Как рассчитать мощность электрического тока?
Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.
Понятие электрической мощности и способы ее расчета
С электротехнической точки зрения она представляет собой количественное выражение взаимодействия энергии с материалом проводников и элементами при протекании тока в электрической цепи. Из-за наличия электрического сопротивления во всех деталях, задействованных в проведения электротока, направленное движение заряженных частиц встречает препятствие на пути следования. Это и обуславливает столкновение носителей заряда, электроэнергия переходит в другие виды и выделяется в виде излучения, тепла или механической энергии в окружающее пространство. Преобразование одного вида в другой и есть потребляемая мощность прибора или участка электрической цепи.
В зависимости от параметров источника тока и напряжения мощность также имеет отличительные характеристики. В электротехнике обозначается S, P и Q, единица измерения согласно международной системы СИ – ватты. Вычислить мощность можно через различные параметры приборов и электрических приборов. Рассмотрим каждый из них более детально.
Через напряжение и ток
Наиболее актуальный способ, чтобы рассчитать мощность в цепях постоянного тока – это использование данных о силе тока и приложенного напряжения. Для этого вам необходимо использовать формулу расчета: P = U*I
Где:
Этот вариант подходит только для активной нагрузки, где постоянный ток не обеспечивает взаимодействия с реактивной составляющей цепи. Чтобы найти мощность вам нужно выполнить произведение силы тока на напряжение. Обе величины должны находиться в одних единицах измерения – Вольты и Амперы, тогда результат также получится в Ваттах. Можно использовать и другие способы кВ, кА, мВ, мА, мкВ, мкА и т.д., но и параметр мощности пропорционально изменит свой десятичный показатель.
Через напряжение и сопротивление
Для большинства электрических устройств известен такой параметр, как внутреннее сопротивление, которое принимается за константу на весь период их эксплуатации. Так как бытовые или промышленные единицы подключаются к источнику с известным номиналом напряжения, определять мощность достаточно просто. Активная мощность находится из предыдущего соотношения и закона Ома, согласно которого ток на участке прямо пропорционален величине приложенного напряжения и имеет обратную пропорциональность к сопротивлению:
I = U/R
Если выражение для вычисления токовой нагрузки подставить в предыдущую формулу, то получится такое выражение для определения мощности:
P = U*(U/R)=U2/R
Где,
- P – величина нагрузки;
- U – приложенная разность потенциалов;
- R – сопротивление нагрузки.
Через ток и сопротивление
Бывает ситуация, когда разность потенциалов, приложенная к электрическому прибору, неизвестна или требует трудоемких вычислений, что не всегда удобно. Особенно актуален данный вопрос, если несколько устройств подключены последовательно и вам неизвестно, каким образом потребляемая электроэнергия распределяется между ними. Подход в определении здесь ничем не отличается от предыдущего способа, за основу берется базовое утверждение, что электрическая нагрузка рассчитывается как P = U×I, с той разницей, что напряжение нам не известно.
Поэтому ее мы также выведем из закона Ома, согласно которого нам известно, что падение напряжения на каком-либо отрезке линии или электроустановки прямо пропорционально току, протекающему по этому участку и сопротивлению отрезка цепи:
U=I*R
после того как выражение подставить в формулу мощности, получим:
P = (I*R)*I =I2*R
Как видите, мощность будет равна квадрату силы тока умноженной на сопротивление.
Полная мощность в цепи переменного тока
Сети переменного тока кардинально отличаются от постоянного тем, что изменение электрических величин, приводит к появлению не только активной, но и реактивной составляющей. В итоге суммарная мощность будет также состоять активной и реактивной энергии:
Где,
- S – полная мощность
- P – активная составляющая – возникает при взаимодействии электротока с активным сопротивлением;
- Q – реактивная составляющая – возникает при взаимодействии электротока с реактивным сопротивлением.
Также составляющие вычисляются через тригонометрические функции, так:
P = U*I*cosφ
Q = U*I*sinφ
что активно используется в расчете электрических машин.
Рис. 1. Треугольник мощностей
Пример расчета полной мощности для электродвигателя
Отдельный интерес представляет собой нагрузка, подключенная к трехфазной сети, так как электрические величины, протекающие в ней, напрямую зависят от номинальной нагрузки каждой из фаз. Но для наглядности примера мы не будем рассматривать, как найти мощность несимметричного прибора, так как это довольно сложная задача, а приведем пример расчета трехфазного двигателя.
Особенность питания и асинхронной и синхронной электрической машины заключается в том, что на обмотки может подаваться и фазное и линейное напряжение. Тот или иной вариант, как правило, обуславливается способом соединения обмоток электродвигателя. Тогда мощность будет вычисляться по формуле:
S = 3*Uф*Iф
В случае выполнения расчетов с линейным напряжением, чтобы найти мощность формула примет вид:
Активная и реактивная мощности будут вычисляться по аналогии с сетями переменного тока, как было рассмотрено ранее.
Теперь рассмотрим вычисления на примере конкретной электрической машины асинхронного типа. Следует отметить, что официальная производительность, указываемая в паспортных данных электродвигателя – это полезная мощность, которую двигатель может выдать при совершении оборотов вала. Однако полезная кардинально отличается от полной, которую можно вычислить за счет коэффициента мощности.
Рис. 2. Шильд электродвигателя
Как видите, для вычислений с шильда мы возьмем следующую информацию об электродвигателе:
- полезная производительность – 3 кВт, а в переводе на систему измерения – 3000 Вт;
- коэффициент полезного действия – 80%, а в пересчете для вычислений будем пользоваться показателем 0,8;
- тригонометрическая функция соотношения активных и реактивных составляющих – 0,74%;
- напряжение, при соединении обмоток треугольником составит 220 В;
- сила тока при том же способе соединения – 13,3 А.
С таким перечнем характеристик можно воспользоваться несколькими способами:
S = 1,732*220*13,3 = 5067 Вт
Чтобы найти искомую величину, сначала определяем активную составляющую:
P = Pполезная / КПД = 3000/0.8 = 3750 Вт
Далее полную по способу деления активной на коэффициент cos φ:
S = P/cos φ = 3750/0.74 = 5067 Вт
Как видите, и в первом, и во втором случае искомая величина получилась одинакового значения.
Примеры задач
Для примера рассмотрим вычисление на участках электрической цепи с последовательным и параллельным соединением элементов. Первый вариант предусматривает ситуацию, когда все детали соединяются друг за другом от одного полюса источника питания до другого.
Рис. 3. Последовательная расчетная цепь
Как видите на рисунке, в качестве источника мы используем батарейку с номинальным напряжением 9 В и три резистора по 10, 20 и 30 Ом соответственно. Так как номинальный ток нам не известен, расчет произведем через напряжение и сопротивление:
P = U2/R = 81 / (10+20+30) = 1.35 Вт
Для параллельной схемы подключения возьмем в качестве примера участок цепи с двумя резисторами и одним источником тока:
Рис. 4. Параллельная схема подключения
Как видите, для удобства расчетов нам нужно привести параллельно подключенные резисторы к схеме замещения, из чего получится:
Rобщ = (R1*R2) / (R1+R2) = (10*15) / (10+15) = 6 Ом
Тогда искомый номинал нагрузки мы можем узнать через значение тока и сопротивления:
P = I2*R = 25*6 = 150 Вт
Видео по теме
Мощность электрического тока — Основы электроники
Обычно электрический ток сравнивают с течением жидкости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.
В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В условиях свободного падения эта энергия растрачивается бесполезно для человека. Если же направить падающий поток воды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.
Работа, производимая потоком воды в течение определенного промежутка времени, например, в течение одной секунды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.
Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше работы, чем больше разность потенциалов и чем большее количество электричества ежесекундно проходит через поперечное сечение цепи.
Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.
Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (напряжению) и силе тока в цепи.
Для измерения мощности электрического тока принята единица, называемая ватт (Вт).
Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.
Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах.
Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы
P = I*U. (1)
Воспользуемся этой формулой для решения числового примера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА
Определим мощность электрического тока, поглощаемую нитью лампы:
Р= 0,075 А*4 В = 0,3 Вт.
Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.
В этом случае мы воспользуемся знакомым нам соотношением из закона Ома:
U=IR
и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.
Тогда формула (1) примет вид:
P = I*U =I*IR
или
Р = I2*R. (2)
Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:
P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.
Наконец, мощность электрического тока может быть вычислена и в том случае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:
Р = I*U=U2/R (3)
Например, при 2,5 В падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет равна:
Р = U2/R=(2,5)2/5=1,25 Вт
Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.
Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.
P = A/t
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Как вычислить мощность тока — Морской флот
Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой. Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).
Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.
Что такое мощность электрического тока
Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.
Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.
Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.
К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.
Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.
Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.
Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.
По какой формуле вычисляется мощность электрического тока
Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.
Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.
Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.
При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.
Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.
От чего зависит мощность тока
Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.
Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.
Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.
Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.
Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:
Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:
Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.
Как узнать ток зная мощность и напряжение?
В данном случае формула вычисления выглядит следующим образом:
Расчет силы тока онлайн:
(Не целые числа вводим через точку. Например: 0.5)
Как узнать напряжение зная силу тока?
Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:
Расчет напряжения онлайн:
Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:
Определение величины онлайн:
Как рассчитать мощность зная силу тока и напряжения?
Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.
Расчет цепи онлайн:
Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?
Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.
Формула расчета сечения провода и как определяется сечение провода
Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:
Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»
Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:
Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:
Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.
Рекомендуем ознакомиться:
Определение
Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:
P=dA/dt
Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.
Электрическая мощность равна произведению тока на напряжение или:
P=UI
Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.
Формулы для расчётов цепи постоянного тока
Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:
P=UI
Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:
P=U 2 /R
Также можно выполнить расчет, зная ток и сопротивление:
P=I 2 *R
Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.
Для переменного тока
Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:
S=UI
Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.
P=UIcosФ
Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.
Q=UIsinФ
Или выразить из этого выражения:
И отсюда вычислить искомую величину.
Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:
А зная Uлинейное:
1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.
Тогда по аналогии чтобы найти P активную:
Определить реактивную мощность можно:
На этом теоретические сведения заканчиваются и мы перейдём к практике.
Пример расчёта полной мощности для электродвигателя
Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.
Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:
Тогда найти активную электрическую мощность можно по формуле:
P=Pна валу/n=160000/0,94=170213 Вт
Теперь можно найти S:
Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.
Расчет для параллельного и последовательного подключения
При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.
Здесь Iобщий равен:
На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:
И выделяется по:
Pна резисторе=UI=6*0,6=3,6 Ватта
Тогда при параллельном подключении в такой схеме:
Сначала ищем I в каждой ветви:
И выделяется на каждом по:
Или через общее сопротивление, тогда:
Все расчёты совпали, значит найденные значения верны.
Заключение
Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Также читают:
РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ОНЛАЙН — ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЯ, ТОКА, МОЩНОСТИ И СЕЧЕНИЯ ПРОВОДНИКА
Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.
Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:
Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:
Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.
Как узнать ток зная мощность и напряжение?
В данном случае формула вычисления выглядит следующим образом:
Расчет силы тока онлайн:
(Не целые числа вводим через точку. Например: 0.5)
Как узнать напряжение зная силу тока?
Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:
Расчет напряжения онлайн:
Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:
Определение величины онлайн:
Как рассчитать мощность зная силу тока и напряжения?
Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.
Расчет цепи онлайн:
Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?
Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.
Онлайн расчет:
Формула расчета сечения провода и как определяется сечение провода
Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:
Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»
Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:
I=P/U=2000/220В = 9А
Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:
Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.
Рекомендуем ознакомиться:
— БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ
— ЗАЩИТНОЕ ЗАНУЛЕНИЕ
— СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!
— АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ
Автор — Антон Писарев
формула, расчёт силы тока, напряжения и сопротивления
Безаварийная работа устройства зависит от соответствия технических характеристик прибора нормам питающей сети. Зная напряжение, сопротивление и силу тока в цепи, электрик поймёт, как найти мощность. Формула расчёта важного параметра зависит от свойств сети, в которую подключается потребитель.
Труд электричества
Механические устройства и электрические приборы предназначены для выполнения работы. Согласно второму закону Ньютона, кинетическая энергия, которая воздействует на материальную точку в течение определённого промежутка времени, совершает полезное действие. В электродинамике поле, созданное разностью потенциалов, переносит заряды на участке электрической цепи.
Объём, производимой током работы, зависит от интенсивности электричества. В середине XIX века Д. П. Джоуль и Э. Х. Ленц решали одинаковую проблему. В проводимых опытах кусок проволоки с высоким сопротивлением разогревался, когда через него пропускался ток. Учёных интересовал вопрос, как вычислить мощность цепи. Для понимания процесса, происходящего в проводнике, следует ввести следующие определения:
- P — мощность.
- A — работа, совершаемая зарядом в электрической цепи.
- U — падение напряжения в проводнике.
- I — сила тока.
- Q — количество электрических зарядов, переносимых в единицу времени.
Мощность — это работа, производимая током в проводнике за какой-то временной период. Утверждение описывает формула: P = A ∕ ∆t.
На участке цепи разность потенциалов в точках a и b совершает работу по перемещению электрических зарядов, которая определяется уравнением: A = U ∙ Q. Ток представляет собой суммарный заряд, прошедший в проводнике за единицу времени, что математически выражается соотношением: U ∙ I = Q ∕ ∆t. После преобразований получается формула мощности электрического тока: P = A ∕ ∆t = U ∙ Q ∕ ∆t = U ∙ I. Можно утверждать, что в цепи проводится работа, которая зависит от мощности, определяемой током и напряжением на контактах подключённого электрического устройства.
Производительность постоянного тока
В линейной цепи без конденсаторов и катушек индуктивности соблюдается закон Ома. Немецкий учёный обнаружил взаимосвязь тока и напряжения от сопротивления цепи. Открытие выражается уравнением: I = U ∕ R. При известном значении сопротивления нагрузки мощность вычисляется двумя способами: P = I ² ∙ R или P = U ² ∕ R.
Если ток в цепи течёт от плюса к минусу, то энергия сети поглощается потребителем. Такой процесс проистекает при зарядке аккумуляторной батареи. Если движение тока совершается в противоположном направлении, то мощность отдаётся в электрическую цепь. Так происходит в случае питания сети от работающего генератора.
Мощность переменной сети
Расчёт переменных цепей отличается от вычисления параметра производительности в линии постоянного тока. Это связано с тем, что напряжение и ток изменяются во времени и по направлению.
В цепи со сдвигом фаз тока и напряжения, рассматриваются следующие виды мощности:
- Активная.
- Реактивная.
- Полная.
Активный компонент
Активная часть полезной мощности учитывает скорость невозвратного преобразования электричества в тепловую или магнитную энергию. В линии тока с одной фазой активная составляющая вычисляется по формуле: P = U ∙ I ∙ cos ϕ.
В международной системе единиц СИ величина производительности измеряется в ваттах. Угол ϕ определяет смещение напряжения по отношению к току. В трёхфазной цепи активная часть складывается из суммы мощностей каждой отдельной фазы.
Реверсивные потери
Для работы конденсаторов, катушек индуктивности, обмоток электродвигателей затрачивается сила сети. Из-за физических свойств таких устройств энергия, которая определяется реактивной мощностью, возвращается в цепь. Величина отдачи рассчитывается при помощи уравнения: V = U ∙ I ∙ sin ϕ.
Единицей измерения принят ватт. Возможно использование внесистемной меры подсчёта var, название которой составлено из английских слов volt, amper, reaction. Перевод на русский язык соответственно означает «вольт», «ампер», «обратное действие».
Если напряжение опережает ток, то смещение фаз считается больше нуля. В противном случае сдвиг фаз отрицательный. В зависимости от значения sin ϕ реактивная составляющая носит положительный или отрицательный характер. Присутствие в цепи индуктивной нагрузки позволяет говорить о реверсивной части больше нуля, а подключённый прибор потребляет энергию. Использование конденсаторов делает реактивную производительность минусовой, и устройство добавляет энергию в сеть.
Во избежание перегрузок и изменения установленного коэффициента мощности в цепи устанавливаются компенсаторы. Такие меры снижают потери электроэнергии, понижают искажения формы тока и позволяют использовать провода меньшего сечения.
В полную силу
Полная электрическая мощность определяет нагрузку, которую потребитель возлагает на сеть. Активная и реверсивная составляющие объединяются с полной мощностью уравнением: S = √ (P ² + V ²).
С индуктивной нагрузкой показатель V ˃ 0, а использование конденсаторов делает V ˂ 0. Отсутствие конденсаторов и катушек индуктивности делает реактивную часть равной нулю, что возвращает формулу к привычному виду: S = √ (P ² + V ²) = √ (P ² + 0) = √ P ² = P = U ∙ I. Полная мощность измеряется внесистемной единицей «вольт-ампер». Сокращённый вариант — В ∙ А.
Критерий полезности
Коэффициент мощности характеризует потребительскую нагрузку с точки зрения присутствия реактивной части работы. В физическом смысле параметр определяет сдвиг тока от приложенного напряжения и равен cos ϕ. На практике это означает количество тепла, выделяемого на соединительных проводниках. Уровень нагрева способен достигать существенных величин.
В энергетике коэффициент мощности обозначается греческой буквой λ. Диапазон изменения от нуля до единицы или от 0 до 100%. При λ = 1 подаваемая потребителю энергия расходуется на работу, реактивная составляющая отсутствует. Значения λ ≤ 0,5 признаются неудовлетворительными.
Безотказная работа приборов в электрической линии обусловлена правильным расчётом технических параметров. Найти мощность тока в цепи помогает набор формул, выведенных из законов Джоуля — Ленца и Ома. Принципиальная схема, грамотно составленная с учётом особенностей применяемых устройств, повышает производительность электросети.
Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма. / / Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.
| ||||||||||||
Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу. | ||||||||||||
TehTab.ru Реклама, сотрудничество: [email protected] | Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями. |
Мощность тока?. Формула мощности ? электрического тока. Как найти мощность?
Автор Даниил Леонидович На чтение 6 мин. Просмотров 6.6k. Опубликовано
Обновлено
Благосостояние и комфорт современного общества зависит всецело от высокотехнологичных гаджетов. Люди уже не представляют жизни без «умных» устройств. Микроэлектроника поглотила наш быт дома и на работе. Функционирует оборудование исключительно от электричества. Такие устройства обладают рядом преимуществ, как и недостатков — чувствительность к перепадам эл. напряжения.
Если в офисе компании эту проблему способен устранить штат квалифицированных сотрудников, то дома часто приходится рассчитывать исключительно на собственные силы. Покупая новое оборудование в дом, необходимо учитывать технические характеристики устройства. Производитель указывает такую информацию для покупателей на шильдике, расположенном на задней стенке гаджета.
Формула мощности представляет собой произведение силы тока на напряжение. Если знать этот параметр, то для пользователя складывается четкое представление, сколько электричество девайс будет потреблять и не вызовет ли проблем с электроснабжением.
Что такое мощность в электричестве: просто о сложном
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий.
Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического тока
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе.
Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Как рассчитать электрическую мощность в быту
Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.
Отсюда получим формулы для расчета мощности (P):
- U*I;
- I2*R;
- U*I*cos(фи).
В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.
Как измерить электрическую мощность дома
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрофикации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах.
Ваттметр
Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.
Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.
Формулы расчета мощности для однофазной и трехфазной схемы питания
Выше уже была представлена формула для одной фазы: P=U*I*cos(фи).
Отсюда следует, что в трехфазной сети показатель равен тройной мощности однофазной, соединенной в треугольник: P=3*U*I*cos(фи). На практике же инженеры пользуются формулой P=1,73*U*I*cos(фи).
Как работает схема трехфазного электроснабжения
Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.
Как узнать ток, зная мощность и напряжение
Для вычисления тока электросети по мощности и напряжению используют формулы:
- I=P/U – постоянный ток;
- I=P/(U*cos(фи)) — однофазная сеть;
- I=P/(1,73*U*cos(фи)) — трехфазная сеть.
Для простоты расчетов значение фи принимают равной 0,95.
Как узнать напряжение, зная силу тока
Для расчета напряжения используют формулы:
U=P/I – постоянный ток;
U=P/(I*cos(фи)) — однофазная сеть;
U=P/(1,73*I*cos(фи)) — трехфазная сеть.
Из выражения видно, что напряжение прямо пропорционально напряжению и обратно пропорционально силе тока.
Как рассчитать мощность, зная силу тока и напряжение
Силовую характеристику электроустановок рассчитывают по формуле:
P=U*I – постоянный ток;
P=U*I*cos(фи) – переменный ток однофазной сети.
P=1,73*U*I*cos(фи) — трехфазная сеть.
В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.
Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.
Интересная инфа по теме
Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.
Заключение
Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.
В четырех таблицах ниже вы можете ввести два из четырех факторов закона Ома. Это Мощность (P) или (Вт), измеренная в ваттах, напряжение (V) или (E), измеренная в вольтах, , ток или сила тока (I), измеренная в ампер, ( ампер, ), и сопротивление (R), измеренное в Ом . Необходимый коэффициент будет рассчитан для вас, когда вы нажмете кнопку «Рассчитать» для этой таблицы. Хотя это и не является частью первоначальной теории, в более поздние годы мы также относили коэффициент мощности к Ому.Мощность обычно обозначается сокращенно (Вт) и измеряется в Вт . Формула для вычисления мощности обычно следующая: W = V x I или W = I 2 x R или W = V 2 / R. Другие основные формулы, включающие мощность: I = W / V или I = (W / R) 2 V = (W x R) 2 или V = W / I R = V 2 / W или R = W / I 2 Для исходных расчетов по закону Ома щелкните здесь .Чтобы проверить цветовую кодировку резисторов, используйте нашу таблицу цветовых кодов резисторов и калькулятор . Этот конвертер требует использования Javascript активных браузеров.
|
Напряжение ток сопротивление и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора для расчета мощности энергия работа уравнение закон мощности ватт понимание общая электрическая круговая диаграмма расчет электроэнергии электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон сопротивления аудио физика электричество электроника формула колеса формулы амперы ватты вольт омы уравнение косинуса звуковая инженерия круговая диаграмма заряд физика мощность звук запись вычисление электротехническая формула мощность математика пи физика соотношение
напряжение ток сопротивление и электрическая мощность общие основные электрические формулы математические вычисления формула калькулятора для расчета мощности энергия работа уравнение степенной закон ваттс понимание общая электрическая круговая диаграмма расчет электроэнергии электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон омов au диофизика электричество электроника формула колесо формулы амперы ватт вольт ом косинус уравнение аудио инженерия круговая диаграмма заряд физика мощность звук запись вычисление электротехника формула мощность математика пи физика отношение взаимосвязь — sengpielaudio Sengpiel Berlin
Электрический ток , Электроэнергия , Электрическое напряжение
Электричество и Электрический заряд
Наиболее распространенные общие формулы, используемые в электротехнике
Основные формулы и Расчеты ●
Взаимосвязь физических и электрических величин (параметров)
Электрическое напряжение В , силы тока
84
удельное сопротивление
R , полное сопротивление Z ,
мощность и мощность P
Вольт В , ампер A, сопротивление и
импеданс Ом Ом и Вт Вт
Номинальный импеданс Z = 4, 8 и 16 Ом (для громкоговорителей сопротивление часто принимается как ). Р . Уравнение (формула) закона Ома: V = I × R и уравнение (формула) степенного закона: P = I × V . P = мощность, I или J = латиница: приток, международный ампер или интенсивность и R = сопротивление. В = напряжение, разность электрических потенциалов Δ В или E = электродвижущая сила (ЭДС = напряжение). |
Введите любые два известных значения и нажмите «вычислить», чтобы решить для двух других. Пожалуйста, введите только два значения. |
Используемый браузер, к сожалению, не поддерживает Javascript. Программа указана, но фактическая функция отсутствует. |
Колесо формул электротехники
В происходит от «напряжения», а E — от «электродвижущей силы (ЭДС)». E означает также энергии , поэтому мы выбираем V . Энергия = напряжение × заряд. E = V × Q . Некоторым нравится лучше придерживаться E вместо V , так что сделайте это. Для R возьмите Z . |
12 самых важных формул: Напряжение В = I × R = P / I = √ ( P × R ) в вольт Ток I = V / = P / В = √ ( P / R ) в амперах A Сопротивление R = В / I = P / I 2 = В 2 / P в Ом Ом Мощность P = В × I = R × I 2 = В 2 / R в Вт Вт |
См. Также: The Formula Wheel of Acoustics (Audio)
The Big Формулы мощности Расчет электрической и механической мощности (прочности) |
|
Андр-Мари Ампре был французским физиком и математиком. Его именем названа единица измерения электрического тока в системе СИ — ампер . Алессандро Джузеппе Антонио Анастасио Вольта был итальянским физиком. Его именем названа единица измерения электрического напряжения в системе СИ — вольт . Георг Симон Ом был немецким физиком и математиком. Его именем названа единица измерения электрического сопротивления СИ Ом . Джеймс Ватт был шотландским изобретателем и инженером-механиком. Единица измерения электрической мощности (мощности) в системе СИ, ватт , была названа его именем. |
Мощность, как и все величины энергии, в первую очередь расчетное значение. |
Слово «усилитель мощности» используется неправильно, особенно в аудиотехнике. Напряжение и ток можно усилить. Странный термин «усилитель мощности» стал пониматься как усилитель, предназначенный для управления нагрузкой например, громкоговоритель. Мы называем произведение усиления по току и усилению по напряжению «усилением мощности». |
Совет: треугольник электрического напряжения В = I × R (закон Ома VIR)
Введите два значения , будет рассчитано третье значение.
Треугольник мощности P = I × V (Power law PIV)
Введите два значения , будет рассчитано третье значение.
С помощью волшебного треугольника можно легко вычислить все формулы. Вы прячетесь с
пальцем значение, которое нужно вычислить. Два других значения показывают, как производить расчет.
Расчеты: Закон Ома — магический треугольник Ома
Измерение входного и выходного сопротивления
ПЕРЕМЕННЫЙ ТОК (AC) ~
В l = линейное напряжение (вольт), V p = фазное напряжение (вольт), I l = линейный ток (амперы), I p = фазный ток ( амперы)
Z = полное сопротивление (Ом), P = мощность (ватты), φ = угол коэффициента мощности, VAR = вольт-амперы (реактивные)
Ток (однофазный): I = P / V p × cos φ | Ток (3 фазы): I = P / √3 V l × cos φ или I = P /3 V p × cos φ |
Питание (однофазное): P = V p × I p × cos φ | Питание (3 фазы): P = √3 V l × I l × cos φ или P = √3 V p × I p × cos φ |
Коэффициент мощности PF = cos φ = R / (R2 + X2) 1/2 , φ = угол коэффициента мощности.Для чисто резистивной схемы PF = 1 (идеально).
Полная мощность S вычисляется по Пифагору, активная мощность P и реактивная мощность Q . S = √ ( P 2 + Q 2 )
Формулы питания постоянного тока Напряжение В, дюймов (В), вычисление исходя из тока I дюймов (А) и сопротивления R дюймов (Ом): В (В) = I (А) × R (Ом) Мощность P в (Вт) рассчитывается исходя из напряжения В в (В) и тока I в (А): P (Вт) = В (В) × I (A) = V 2 (V) / R (Ω) = I 2 (A) R (Ω) Формулы питания переменного тока |
Фактический коэффициент мощности, а не стандартный коэффициент смещаемой мощности 50/60 Гц
Определения электрических измерений | ||
Кол. Акций | Имя | Определение |
частота f | герц (Гц) | 1 / с |
сила F | ньютон (Н) | кг · м / с² |
давление р | паскаль (Па) = Н / м² | кг / м · с² |
энергия E | джоуль (Дж) = N · м | кг · м² / с² |
мощность П | ватт (Вт) = Дж / с | кг · м² / с³ |
электрический заряд Q | кулонов (Кл) = A · с | А · с |
напряжение В | вольт (В) = Вт / д | кг · м² / A · с³ |
ток I | ампер (А) = Q / с | А |
емкость C | фарад (Ф) = C / V = A · с / В = с / Ом | A² · с 4 / кг · m² |
индуктивность L | генри (H) = Wb / A = V · s / A | кг · м² / A² · с² |
сопротивление R | Ом (Ом) = В / А | кг · м²A² · s³ |
проводимость G | сименс (S) = A / V | A² · s³ / кг · m² |
магнитный поток Φ | Вебер (Wb) = V · с | кг · м² / A · с² |
плотность потока B | тесла (T) = Вт / м² = V · с / м² | кг / А · с² |
Поток электрического заряда Q называется электрическим током I. Размер начисления за единицу времени изменение электрического тока. Ток протекает с постоянным значением I. в течение времени t , он переносит заряд Q = I × t . Для временно постоянной мощности соотношение между зарядом и током: I = Q / t или Q = I × t. Благодаря этой взаимосвязи, основные единицы усилителя и второй кулон в Установлена Международная система единиц.Кулоновскую единицу можно представить как 1 C = 1 A × s. Заряд Q , (единица измерения в ампер-часах Ач), ток разряда I , (единица измерения в амперах A), время t , (единица измерения в часах h). |
В акустике есть « Акустический эквивалент закона Ома »
Соотношение акустических размеров, связанных с плоскими прогрессивными звуковыми волнами
Преобразование многих единиц, таких как мощность и энергия
префиксы |
длина |
площадь |
объем |
вес |
давление |
температура |
время |
энергия |
мощность |
плотность |
скорость |
ускорение |
сила
[начало страницы]
Калькулятор закона Ома и электрические формулы
Используйте закон Ома для расчета напряжения, тока, сопротивления или мощности в электрической цепи.Введите любые два известных значения, чтобы найти два других. Например, введите напряжение и мощность, чтобы найти ток и сопротивление.
Что такое закон Ома?
Закон Ома определяет соотношение между электрическим током, сопротивлением и напряжением. Более конкретно, в нем говорится, что ток через элемент схемы прямо пропорционален приложенной к нему разности потенциалов и обратно пропорционален сопротивлению . [1]
Закон Ома позволяет вам определять напряжение, ток, мощность и сопротивление, если известны хотя бы два значения.
Например, если известны напряжение и сопротивление, калькулятор найдет мощность и ток. В качестве альтернативы калькулятор может вычислить мощность и сопротивление, если известны напряжение и ток.
Формула закона Ома
Формула закона Ома: I = E / R, где I — ток через проводник, измеренный в амперах, E — разность потенциалов на проводнике, измеренная в вольтах, а R — измеренное сопротивление проводника. в ом. [2]
I = ER
Таким образом, формула утверждает, что ток I равен напряжению E , деленному на сопротивление R .
Треугольник закона Ома
Треугольник закона Ома показывает, как найти вольт, ампер или ом. Чтобы использовать его, накройте единицу, которую вы хотите вычислить, чтобы открыть формулу для ее решения.
Треугольник закона Ома, где E представляет напряжение, I представляет ток, а R представляет сопротивление.
Например, чтобы найти вольты, прикройте E большим пальцем, и это покажет, что напряжение равно I × R.
Что означают буквы в формуле закона Ома?
В формуле закона Ома E представляет электродвижущую силу или напряжение, I представляет силу или ток, а R представляет сопротивление.
Георг Симон Ом создал закон Ома в статье, опубликованной в 1827 году, [3] задолго до того, как были определены единицы измерения напряжения, тока и сопротивления.
Вольт, ампер и ом были определены только в 1881 году, спустя более 50 лет после того, как был опубликован закон Ома. Это объясняет, почему буквы не относятся к современным единицам, используемым в формуле.
Закон Ватта и формула мощности
Закон Ватта гласит, что электрическая мощность, измеряемая в ваттах, равна току в цепи, умноженному на напряжение. Эта формула очень похожа на закон Ома и может помочь найти мощность или мощность.
Мы часто используем формулу мощности в сочетании с законом Ома для определения электрических свойств, когда мощность цепи известна.
P = I × E
Таким образом, формула мощности утверждает, что мощность P равна I , умноженному на напряжение E . [4]
Треугольник силы
Треугольник мощности иллюстрирует формулу для определения ватт, вольт или ампер. Как и в случае с другим треугольником, накройте единицу измерения, которую вы хотите решить, чтобы открыть формулу для ее решения.
Например, чтобы найти усилители, прикройте I большим пальцем, чтобы увидеть, что ток равен P / E.
Формула мощности, где P представляет мощность, I представляет ток, а E представляет напряжение.
Наш калькулятор ватт в ампер использует эту формулу, например, для преобразования мощности в ток в электрических цепях.
Колесо закона Ома
Мы можем использовать закон Ома для расчета вольт, ватт, ампер или ом, если известны как минимум два измерения. Формула позволяет нам вывести уравнения для расчета любого измерения с учетом двух других известных значений.
Колесо закона Ома показывает все формулы, которые вы можете использовать для определения вольт, ватт, ампер или ом. См. Все производные формулы ниже.
Колесо закона Ома со всеми формулами, которые можно использовать для расчета вольт, ампер, ом или ватт.
Вольт Формулы
Найдите напряжение, используя следующие формулы:
Напряжение = ток × сопротивление
Напряжение = мощность ÷ ток
Напряжение = мощность × сопротивление
Ватт Формулы
Найдите мощность по этим формулам:
Мощность = Напряжение × Ток
Мощность = Напряжение 2 ÷ Сопротивление
Мощность = Ток 2 × Сопротивление
Формулы усилителей
Решите для тока, используя эти формулы:
Ток = Напряжение ÷ Сопротивление
Ток = Мощность ÷ Напряжение
Ток = мощность ÷ сопротивление
Ом Формулы
Найдите сопротивление, используя следующие формулы:
Сопротивление = Напряжение ÷ Ток
Сопротивление = Напряжение 2 ÷ Мощность
Сопротивление = Мощность ÷ Ток 2
Мы используем закон Ома для многих вещей, таких как определение максимального размера микроволн или максимального количества осветительных приборов, с которыми цепь может безопасно обращаться, не создавая опасности возгорания.
Наш калькулятор затрат на освещение может помочь определить потребление энергии на освещение, а наш калькулятор затрат на электроэнергию поможет определить затраты на питание электрических устройств.
Используйте закон Ома, чтобы определить размер электрической цепи или выяснить, какой размер нагревателя можно безопасно использовать в обычной розетке. Вы также можете найти наш калькулятор падения напряжения, чтобы определить падение напряжения, необходимый минимальный размер провода и максимальную длину провода для вашего следующего электрического проекта.
Закон Ома
Закон
Ома показывает линейную зависимость между напряжением и током в электрической цепи.
Падение напряжения и сопротивление резистора определяют протекание постоянного тока через резистор.
Используя аналогию с потоком воды, мы можем представить электрический ток как ток воды через трубу, резистор как тонкую трубу, которая ограничивает
поток воды, напряжение как разница высот воды, которая обеспечивает течение воды.
формула закона Ома
Ток I резистора в амперах (A) равен току резистора
напряжение V в вольтах (В), деленное на сопротивление R в омах (Ом):
В — падение напряжения на резисторе, измеренное в вольтах (В).В некоторых случаях в законе Ома для обозначения напряжения используется буква E . E обозначает электродвижущую силу.
I — электрический ток, протекающий через резистор, измеренный в амперах (A)
R — сопротивление резистора, измеренное в Ом (Ом)
Расчет напряжения
Зная ток и сопротивление, мы можем рассчитать напряжение.
Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):
Расчет сопротивления
Зная напряжение и ток, мы можем рассчитать сопротивление.
Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):
Поскольку ток задается значениями напряжения и сопротивления, формула закона Ома может показать, что:
- Если увеличивать напряжение, ток увеличится.
- Если увеличить сопротивление, ток уменьшится.
Пример # 1
Найдите ток электрической цепи с сопротивлением 50 Ом и напряжением питания 5 Вольт.
Решение:
В = 5 В
R = 50 Ом
I = В / R = 5 В / 50 Ом = 0,1 А = 100 мА
Пример # 2
Найдите сопротивление электрической цепи, имеющей напряжение питания 10 В и ток 5 мА.
Решение:
В = 10 В
I = 5 мА = 0,005 А
R = В / I = 10 В / 0,005 A = 2000 Ом = 2 кОм
Закон Ома для цепи переменного тока
Ток нагрузки I в амперах (A) равен напряжению нагрузки V Z = V в вольтах (В), деленному на полное сопротивление Z в омах (Ом):
В — падение напряжения на нагрузке, измеренное в вольтах (В)
I — электрический ток, измеренный в амперах (A)
Z — полное сопротивление нагрузки, измеренное в Ом (Ом)
Пример # 3
Найдите ток в цепи переменного тока с напряжением питания 110 В ± 70 ° и нагрузкой 0.5кОм∟20 °.
Решение:
В = 110 В 70 °
Z = 0,5 кОм∟20 ° = 500 Ом∟20 °
I = В / Z = 110 В 70 ° / 500 Ом ° 20 ° = (110 В / 500 Ом) ∟ (70 ° -20 °) = 0,22 А ∟ 50 °
Калькулятор закона Ома (краткая форма)
Калькулятор закона Ома: вычисляет соотношение между напряжением, током и сопротивлением.
Введите 2 значений, чтобы получить третье значение, и нажмите кнопку Рассчитать :
Калькулятор закона Ома II ►
См. Также
Электроэнергетика и энергетика | Физика
Цели обучения
К концу этого раздела вы сможете:
- Рассчитайте мощность, рассеиваемую резистором, и мощность, подаваемую источником питания.
- Рассчитайте стоимость электроэнергии при различных обстоятельствах.
Мощность в электрических цепях
Электроэнергия ассоциируется у многих с электричеством. Зная, что мощность — это коэффициент использования или преобразования энергии, каково выражение для электроэнергии ? На ум могут прийти линии электропередачи. Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним лампочку на 25 Вт с лампой на 60 Вт.(См. Рис. 1 (а).) Поскольку оба работают от одного и того же напряжения, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает. Как именно напряжение, ток и сопротивление связаны с электроэнергией?
Рис. 1. (a) Какая из этих лампочек, лампа мощностью 25 Вт (вверху слева) или лампа мощностью 60 Вт (вверху справа), имеет большее сопротивление? Что потребляет больше тока? Что потребляет больше всего энергии? Можно ли по цвету сказать, что нить накаливания мощностью 25 Вт круче? Является ли более яркая лампочка другого цвета, и если да, то почему? (кредиты: Дикбаух, Wikimedia Commons; Грег Вестфолл, Flickr) (б) Этот компактный люминесцентный светильник (КЛЛ) излучает такую же интенсивность света, как и лампа мощностью 60 Вт, но при входной мощности от 1/4 до 1/10.(кредит: dbgg1979, Flickr)
Электрическая энергия зависит как от напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q — перемещаемый заряд, а V — напряжение (или, точнее, разность потенциалов, через которую проходит заряд). Мощность — это скорость перемещения энергии, поэтому электрическая мощность равна
.
[латекс] P = \ frac {PE} {t} = \ frac {qV} {t} \\ [/ latex]. {2} R \\ [/ латекс].
Обратите внимание, что первое уравнение всегда верно, тогда как два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных схемах P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.) Из трех различных выражений для электрической мощности можно получить различное понимание. Например, P = V 2 / R означает, что чем ниже сопротивление, подключенное к данному источнику напряжения, тем больше передаваемая мощность.Кроме того, поскольку напряжение возведено в квадрат в P = V 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза и составляет около 100 Вт, что приводит к ее перегоранию. Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.
Пример 1. Расчет рассеиваемой мощности и тока: горячая и холодная энергия
(a) Рассмотрим примеры, приведенные в Законе Ома: сопротивление и простые цепи и сопротивление и удельное сопротивление.Затем найдите мощность, рассеиваемую автомобильной фарой в этих примерах, как в горячую, так и в холодную погоду. б) Какой ток он потребляет в холодном состоянии?
Стратегия для (а)
Для горячей фары нам известны напряжение и ток, поэтому мы можем использовать P = IV , чтобы найти мощность. Для холодной фары нам известны напряжение и сопротивление, поэтому мы можем использовать P = В 2 / R , чтобы найти мощность.
Решение для (a)
Вводя известные значения тока и напряжения для горячей фары, получаем
P = IV = (2.{2}} {0,350 \ text {} \ Omega} = 411 \ text {W} \\ [/ latex].
Обсуждение для (а)
30 Вт, рассеиваемые горячей фарой, являются типичными. Но 411 Вт в холодную погоду на удивление выше. Начальная мощность быстро уменьшается по мере увеличения температуры лампы и увеличения ее сопротивления.
Стратегия и решение для (b)
Ток при холодной лампочке можно найти несколькими способами. Переставляем одно из уравнений мощности, P = I 2 R , и вводим известные значения, получая
[латекс] I = \ sqrt {\ frac {P} {R}} = \ sqrt {\ frac {411 \ text {W}} {{0.350} \ text {} \ Omega}} = 34,3 \ text {A} \\ [/ latex].
Обсуждение для (б)
Холодный ток значительно выше, чем установившееся значение 2,50 А, но ток будет быстро снижаться до этого значения по мере увеличения температуры лампы. Большинство предохранителей и автоматических выключателей (используемых для ограничения тока в цепи) спроектированы так, чтобы выдерживать очень высокие токи на короткое время при включении устройства. В некоторых случаях, например, с электродвигателями, ток остается высоким в течение нескольких секунд, что требует использования специальных плавких предохранителей с замедленным срабатыванием.
Чем больше электроприборов вы используете и чем дольше они остаются включенными, тем выше ваш счет за электроэнергию. Этот знакомый факт основан на соотношении энергии и мощности. Вы платите за использованную энергию. Поскольку P = E / t , мы видим, что
E = Pt
— энергия, используемая устройством, использующим мощность P за интервал времени t . Например, чем больше горело лампочек, тем больше использовалось P ; чем дольше они включены, тем больше т .Единицей измерения энергии в счетах за электричество является киловатт-час (кВт ч), что соответствует соотношению E = Pt . Стоимость эксплуатации электроприборов легко оценить, если у вас есть некоторое представление об их потребляемой мощности в ваттах или киловаттах, времени их работы в часах и стоимости киловатт-часа для вашей электросети. Киловатт-часы, как и все другие специализированные единицы энергии, такие как пищевые калории, можно преобразовать в джоули. Вы можете доказать себе, что 1 кВт ⋅ ч = 3.6 × 10 6 Дж.
Потребляемая электрическая энергия ( E ) может быть уменьшена либо за счет сокращения времени использования, либо за счет снижения энергопотребления этого прибора или приспособления. Это не только снизит стоимость, но и снизит воздействие на окружающую среду. Улучшение освещения — один из самых быстрых способов снизить потребление электроэнергии в доме или на работе. Около 20% энергии в доме расходуется на освещение, в то время как в коммерческих учреждениях эта цифра приближается к 40%.Флуоресцентные лампы примерно в четыре раза эффективнее ламп накаливания — это верно как для длинных ламп, так и для компактных люминесцентных ламп (КЛЛ). (См. Рис. 1 (b).) Таким образом, лампу накаливания мощностью 60 Вт можно заменить на КЛЛ мощностью 15 Вт, которая имеет такую же яркость и цвет. КЛЛ имеют изогнутую трубку внутри шара или спиралевидную трубку, все они подключены к стандартному привинчиваемому основанию, которое подходит для стандартных розеток лампы накаливания. (В последние годы были решены исходные проблемы с цветом, мерцанием, формой и высокими начальными вложениями в КЛЛ.) Теплопередача от этих КЛЛ меньше, и они служат до 10 раз дольше. В следующем примере рассматривается важность инвестиций в такие лампы. Новые белые светодиодные фонари (которые представляют собой группы небольших светодиодных лампочек) еще более эффективны (в два раза больше, чем у КЛЛ) и служат в 5 раз дольше, чем КЛЛ. Однако их стоимость по-прежнему высока.
Установление соединений: энергия, мощность и время
Отношение E = Pt может оказаться полезным во многих различных контекстах.Энергия, которую ваше тело использует во время упражнений, зависит, например, от уровня мощности и продолжительности вашей активности. Степень нагрева от источника питания зависит от уровня мощности и времени ее применения. Даже доза облучения рентгеновского изображения зависит от мощности и времени воздействия.
Пример 2. Расчет рентабельности компактных люминесцентных ламп (КЛЛ)
Если стоимость электроэнергии в вашем районе составляет 12 центов за кВтч, какова общая стоимость (капитальные плюс эксплуатация) использования лампы накаливания мощностью 60 Вт в течение 1000 часов (срок службы этой лампы), если стоимость лампы составляет 25 центов? (б) Если мы заменим эту лампочку компактной люминесцентной лампой, которая дает такой же световой поток, но составляет четверть мощности и стоит 1 доллар.50, но длится в 10 раз дольше (10 000 часов), какова будет общая стоимость?
Стратегия
Чтобы найти эксплуатационные расходы, мы сначала находим используемую энергию в киловатт-часах, а затем умножаем ее на стоимость киловатт-часа.
Решение для (a)
Энергия, используемая в киловатт-часах, находится путем ввода мощности и времени в выражение для энергии:
E = Pt = (60 Вт) (1000 ч) = 60 000 Вт ч
В киловатт-часах это
E = 60.0 кВт ⋅ ч.
Сейчас стоимость электроэнергии
Стоимость
= (60,0 кВт ч) (0,12 долл. США / кВт час) = 7,20 долл. США.
Общая стоимость составит 7,20 доллара за 1000 часов (около полугода при 5 часах в день).
Решение для (b)
Поскольку CFL использует только 15 Вт, а не 60 Вт, стоимость электроэнергии составит 7,20 доллара США / 4 = 1,80 доллара США. КЛЛ прослужит в 10 раз дольше, чем лампа накаливания, так что инвестиционные затраты составят 1/10 стоимости лампы за этот период использования, или 0.1 (1,50 доллара США) = 0,15 доллара США. Таким образом, общая стоимость 1000 часов составит 1,95 доллара США.
Обсуждение
Следовательно, использование КЛЛ намного дешевле, даже несмотря на то, что первоначальные вложения выше. Повышенная стоимость рабочей силы, которую бизнес должен включать в себя для более частой замены ламп накаливания, здесь не учитывается.
Подключение: Эксперимент на вынос — Инвентаризация использования электроэнергии
1) Составьте список номинальной мощности для ряда приборов в вашем доме или комнате.Объясните, почему что-то вроде тостера имеет более высокий рейтинг, чем цифровые часы. Оцените энергию, потребляемую этими приборами в среднем за день (оценивая время их использования). Некоторые приборы могут указывать только рабочий ток. Если бытовое напряжение составляет 120 В, используйте P = IV . 2) Проверьте общую мощность, используемую в туалетах на этаже или в здании вашей школы. (Возможно, вам придется предположить, что используемые длинные люминесцентные лампы рассчитаны на 32 Вт.) Предположим, что здание было закрыто все выходные, и что эти огни были оставлены включенными с 6 часов вечера.{2} R \\ [/ латекс].
- Энергия, используемая устройством мощностью P за время t , составляет E = Pt .
Концептуальные вопросы
1. Почему лампы накаливания тускнеют в конце своей жизни, особенно незадолго до того, как их нити оборвутся?
Мощность, рассеиваемая на резисторе, равна P = V 2 / R , что означает, что мощность уменьшается при увеличении сопротивления. Тем не менее, эта мощность также определяется соотношением P = I 2 R , что означает, что мощность увеличивается при увеличении сопротивления.Объясните, почему здесь нет противоречия.
Задачи и упражнения
1. Какова мощность разряда молнии 1,00 × 10 2 МВ при токе 2,00 × 10 4 A ?
2. Какая мощность подается на стартер большого грузовика, который потребляет 250 А тока от аккумуляторной батареи 24,0 В?
3. Заряд в 4,00 C проходит через солнечные элементы карманного калькулятора за 4,00 часа. Какова выходная мощность, если выходное напряжение вычислителя равно 3.00 В? (См. Рисунок 2.)
Рис. 2. Полоса солнечных элементов прямо над клавишами этого калькулятора преобразует свет в электричество для удовлетворения своих потребностей в энергии. (Источник: Эван-Амос, Wikimedia Commons)
4. Сколько ватт проходит через фонарик с 6,00 × 10 2 за 0,500 ч использования, если его напряжение составляет 3,00 В?
5. Найдите мощность, рассеиваемую в каждом из этих удлинителей: (a) удлинительный шнур с сопротивлением 0,0600 Ом, через который 5.00 А течет; (б) более дешевый шнур с более тонким проводом и сопротивлением 0,300 Ом.
6. Убедитесь, что единицами измерения вольт-ампер являются ватты, как следует из уравнения P = IV .
7. Покажите, что единицы измерения 1V 2 / Ω = 1W, как следует из уравнения P = V 2 / R .
8. Покажите, что единицы 1 A 2 Ω = 1 Вт, как следует из уравнения P = I 2 R .
9. Проверьте эквивалент единиц энергии: 1 кВт ⋅ ч = 3,60 × 10 6 Дж.
10. Электроны в рентгеновской трубке ускоряются до 1,00 × 10 2 кВ и направляются к цели для получения рентгеновских лучей. Вычислите мощность электронного луча в этой трубке, если она имеет ток 15,0 мА.
11. Электрический водонагреватель потребляет 5,00 кВт на 2,00 часа в сутки. Какова стоимость его эксплуатации в течение одного года, если электроэнергия стоит 12,0 центов / кВт · ч? См. Рисунок 3.
Рисунок 3. Водонагреватель электрический по запросу. Тепло в воду подается только при необходимости. (кредит: aviddavid, Flickr)
12. Сколько электроэнергии необходимо для тостера с тостером мощностью 1200 Вт (время приготовления = 1 минута)? Сколько это стоит при 9,0 цента / кВт · ч?
13. Какова будет максимальная стоимость КЛЛ, если общая стоимость (капиталовложения плюс эксплуатация) будет одинаковой как для КЛЛ, так и для ламп накаливания мощностью 60 Вт? Предположим, что стоимость лампы накаливания составляет 25 центов, а электричество стоит 10 центов / кВтч.Рассчитайте стоимость 1000 часов, как в примере с КЛЛ по рентабельности.
14. Некоторые марки старых автомобилей имеют электрическую систему 6,00 В. а) Каково сопротивление горячему свету у фары мощностью 30,0 Вт в такой машине? б) Какой ток протекает через него?
№
15. Щелочные батареи имеют то преимущество, что они выдают постоянное напряжение почти до конца своего срока службы. Как долго щелочная батарея с номиналом 1,00 А · ч и 1,58 В будет поддерживать горение лампы фонарика мощностью 1,00 Вт?
16.Прижигатель, используемый для остановки кровотечения в хирургии, выдает 2,00 мА при 15,0 кВ. а) Какова его выходная мощность? б) Какое сопротивление пути?
17. В среднем телевизор работает 6 часов в день. Оцените ежегодные затраты на электроэнергию для работы 100 миллионов телевизоров, предполагая, что их потребляемая мощность составляет в среднем 150 Вт, а стоимость электроэнергии составляет в среднем 12,0 центов / кВт · ч.
18. Старая лампочка потребляет всего 50,0 Вт, а не 60,0 Вт из-за истончения ее нити за счет испарения.Во сколько раз уменьшается его диаметр при условии равномерного утонения по длине? Не обращайте внимания на любые эффекты, вызванные перепадами температур.
Медная проволока калибра 19. 00 имеет диаметр 9,266 мм. Вычислите потери мощности в километре такого провода, когда он пропускает 1,00 × 10 2 А.
Холодные испарители пропускают ток через воду, испаряя ее при небольшом повышении температуры. Одно такое домашнее устройство рассчитано на 3,50 А и использует 120 В переменного тока с эффективностью 95,0%.а) Какова скорость испарения в граммах в минуту? (b) Сколько воды нужно налить в испаритель за 8 часов работы в ночное время? (См. Рисунок 4.)
Рис. 4. Этот холодный испаритель пропускает ток непосредственно через воду, испаряя ее напрямую с относительно небольшим повышением температуры.
21. Integrated Concepts (a) Какая энергия рассеивается разрядом молнии с током 20 000 А, напряжением 1,00 × 10 2 МВ и длиной 1.00 мс? (б) Какую массу древесного сока можно поднять с 18ºC до точки кипения, а затем испарить за счет этой энергии, если предположить, что сок имеет те же тепловые характеристики, что и вода?
22. Integrated Concepts Какой ток должен вырабатывать подогреватель бутылочек на 12,0 В, чтобы нагреть 75,0 г стекла, 250 г детской смеси и 3,00 × 10 2 алюминия от 20 ° C до 90º за 5,00 мин?
23. Integrated Concepts Сколько времени требуется хирургическому прижигателю, чтобы поднять температуру на 1.00 г ткани от 37º до 100, а затем закипятите 0,500 г воды, если она выдает 2,00 мА при 15,0 кВ? Не обращайте внимания на передачу тепла в окружающую среду.
24. Integrated Concepts Гидроэлектрические генераторы (см. Рис. 5) на плотине Гувера вырабатывают максимальный ток 8,00 × 10 3 А при 250 кВ. а) Какова выходная мощность? (b) Вода, питающая генераторы, входит и покидает систему с низкой скоростью (таким образом, ее кинетическая энергия не изменяется), но теряет 160 м в высоте.Сколько кубических метров в секунду необходимо при КПД 85,0%?
Рисунок 5. Гидроэлектрические генераторы на плотине Гувера. (кредит: Джон Салливан)
25. Integrated Concepts (a) Исходя из 95,0% эффективности преобразования электроэнергии двигателем, какой ток должны обеспечивать аккумуляторные батареи на 12,0 В 750-килограммового электромобиля: отдых до 25,0 м / с за 1,00 мин? (b) Подняться на холм высотой 2,00 × 10 2 м за 2,00 мин при постоянной 25.Скорость 0 м / с при приложении силы 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? (c) Двигаться с постоянной скоростью 25,0 м / с, прилагая силу 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? См. Рисунок 6.
Рис. 6. Электромобиль REVAi заряжается на одной из улиц Лондона. (кредит: Фрэнк Хебберт)
26. Integrated Concepts Пригородный легкорельсовый поезд потребляет 630 А постоянного тока напряжением 650 В при ускорении.а) Какова его мощность в киловаттах? (b) Сколько времени нужно, чтобы достичь скорости 20,0 м / с, начиная с состояния покоя, если его загруженная масса составляет 5,30 × 10 4 кг, предполагая КПД 95,0% и постоянную мощность? (c) Найдите его среднее ускорение. (г) Обсудите, как ускорение, которое вы обнаружили для легкорельсового поезда, сравнивается с тем, что может быть типичным для автомобиля.
27. Integrated Concepts (a) Линия электропередачи из алюминия имеет сопротивление 0,0580 Ом / км. Какова его масса на километр? б) Какова масса на километр медной линии с таким же сопротивлением? Более низкое сопротивление сократит время нагрева.Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.
28. Integrated Concepts (a) Погружной нагреватель, работающий на 120 В, может повысить температуру 1,00 × 10 2 -граммовых алюминиевых стаканов, содержащих 350 г воды, с 20 ° C до 95 ° C за 2,00 мин. Найдите его сопротивление, предполагая, что оно постоянно в процессе. (b) Более низкое сопротивление сократит время нагрева. Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.
29. Integrated Concepts (a) Какова стоимость нагрева гидромассажной ванны, содержащей 1500 кг воды, от 10 ° C до 40 ° C, исходя из эффективности 75,0% с учетом передачи тепла в окружающую среду? Стоимость электроэнергии 9 центов / кВт kWч. (b) Какой ток потреблял электрический нагреватель переменного тока 220 В, если на это потребовалось 4 часа?
30 . Необоснованные результаты (a) Какой ток необходим для передачи мощности 1,00 × 10 2 МВт при 480 В? (b) Какая мощность рассеивается линиями передачи, если они имеют коэффициент 1.00 — сопротивление Ом? (c) Что неразумного в этом результате? (d) Какие предположения необоснованны или какие посылки несовместимы?
31. Необоснованные результаты (a) Какой ток необходим для передачи мощности 1,00 × 10 2 МВт при 10,0 кВ? (b) Найдите сопротивление 1,00 км провода, которое вызовет потерю мощности 0,0100%. (c) Каков диаметр медного провода длиной 1,00 км, имеющего такое сопротивление? (г) Что необоснованного в этих результатах? (e) Какие предположения необоснованны или какие посылки несовместимы?
32.Создайте свою проблему Рассмотрим электрический погружной нагреватель, используемый для нагрева чашки воды для приготовления чая. Постройте задачу, в которой вы рассчитываете необходимое сопротивление нагревателя, чтобы он увеличивал температуру воды и чашки за разумный промежуток времени. Также рассчитайте стоимость электроэнергии, используемой в вашем технологическом процессе. Среди факторов, которые необходимо учитывать, — это используемое напряжение, задействованные массы и теплоемкость, тепловые потери и время, в течение которого происходит нагрев.Ваш инструктор может пожелать, чтобы вы рассмотрели тепловой предохранительный выключатель (возможно, биметаллический), который остановит процесс до того, как в погружном блоке будет достигнута опасная температура.
Глоссарий
- электрическая мощность:
- скорость, с которой электрическая энергия подается источником или рассеивается устройством; это произведение тока на напряжение
Избранные решения проблем и упражнения
1. 2,00 × 10 12 Вт
5.{6} \ text {J} \\ [/ latex]
11. $ 438 / год
13. $ 6.25
15. 1.58 ч
17. 3,94 миллиарда долларов в год
19. 25,5 Вт
21. (а) 2,00 × 10 9 Дж (б) 769 кг
23. 45.0 с
25. (а) 343 A (б) 2,17 × 10 3 A (в) 1,10 × 10 3 A
27. (а) 1,23 × 10 3 кг (б) 2,64 × 10 3 кг
29. (a) 2,08 × 10 5 A
(b) 4,33 × 10 4 МВт
(c) Линии передачи рассеивают больше мощности, чем они должны передавать.
(d) Напряжение 480 В неоправданно низкое для напряжения передачи. В линиях передачи на большие расстояния поддерживается гораздо более высокое напряжение (часто сотни киловольт), чтобы уменьшить потери мощности.
Закон Ома для начинающих и новичков
Закон Ома для начинающих и новичков
Основной закон Ома
HTML от: http://www.btinternet.com/~dtemicrosystems/beginner.htm
ЧТО ЭТО. КАК И ГДЕ ПОДАТЬ ЗАЯВКУ
Хотя закон Ома применим не только к резисторам — как мы увидим позже — кажется,
логично включить его сейчас, так как он будет хорошей точкой отсчета для резистора
подробности приведены выше.
ЧТО ТАКОЕ ЗАКОН ОМС? :
На диаграмме слева закон Ома определяется как; «При условии, что температура
остается постоянным, отношение разности потенциалов (p.d.) на концах проводника
(R) к току (I), протекающему в этом проводнике, также будет постоянным ».
проповедь!
Отсюда мы заключаем, что; Ток равен напряжению, разделенному на сопротивление (I = V / R),
Сопротивление равно напряжению, разделенному на ток (R = V / I), а напряжение равно току, умноженному на
Сопротивление (V = IR).
Важным фактором здесь является температура. Если расчеты по закону Ома должны
давать точные результаты, это должно оставаться постоянным. В «реальном» мире это почти никогда
делает, и с точки зрения новичка вам не нужно беспокоиться об этом.
более того, поскольку схемы, с которыми вы, вероятно, столкнетесь в данный момент, — и около 95%
все те, с которыми вы столкнетесь в будущем — будут работать нормально, даже если они горячие
или холодно!
ЗАКОН ОМС ПРОСТОЙ:
На рисунке 1 слева показан наиболее распространенный треугольник закона Ома.Начиная с любого раздела
треугольник, его можно читать в любом направлении — по часовой стрелке, против часовой стрелки, сверху
вниз или снизу вверх — и он всегда предоставит вам расчет, который вы
требовать.
Если рассматривать (слегка диагональные) горизонтальные линии как знаки разделения, а короткие
вертикальная линия как знак умножения, и всегда начинайте расчет с любого количества
вы ищете, т.е. «V =», «I =» или «R =» у вас будет все
возможные формулы, основанные на этом конкретном законе Ома.То есть; V = IxR, I = V / R, R = V / I. Это
должно быть очевидно, что формула работает и в обратном направлении, то есть; IxR = V, RxI = V, V / I = R
и V / R = I.
Эти объяснения могут показаться немного сложными, но их легко применить на практике.
Как правило, для начинающих будет более понятен полезный пример, а не эти
причудливые столы, так что поехали.
ПОЯСНЕНИЕ НА ПРИМЕРЕ:
Допустим, друг просит вас установить красную сигнальную лампу на приборную панель его / ее автомобиля.Будучи энтузиастом электроники, вы решили использовать красный светоизлучающий диод (LED),
поскольку они излучают достаточно чистый красный свет, не выделяют чрезмерного тепла
лампы накаливания, они также дешевы по сравнению с ними и выглядят высокотехнологичными!
С точки зрения принципиальной схемы расположение будет таким, как показано слева.
ОГРАНИЧИТЕЛЬ ТОКА РЕЗИСТОР:
Стандартные светодиоды не могут получать питание напрямую от 12 В без установки ограничения тока
резистор включен последовательно с одним из выводов, но какое значение вы используете? Как общее правило
на практике, вашему среднему светодиоду требуется около 15 мА тока для получения приемлемого света.
выход.Учитывая это, теперь у нас есть две известные величины для использования в наших расчетах:
напряжение и ток. Используя треугольник закона Ома, требуемое сопротивление равно
рассчитывается по формуле «R = V / I», которая дает нам 12 / 0,015 = 800 Ом (см. ниже
для ‘Vf’). Не забывайте, ток измеряется в амперах.
На первый взгляд может показаться, что это проблема, поскольку 800 Ом не является стандартным значением.
доступен в диапазоне E12. Однако в этом типе цепи сопротивление не
критического, и ближайшего предпочтительного значения будет вполне достаточно, а именно 820 Ом.
НЕ ЗАБЫВАЙТЕ ОБ «Vf»:
Все электронные компоненты демонстрируют — в большей или меньшей степени — то, что известно как
‘выбывать’. Он имеет различные сокращения в зависимости от типа компонента, к которому он
ссылается, но обычно они означают одно и то же. На самом деле это количество напряжения, которое
используется компонентом для работы. Для стандартного светодиода это значение находится в диапазоне
около 1,5 — 3 вольт, и для наших целей мы примем 2 В.
Это означает, что из ваших 12 вольт от аккумулятора 2 вольта будут израсходованы светодиодом.
Сама по себе, поэтому ваш расчет закона Ома должен быть основан на 10 вольт.Истинная формула
должно быть на самом деле; (12-Vf) /0.015=666.66 Ом (повторяется для математиков среди
ты!). Ближайшее значение в диапазоне E12 составляет 680 Ом, поэтому в идеале это должно быть
ценность для использования. В целях безопасности, когда ваши результаты заканчиваются непонятными значениями, такими как
при этом всегда выбирайте ближайшее значение выше, а не следующее ниже.
РЕЗИСТОРЫ ПОСЛЕДОВАТЕЛЬНО И ПАРАЛЛЕЛЬНО
Возможно «изготовление» стандартных и нестандартных номиналов резисторов на
соответствовать вашим потребностям, если требуемое значение отсутствует.Это достигается подключением
два или более из них параллельно, последовательно или их комбинация. Однако вам нужно
заранее знать, как они взаимодействуют друг с другом в этих конфигурациях.
РЕЗИСТОРЫ СЕРИИ:
На рисунке слева показаны три последовательно включенных резистора. Это
самый простой способ получить «произведенные» значения. Формула прямой для
расчет окончательного значения; «R» = R1 + R2 + R3. Другими словами, независимо от
количества резисторов или их индивидуальных значений, окончательное значение
«R» всегда будет их суммой.Расчет по ноге изображения
работает для любого количества значений, соединенных последовательно, вы просто продолжаете добавлять их в
список других.
ПАРАЛЛЕЛЬНЫЕ РЕЗИСТОРЫ:
При параллельном соединении резисторов расчеты
сложнее. На рисунке слева показаны три параллельно включенных резистора. Мы будем
не заботиться о трех отдельных ценностях, а сосредоточиться на том, что
окончательное значение «R» будет с использованием примеров значений.Расчет у подножия
изображение работает для любого количества значений, соединенных параллельно, вы просто продолжаете добавлять их в
список других в скобках. Для наших целей предположим, что R1 составляет 47 КБ, R2 — это
150 КБ, а R3 — 820 КБ. Формула прямой линии для окончательного значения: «R» = 1 / (
(1 / R1) + (1 / R2) + (1 / R3)).
В этой формуле есть много ненужных скобок (скобок),
и вот причина; почти для всех расчетов электроники вам нужно использовать
калькулятор, который отдает приоритет функциям умножения и деления, а также наиболее научным
калькуляторы работают именно так.К сожалению, многие «простые» калькуляторы этого не делают, поэтому
дополнительные скобки были показаны, чтобы компенсировать те, которые вычисляют цифры в
порядок их ввода. С научным калькулятором вы можете использовать упрощенный
формула прямой линии; «R» = 1 / (1 / R1 + 1 / R2 + 1 / R3).
Важно определить значения в скобках перед применением окончательного
Функция «1 /». В противном случае формула принимает вид 1 / R1 + 1 / R2 + 1 / R3 =? если ты
попробуйте это на своем калькуляторе, используя наши примеры значений, вы, вероятно, подумаете, что у вас есть
неправильный ответ (0.02916 …), но вы этого не сделали. На самом деле у вас точно есть право
ответ, ему просто не хватает последней функции «1 /».
Если в вашем калькуляторе есть «1 / X» (единица, разделенная на все, что показано в
display), затем нажмите эту кнопку сейчас. Если эта функция недоступна, поместите
результат в памяти (убедившись, что раньше там ничего не было), очистите дисплей
а затем введите «1 MR =» или другую подобную последовательность. Результат должен быть
34,29 кОм (34 290,29005 Ом), что правильно.Итак, итоговое значение всех трех
параллельно включенные резисторы — 34,29К.
ДЛЯ ЧЕГО ДРУГОЙ ТРЕУГОЛЬНИК?
На рис. 2 слева показан второй по величине
часто используемый треугольник закона Ома. К этому можно подойти точно так же, как и к
выше, только на этот раз он используется для расчета мощности, напряжения и тока. В
объяснения здесь таковы; Ток равен мощности, деленной на напряжение (I = P / V), мощность равна
Ток, умноженный на напряжение (P = VxI), и напряжение равно мощности, деленной на ток (V = P / I).
ДЕМОНСТРАЦИЯ НА ПРИМЕРЕ:
Чтобы продемонстрировать использование этого треугольника, мы применим его к обычному электрическому / электронному
компонент — трансформатор. Их характеристики обычно цитируются с точки зрения
выходное напряжение их вторичной обмотки вместе с возможной мощностью (в ВА)
это напряжение. Термин «VA» означает ватты и происходит от формулы
«Вольт на Ампер» (отсюда — ВА). Это обозначается буквой «P» в
треугольник закона Ома.
КАКОЙ ТРАНСФОРМАТОР ДЕЛАТЬ
НЕОБХОДИМОСТЬ ?
Допустим, у вас есть цепь 9 В, которая потребляет 1.5 ампер тока. Вы хотите знать, если
трансформатор с номиналом 9 В при 25 ВА будет достаточным для питания вашей цепи. Ты
уже есть две величины от трансформатора — напряжение (В) и мощность (P или
VA), и по ним вы хотите узнать, какой будет доступный ток (I).
Используя формулу «I = P / V» из треугольника, результат: 25/9 = 2,77
усилители. Таким образом, этот трансформатор подойдет для ваших нужд на 1,5 А. В целях безопасности
если цепь будет постоянно потреблять определенное количество тока, независимо от
каким может быть этот ток, тогда всегда используйте трансформатор, доступный как минимум на 50% больше
ток, чем требует ваша схема.Никогда не используйте тот, у которого «ровно достаточный» ток,
потому что он станет слишком горячим, что приведет к изменению характеристик напряжения и
текущий указан. Эти изменения сложны, и мы не будем их объяснять в этой статье.
раздел для начинающих, но будьте осторожны при выборе трансформаторов.
Ток и мощность генерируемого напряжения
Если скорость перпендикулярна магнитному полю, то генерируемое напряжение определяется простым произведением:
Для провода длиной L = м = х 10 мкм
движется со скоростью v = x 10 м / с
перпендикулярно магнитному полю B = Tesla = Gauss
генерируемое напряжение составляет V = x 10 мкВ.В.
Данные можно ввести в любое из полей. Когда вы закончили ввод данных, щелкните количество, которое вы хотите рассчитать, в активной формуле выше. Количество не будет принудительно согласованным, пока вы не нажмете на выбор. Для неопределенных параметров будут введены значения по умолчанию, но все значения могут быть изменены.
После того, как вы рассчитали генерируемое напряжение, разумным последующим вопросом будет «Какой ток и мощность я могу получить от генератора?».Несмотря на то, что это не будет практичной геометрией генератора, она может служить
идеализация для обсуждения принципов генерации напряжения при взаимодействии с магнитным полем. Принимая это
простая геометрия, электрический ток в амперах, возникающий при перемещении провода
через магнитное поле будет определяться сопротивлением цепи, к которой он подключен.
связаны, используя закон Ома, I = V / R. Если вы сгенерировали 10 вольт и были подключены к цепи
сопротивление 1 Ом, результирующий ток будет 10 ампер, а передаваемая мощность P = VI = 10 вольт x 10
амперы = 100 Вт (см.