиц, которые издают случайные пугающие звуки и иногда издают искры. Зарядное устройство для вашего телефона также имеет своего рода небольшой трансформатор, но он намного меньше и с совершенно другим механизмом.

Что такое трансформатор?

Трансформатор — это устройство, которое использует принципы электромагнетизма для преобразования одного напряжения или тока в другое. Он состоит из пары изолированных проводов, намотанных на магнитопровод.Обмотка, к которой мы подключаем преобразованное напряжение или ток, называется первичной обмоткой, а выходная обмотка — вторичной обмоткой.

Трансформаторы

бывают двух типов: повышающие, которые увеличивают напряжение или ток, и понижающие, что снижает входное напряжение или ток. Например, трансформаторы в вашей микроволновой печи — это вторичный трансформатор, который используется для подачи около 2200 Вольт на вакуумную лампу в микроволновой печи.

Следует отметить, что трансформаторы работают только с переменным или переменным напряжением и не работают с постоянным током.Теперь мы узнаем почему.

Насколько важны трансформаторы в электрической системе?

Это было примерно в 1856 году, когда два блестящих ума Никола Тесла и Томас Эдисон соперничали друг с другом. Это были времена, когда электричество и его применение, например, накаливание лампочки и запуск двигателя, были только заметны. Именно Эдисон и его соратники первыми открыли систему постоянного тока, а через некоторое время после этого Тесла придумал свою систему переменного тока (переменного тока).С тех пор оба пытались доказать, что их система более выгодна, чем другая.

К тому времени настало время для электричества в дома. Пока Эдисон был занят демонстрацией того, насколько опасен переменный ток, убивая слонов электрическим током, Тесла и его команда придумали трансформаторы, которые сделали передачу электричества намного проще и эффективнее. Даже сегодня трансформаторы играют жизненно важную роль в системе передачи. Давай узнаем почему.

Передача электроэнергии с высоким напряжением и малым током поможет нам уменьшить толщину проводов передачи и, следовательно, стоимость, а также повысить эффективность системы.По этой причине стандартная система передачи может иметь напряжение от 22 кВ до 66 кВ, в то время как некоторые генераторы на электростанции имеют выходное напряжение всего 11 кВ, а бытовому прибору переменного тока требуется только 220 В / 110 В. Итак, где происходит это преобразование напряжения и кто это делает.

Ответ на вопрос — трансформаторы. От электростанции до вашего дома в системе будут трансформаторы, которые будут повышать (повышать напряжение) или понижать (понижать напряжение) напряжение для поддержания эффективности системы.Вот почему трансформаторы называют сердцем системы передачи электроэнергии. Подробнее о них мы узнаем в этой статье.

Обозначения трансформатора

Обозначение схемы трансформатора — это просто две катушки индуктивности, соединенные бок о бок с одним и тем же сердечником. Характер линии между двумя обмотками указывает на тип используемого сердечника: пунктирная линия представляет феррит, две параллельные линии представляют слоистое железо, и никакая линия не представляет воздушный сердечник.

Иногда количество «выступов» используется как приблизительный показатель функции трансформатора — меньшее количество выступов с одной стороны и больше с другой может означать, что первая сторона имеет меньшее количество витков, чем другая.

Работа трансформатора

Чтобы понять принцип работы трансформатора, нам нужно вернуться во времени, в лабораторию Майкла Фарадея.

Майкла Фарадея можно назвать отцом трансформатора, поскольку именно его эксперименты помогли нам понять электромагнетизм и разработать такие устройства, как двигатели и генераторы.

В конце 1800-х годов, когда было обнаружено, что электричество и магнетизм связаны явлениями, возникла гонка за попытками создать практическое устройство, которое могло бы использовать силу магнитов для выработки электричества.

Фарадей обнаружил, что электричество можно генерировать, поднося магнит близко к катушке с проволокой. Он обнаружил, что напряжение будет создаваться только при изменении магнитного поля, то есть, если он перемещает катушку или магнит относительно друг друга.

В постоянном токе постоянный ток и магнитное поле. Поскольку поле стабильно и не меняется, на вторичной обмотке не возникает напряжения, и трансформатор выглядит как обычная катушка из резистивного провода, ведущего к источнику питания. Таким образом, трансформаторы не работают с постоянным током.

Он также обнаружил, что когда две катушки с проволокой находятся близко друг к другу, ток, протекающий в одной катушке, может индуцировать ток в другой катушке. Этот принцип называется взаимной индуктивностью и определяет работу всех современных трансформаторов.

Как показано на рисунке, трансформатор состоит из двух обмоток, намотанных на магнитопровод.

Цель наличия сердечника заключается в том, что воздух не очень хорошо поддерживает магнитные поля, поэтому наличие магнитного сердечника увеличивает магнитное поле для заданного количества тока, протекающего через одну обмотку, что, в свою очередь, создает более сильный ток в другой. , увеличивая общую эффективность устройства.

Когда ток проходит через первичную обмотку, в сердечнике создается магнитное поле, которое в основном ограничивается сердечником.

Это магнитное поле проходит через середину вторичной обмотки и, следовательно, индуцирует ток в другой по закону взаимной индукции.

Прелесть этой системы в том, что отношение входного напряжения к выходному — это просто отношение первичной и вторичной обмоток, суммируемое по следующей формуле:

Vout / Vin = Nsec / Npri

Где Vout — выходное напряжение, Vin — входное напряжение, Nsec — количество витков вторичной обмотки, а Npri — количество витков в первичной обмотке.

Итак, если у вас есть два трансформатора, один с 100 витками на первичной обмотке и 1000 на вторичной обмотке, а другой с 10 витками на первичной и 100 витков на вторичной обмотках, вы можете рассчитать соотношение витков как 1:10 для обоих, поэтому они оба повышают напряжение до одинакового уровня.

Свойства трансформатора

Если мы внимательно рассмотрим приведенный выше пример, первый трансформатор будет иметь большее сопротивление обмотки (поскольку используется больше проводов) и в некоторых случаях это может ограничивать количество тока, который может быть получен от трансформатора.Это свойство называется сопротивлением обмотки, но в большинстве случаев оно не имеет особого значения, поскольку используемый медный провод обычно имеет низкое сопротивление.

Еще вы заметите, что нет прямого электрического соединения между первичной и вторичной обмотками. Это называется гальванической развязкой и, как мы увидим, может быть очень полезно.

Глядя на каждую обмотку трансформатора, мы видим, что они сконструированы так же, как катушки индуктивности — катушка с проволокой, намотанная вокруг магнитного сердечника, — и также имеют индуктивность.

Эта индуктивность пропорциональна квадрату числа витков, вычисляемому по следующей формуле:

Lpri / Lsec = Npri2 / Nsec2

Где Lpri — индуктивность первичной обмотки, Lsec — индуктивность вторичной обмотки, Npri — количество витков на первичной обмотке, а Nsec — количество витков на вторичных обмотках.

Константу пропорциональности для данного сердечника можно найти в таблице данных, и она обычно выражается в единицах мкГн / оборот2. Точное значение зависит от типа и размера сердечника.

Предположим, у вас есть сердечник трансформатора со спецификацией 1 мкГн / виток2. Если вы намотаете одну обмотку на этот сердечник, то индуктивность будет равна значению константы, умноженному на число витков в квадрате, в данном случае 1. Таким образом, индуктивность этой обмотки будет 1 мкГн. Если на этот же сердечник намотать еще одну обмотку с 10 витками, то индуктивность будет:

(1 мкГн / оборот2) * (10 витков) 2 = 100 мкГн

Поскольку обмотки имеют индуктивность, они обеспечивают сопротивление сигналам переменного тока, определяемое по формуле:

XL = 2π * f * L

Где XL — полное сопротивление в омах, f — частота в омах, а L — индуктивность в единицах Генри.

Допустим, вы хотите сконструировать трансформатор, который потребляет 3 А при 220 В переменного тока при 50 Гц, что является стандартной частотой электросети. Тогда полное сопротивление первичной обмотки должно быть 73,3 Ом по закону Ома. Теперь, когда мы знаем необходимое сопротивление и частоту, мы можем изменить формулу, чтобы определить индуктивность, необходимую для обмотки:

L = (XL) / (2π * f)

Подставляя значения, мы находим, что необходимая индуктивность составляет 233 мГн.

Используя эту информацию и значение мкГн / виток2 из таблицы данных, мы можем рассчитать количество обмоток, необходимых для получения требуемой индуктивности.

Предположим, что значение составляет 50 мкГн / виток2, тогда мы можем изменить формулу, чтобы определить индуктивность:

Где N — количество витков, L — требуемая индуктивность, а член t2 / мкГн — это просто величина, обратная значению, указанному в таблице данных.

Применяя наши значения в формуле, мы получаем необходимое количество витков, равное 2158. Итак, как вы видите, освоив формулы, вы можете спроектировать трансформаторы практически для любого применения!

Строительство трансформатора

Для тех, кому нужно наматывать трансформаторы самостоятельно, важно знать конструкцию трансформатора.

Трансформатор состоит из нескольких основных компонентов:

1. БОББИН:

Бобина — это базовый каркас любых трансформаторов. Он обеспечивает катушку, на которую наматываются обмотки, а также удерживает сердечник на месте. Обычно он сделан из термостойкого пластика. Он также иногда содержит металлические штыри, к которым вы можете припаять концы обмоток, например, если хотите установить его на печатную плату.

2. ЯДРО

Это, наверное, самая важная часть трансформатора.Как показано на рисунке, сердечники могут быть разных форм и размеров. Именно магнитные свойства сердечника определяют электрические свойства трансформатора, который построен вокруг сердечника.

3. ОБМОТКИ

Это может показаться банальным, но проволока, использованная в конструкции, так же важна, как и любой другой аспект. Обычно используется сплошной эмалированный медный провод, так как изоляция прочная и тонкая, поэтому нет лишнего пространства из-за пластиковых изоляционных оболочек.

Применение трансформаторов

ПРЕОБРАЗОВАНИЕ ГЛАВНОГО НАПРЯЖЕНИЯ

Это, вероятно, наиболее распространенное применение трансформаторов — понижение сетевого напряжения для низковольтных устройств. Вы можете даже найти их внутри таких вещей, как микроволновые печи, старые телевизоры и блоки питания из кирпича. Эти трансформаторы имеют железные сердечники, которые обеспечивают отличную проницаемость, но делают их громоздкими и несколько менее мощными, чем у других типов.

Они имеют маркировку 12-0-12 или 6-0-6 с тремя вторичными проводами.Это означает, что два внешних провода имеют на выходе среднеквадратичное значение 12 В переменного тока, если вы сделаете центральный провод заземлением. Если вы измеряете обе обмотки 12 В, вы получите 24 В переменного тока RMS. Это дает вам гибкость в выборе того, как вы можете использовать трансформатор.

ИСТОЧНИКИ ПИТАНИЯ С ПЕРЕКЛЮЧАТЕЛЯМИ

Это очень особый тип источников питания, которые принимают вход постоянного тока и выдают постоянный ток на выходе. Они есть у всех современных зарядных устройств для телефонов. Трансформаторы, используемые в этих блоках питания, больше похожи на индукторы с небольшим количеством витков и ферритовыми сердечниками со средней или высокой магнитной проницаемостью.Напряжение постоянного тока подается через «первичную обмотку» на короткое время, так что ток нарастает до определенного уровня и сохраняет некоторую магнитную энергию в сердечнике. Эта энергия затем передается вторичной обмотке при более низком напряжении, поскольку она имеет меньшее количество витков. Они работают на высоких частотах, обладают отличным КПД и очень малы.

3. ЭЛЕКТРИЧЕСКАЯ ИЗОЛЯЦИЯ

Это специальные трансформаторы с соотношением витков 1: 1, так что входное и выходное напряжения одинаковы.Они используются для отключения электроприборов от заземления. Поскольку сеть является заземленной, прикосновение даже к одному проводу может привести к поражению электрическим током, поскольку обратный путь — это буквально земля. Использование развязывающих трансформаторов «отключает» прибор от заземления сети, поскольку трансформаторы гальванически изолированы.

4.ТРАНСФОРМАТОРЫ ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ

В большинстве стран мира в качестве стандартного напряжения питания используется 220 В переменного тока, но в некоторых странах, например в США, используется 110 В переменного тока.Это означает, что некоторые устройства, например блендеры, могут работать не во всех странах. Для этой цели мы можем использовать трансформаторы, которые преобразуют 110 В в 220 В или наоборот, чтобы убедиться, что техника может использоваться в любой стране.

5. СОГЛАСОВАНИЕ ИМПЕДАНСА

Это специальные типы трансформаторов, которые используются для согласования импеданса источника и нагрузки. Они находят широкое применение в ВЧ и аудиосхемах.

Коэффициент трансформации равен квадратному корню из импедансов источника и нагрузки.

6. АВТОТРАНСФОРМАТОР

Это специальный тип трансформатора, который имеет только одну обмотку с выходом «отвод», который образует вторичную обмотку. Обычно этот отвод является регулируемым, поэтому вы можете изменять выходное напряжение переменного тока, как делитель напряжения.

Заключение

Трансформеры — полезные устройства, и научиться их конструировать и работать с ними может очень кстати! Хотя мы рассмотрели здесь основы, проектирование трансформатора с нуля — это то, что можно обсудить в другой статье, поэтому давайте поговорим об этом в другой раз.Итак, теперь, когда вы снова увидите трансформатор, вы будете знать, почему он там и как работает.

Как работают трансформаторы — инженерное мышление

Узнайте, как работают трансформаторы, как создать магнитное поле с помощью электричества, почему в трансформаторах можно использовать только переменный ток, как работает базовый трансформатор, повышающие и понижающие трансформаторы и, наконец, трехфазные трансформаторы. Эта статья является продолжением нашей серии по электротехнике, так что ознакомьтесь с другими статьями ЗДЕСЬ, если вы еще этого не сделали.

Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube.

Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.

Основные сведения о трансформаторе

Есть два типа электричества; Переменный и постоянный ток, но трансформаторы могут работать только от переменного или переменного тока. Если вы не знаете, в чем разница между ними, то, пожалуйста, сначала прочтите статьи по основам электричества. Посмотрите их ЗДЕСЬ.Когда мы подключаем генератор переменного тока к замкнутому контуру кабеля, через этот кабель может протекать ток, и направление тока будет чередоваться взад и вперед при вращении генератора.

Как это работает?

Чередование означает, что ток достигает максимальной и минимальной точки в течение цикла, что придает ему синусоидальную форму при подключении к осциллографу. Вы можете думать об этом как о приливе на море; по мере того, как он меняет направление и достигает своей максимальной и минимальной точки.Когда ток течет по кабелю, он допускает магнитное поле. Если мы пропустим через кабель постоянный ток, магнитное поле останется постоянным, но если мы пропустим через кабель переменный ток, то магнитное поле будет увеличиваться и уменьшаться по силе и меняет полярность по мере изменения направления тока.

Переменный ток

Если мы соединим несколько кабелей и пропустим через них ток, то магнитные поля объединятся, чтобы создать более сильное магнитное поле. Если затем свернуть кабель в катушку, магнитное поле станет еще сильнее.Если мы поместим вторую катушку в непосредственной близости от первой катушки, а затем пропустим переменный ток переменного тока через первую катушку, то создаваемое ею магнитное поле вызовет ток во вторую катушку, и эта магнитная сила будет толкать и тянуть свободные электроны. заставляя их двигаться.

Электродвижущая сила

Ключевым компонентом здесь является то, что магнитное поле меняет полярность, а также интенсивность. Это изменение интенсивности и направления магнитного поля постоянно мешает свободным электронам во вторичной катушке и заставляет их двигаться.Это движение известно как электродвижущая сила или ЭДС.

Изменение полярности магнитного поля

Электродвижущая сила не возникает, когда мы пропускаем постоянный ток через первичную катушку, и это потому, что магнитное поле постоянно, поэтому электроны не вынуждены двигаться. Единственный раз, когда это вызовет ЭДС, — это очень короткое время, когда первичная цепь размыкается и замыкается, или когда напряжение увеличивается или уменьшается. И это потому, что эти действия приводят к изменению магнитного поля.Поэтому мы используем переменный ток, так как это изменение происходит постоянно.

Постоянный ток через первичную обмотку

Проблема с этой установкой состоит в том, что большая часть магнитного поля с первичной стороны тратится впустую, потому что оно находится вне диапазона вторичной обмотки.

Как это исправить?

Чтобы исправить это, место инженера, сердечник или ферромагнитный материал, такой как железо, в петле между первичной и вторичной обмотками. Теперь этот контур направляет магнитное поле по пути к вторичной катушке, так что они разделяют магнитное поле, и это делает трансформатор намного более эффективным.

Ферромагнитный материал

В настоящее время использование железного сердечника не является идеальным решением. Некоторая энергия будет потеряна из-за того, что известно как вихревые токи, когда ток закручивается вокруг сердечника, и это нагревает трансформатор, что означает, что энергия теряется в виде тепла. Чтобы уменьшить это, инженеры используют ламинированные листы железа для формирования сердечника, что значительно снижает вихревые токи.

через GIPHY

Повышающие и понижающие трансформаторы

Трансформаторы производятся в качестве повышающих или понижающих трансформаторов, и они используются для увеличения или уменьшения напряжения, просто используя другое количество витков в катушке на вторичной стороне .В повышающем трансформаторе напряжение во вторичной обмотке увеличивается, и это будет означать, что ток будет уменьшаться, но не беспокойтесь сейчас о том, почему это происходит. Мы рассмотрим это в более поздней статье по электротехнике. Для увеличения напряжения в повышающем трансформаторе; нам просто нужно добавить больше витков к катушке на вторичной стороне, чем на первичной стороне. В понижающем трансформаторе это напряжение снижается во вторичной обмотке, что означает, что ток увеличивается. Для этого мы просто используем меньше витков в катушке на вторичной стороне по сравнению с первичной стороной.

Например, электростанции необходимо транспортировать вырабатываемую ею электроэнергию в город на некотором расстоянии. Электростанция будет использовать повышающий трансформатор для увеличения напряжения и уменьшения тока, поскольку это снизит потери в длинных кабелях передачи. Затем, когда он достигнет города, его нужно будет уменьшить, чтобы сделать его безопасным и пригодным для использования в зданиях и домах, поэтому потребуется понижающий трансформатор. Трансформаторы для коммерческих зданий и электростанций обычно имеют трехфазную конфигурацию.Вы увидите, как они размещены вокруг ваших городов, и они будут выглядеть примерно так.

Пример трансформатора

Эти трехфазные трансформаторы могут быть изготовлены либо из трех отдельных трансформаторов, которые соединены вместе, либо они могут быть встроены в один большой блок с общим железным сердечником.

В этой схеме катушки обычно расположены концентрически одна в другой, причем катушка с более высоким напряжением находится снаружи, а катушка с более низким напряжением находится внутри. Теперь эти катушки изолированы друг от друга, так что между двумя катушками будет проходить только магнитное поле.Для соединения двух сторон существует множество различных конфигураций, но одна из наиболее часто используемых — это соединение катушек в конфигурации, известной как Delta Wye, иногда называемой Delta Star. Это относится к первичной стороне, подключенной по схеме треугольника, а к вторичной стороне — к широкой в ​​конфигурации звезды. Центральная точка стороны звезды, где встречаются все три разъема, часто заземляется, что позволяет также подключить нейтральную линию.

Конфигурация треугольником и звездой

Мы рассмотрим подключения трансформаторов и расчеты в других более сложных статьях, поскольку это может быть довольно сложно.Так что пока просто сосредоточьтесь на том, как они работают, чтобы накапливать ваши базовые знания.