Конденсаторы электролитические неполярные: Неполярные электролитические конденсаторы

Каталог продукции — Пассивные элементы — Конденсаторы — Конденсаторы электролитические — Конденсаторы неполярные электролитические

Каталог продукции

Обновлен: 06.04.2021
в 02:32

  • Aвтоматика, Робототехника, Микрокомпьютеры
  • Акустические компоненты
  • Датчики
  • Двигатели, вентиляторы
  • Измерительные приборы и модули
  • Инструмент, оборудование, оснастка
    • Аксессуары для пайки
    • Антистатические принадлежности
    • Бокорезы, ножницы
    • Дрели, фрезеры, бормашины
    • Жала для паяльников и станций
    • Инструмент для зачистки изоляции
    • Инструмент для обжима
    • Лупы, микроскопы
    • Нагреватели инфракрасные
    • Ножи, скальпели
    • Отвёртки
    • Отсосы для припоя
    • Паяльники газовые и горелки
    • Паяльники электрические
    • Паяльные станции и ванны, сварочные автоматы
    • Пинцеты, зажимы
    • Плоскогубцы, круглогубцы
    • Подставки для паяльников и штативы
    • Принадлежности для паяльников и станций
    • Прочий инструмент и оснастка
    • Сверла, фрезы, боры
    • Термоклеевые пистолеты
    • Тиски, станины
    • Штангенциркули, линейки
  • Источники питания, батарейки, аккумуляторы
  • Кабель, провод, шнуры
  • Коммутация, реле
  • Конструктивные элементы, корпуса, крепеж
  • Материалы и расходники
  • Оптика и индикация
  • Пассивные элементы
  • Полупроводниковые приборы, микросхемы, радиолампы
  • Разъёмы, клеммы, соединители, наконечники
  • Текстолит, платы
  • Товары бытового назначения
  • Трансформаторы, сердечники, магниты

Информация обновлена 06.04.2021 в 02:32

Вид:

Сортировка:

По наличиюпо алфавитупо цене

Кол-во на странице:
244860120

Неполярные электролитические конденсаторы: отличия от полярных

Неполярный конденсатор является распространенным элементом многих радиоэлектронных схем. Специалист, работающий в этой области, должен знать основные конструктивные и эксплуатационные особенности этих устройств, уметь их правильно монтировать и тестировать.

Внешний вид неполярных конденсаторов

Определение неполярных конденсаторов

Данные устройства представляют собой пассивные элементы, способные накапливать и хранить электрический заряд. Их отличительной особенностью является сохранение корректной работы при любом порядке подключения выводов в цепь. Это объясняется отсутствием серьезных различий в характеристиках сред, образующихся с двух сторон границы обкладок и диэлектрика.

В чем отличие полярного и неполярного конденсатора

Полярные конденсаторы имеют пару электродов: плюсовой и минусовой. Чтобы устройство могло функционировать, при его подсоединении в электроцепь необходимо соблюдение полярности. В противном случае элемент быстро придет в негодность или даже взорвется. Электролитические накопители этого типа имеют также черты полупроводникового элемента.
От неполярных эти устройства отличаются наличием существенной разницы физико-химических свойств между средами с двух сторон раздела, которые и создают полярность. В изготовлении обоих видов устройств применяются такие токопроводящие материалы, как алюминий и тантал.

Алюминиевые электролиты

Неполярный электролитический конденсатор с алюминиевыми обкладками отличается от других изделий довольно высоким показателем индуктивности. Она образуется вследствие скручивания обкладочных заготовок для более удобной установки в корпус-цилиндр. Несмотря на нецелесообразность индуктивных явлений в ряде случаев, изделия из алюминия пользуются популярностью, благодаря невысокой цене и доступности. Изготавливаются они в smd форме для монтажа на поверхность печатной плиты.

Главная сфера их применения – нивелирование пульсаций в цепях, где выпрямляется переменный ток. Также с помощью этих устройств пульсирующий электроток разделяется на постоянную и переменную компоненты (это применяется в устройствах, проигрывающих звукозаписи).

Важно! При выборе конденсатора желательно брать образец с меньшим значением ESR (эквивалентного последовательного сопротивления). Особенно это критично для систем, требующих фильтрации пульсаций с высокими частотами (например, блок питания ЭВМ).

Конденсаторы с электролитом из алюминия

Электролиты на основе тантала

Этот материал дает возможность создания высокоемких изделий, сохраняющих это свойство при значительных показателях рабочего напряжения. В отличие от предыдущего типа, они почти не имеют индуктивности, что обеспечивает им большую широту сферы применения. Изделия малогабаритны, работают стабильно, служат долго. Выпускаются в двух вариантах исполнения корпуса, заточенных под разные типы монтажа. Smd-варианты предназначены для размещения на поверхности платы. Они обладают высокой емкостью при миниатюрных размерах. Монтаж таких элементов осуществляется роботами. Есть изделия, снабженные длинными выводами, продеваемыми в дырочки на платах.

Изделия из полимеров

В таких устройствах вместо металлических обкладок применяются полимерные материалы, проводящие ток. В остальном по особенностям строения они идентичны ранее описанным категориям.

Особенности конструкции и включения НЭК

Отличительная особенность таких изделий – отсутствие постоянного смещения масс электронов на обкладочных элементах. Это достигается благодаря тому, что детали из алюминия подвергаются окислению с двух сторон диэлектрика.

Конструкция

Из-за особенностей строения рассматриваемые устройства можно сравнить с парой встречно соединенных полярных электролитических элементов, не имеющих заряда на обкладочных поверхностях. Поэтому, когда такой конденсатор подсоединяется в цепь, потребности в жесткой привязке к потенциалам не возникает. Таким образом, эти изделия способны функционировать на разных участках электроцепи и поддерживать нужные емкостные показатели.

Особенности включения

Если при подключении полярного устройства перепутать местами плюсовой и минусовой выводы, оно не сможет заряжаться и разряжаться. Поэтому нормально работать такой элемент не будет. Неполярные электролитические устройства способны работать при подключении в разные схемы без внимания к полярности. Это связано с их строением – у них отсутствуют анод и катод (пластинки с отрицательным и положительным зарядами).

Помимо электролитических, есть другая разновидность неполярных устройств. Их конструкция включает в себя пару обкладочных поверхностей (без поляризации) с вмонтированным промеж них диэлектриком. В электроцепях такие детали ставятся в роли малоемких элементов с функциями разделения тока на компоненты, блокировки и задания времени.

Как сделать неполярный конденсатор из полярного

Порой случаются ситуации, когда для усилителя или иного прибора нужно применить неполярный конденсаторный элемент, но под рукой присутствуют исключительно полярные. Заменить неполяризованный конденсатор можно парой изделий с полюсами с емкостью, вдвое превышающей ту, которая требуется в схеме. Они соединяются друг с другом встречно-последовательно: идентичные (положительные или отрицательные) выводы соединяются между собой, другие два запаиваются в схему.

Схожий принцип имеет строение НЭК с окисями на обеих обкладках. За счет этого такие продукты имеют более крупные габариты, чем полярные изделия с тем же параметром электролитической емкости. Базируясь на этом же механизме, производят НЭК с опцией пуска, заточенные под эксплуатацию в цепях переменного тока.

Соединение неполярных устройств с целью получения полярного

Как проверить неполярный конденсатор мультиметром

Чтобы провести процедуру тестирования, аппарат потребуется установить в режим омметра. Его основное назначение – измерить параметр сопротивления. При работе с данной группой элементов проверяется сопротивление утечки. Рабочие щупы подсоединяются к выводам конденсатора, подвергающегося проверке. Теперь нужно смотреть на показания прибора. Если на экране отображается единица, значение сопротивления превышает 2 мегаом. Это считается нормальным показателем. Если сопротивление ниже, имеет место значительная утечка.

Важно! Нужно избегать держания обеими руками выводов тестируемого устройства и щупов измерительного прибора. Это приведет к получению некорректных результатов измерений.

Проверка с помощью мультиметра

Маркировка

Обозначение емкости на таких изделиях состоит из трех цифр. Последняя из них показывает число нулей, другие две – значение параметра в пикофарадах. Например, если на устройстве имеются цифры 123, емкость можно посчитать так: 12 пФ и 3 нуля – 12 000 пФ, то есть 0,012 мкФ. Маркировка малоемких элементов (меньше 10 пФ) отличается использованием латинской литеры R в качестве символа, разделяющего целую и дробную части числа.

Неполярные керамические изделия для smd-монтажа маркировкой не снабжаются вовсе. Емкость таких компонентов может находиться в диапазоне от 1 пФ до 10 мкФ. Танталовые и алюминиевые элементы имеют цифровую или цифробуквенную кодировку. Они различаются формой корпуса: у первых она прямоугольная, у вторых – цилиндрическая.

Будучи менее требовательными к условиям подключения, чем поляризованные изделия, неполярные элементы широко используются при монтаже электросхем. Они способны правильно работать в любом месте электроцепи и давать нужное значение емкости.

Видео

Неполярный электролитический конденсатор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Неполярный электролитический конденсатор

Cтраница 1

Неполярные электролитические конденсаторы могут находить себе применение в аппаратуре, рассчитанной на питание от сети постоянного тока, где легко может иметь место перемена полярности при включении штепсельной вилки.
[1]

Сухие неполярные электролитические конденсаторы имеют две анодные фольги, заформованные в одном электролите при одинаковом напряжении. Технология изготовления таких конденсаторов ничем не отличается от изготовления полярных конденсаторов. Некоторое изменение в технологии имеет место при намотке секций, так как вместо катодной фольги закладывается вторая анодная пластина.
[2]

Изготовляются также неполярные электролитические конденсаторы, в которых обе обкладки имеют оксидный слой.
[4]

Конденсаторы, собранные как неполярные электролитические конденсаторы, могут применяться и для включения в цепь переменного тока.
[5]

Наряду с полярными имеются сухие неполярные электролитические конденсаторы.
[6]

Промышленностью выпускается также несколько типов неполярных электролитических конденсаторов, у которых оксидный слой нанесен на обоих электродах.
[7]

Измерения емкости и тангенса угла потерь неполярных электролитических конденсаторов и электролитических конденсаторов переменного тока выполняются теми же методами, что и измерения полярных электролитических конденсаторов. При этих измерениях наложение на конденсаторы поляризующего напряжения постоянного тока не является обязательным.
[8]

Как было показано в четвертой главе, емкость неполярного электролитического конденсатора при одинаковой площади обкладок в два раза меньше емкости обычного полярного электролитического конденсатора.
[9]

Наряду с обычными, полярными, конденсаторами могут также изготовляться неполярные электролитические конденсаторы, у которых вместо катода используется второй анод.
[10]

Полярность сигналов высокого уровня должна быть однозначной, или должны применяться неполярные электролитические конденсаторы.
[11]

Конденсаторы с такими обкладками не требуют соблюдения полярности при включении в электрическую цепь; соответственно этому они получили название неполярных электролитических конденсаторов.
[12]

Как будет показано ниже, возможно изготовление и н е п о-л я р н ы х электролитических конденсаторов, при включении которых в цепь постоянного тока соблюдение полярности не требуется. Изготовлению неполярного электролитического конденсатора, рассчитанного на длительную работу при переменном напряжении, препятствует большой tg 8, свойственный конденсаторам этого типа.
[13]

Таким образом, во внешнюю цепь может уходить только половина всего того заряда, который был связан на границах оксидного слоя, когда напряжение на конденсаторе имело максимальное значение. Это обстоятельство приводит к тому, что емкость неполярного электролитического конденсатора в два раза меньше, чем емкость полярного конденсатора, имеющего такую же поверхность анода, какую имеет каждая обкладка неполярного конденсатора.
[15]

Страницы:  

1

2




Полярный конденсатор в цепи переменного тока, неполярные электролиты

Полярные и неполярные конденсаторы — в чем отличие

Всевозможные типы конденсаторов, используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно электролитических конденсаторов, в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, керамических или полипропиленовых. Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) — просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

Смотрите также: Конденсаторы в электронных схемах

Андрей Повный

Конденсаторы электролитические неполярные

Конденсаторы электролитические неполярные
Диапазон емкостей1 — 220 мкФ
Диапазон напряжений16 — 160 В
Допустимое отклонение емкости±20%
Ток утечки 4 мкА
Тангенс угла потерь, tgδ0,12 — 0,24
Выработка2000 ч
Рабочая температура-40°C – +85°C
СерияЦенаСерияЦена
1мкФ 50В 85°C $0,02 + –22мкФ 16В 85°Cпо запросу + –
1мкФ 100В 85°C $0,02 + –22мкФ 25В 85°Cпо запросу + –
2,2мкФ 50В 85°C $0,02 + –22мкФ 100В 85°C $0,12 + –
3,3мкФ 50В 85°C $0,02 + –33мкФ 16В 85°C $0,03 + –
4,7мкФ 35В 85°C $0,02 + –100мкФ 25В 85°C $0,05 + –
4,7мкФ 50В 85°C $0,03 + –100мкФ 35В 85°C $0,08 + –
10мкФ 16В 85°C $0,02 + –100мкФ 50В 105°C $0,09 + –
10мкФ 35В 85°C $0,03 + –220мкФ 16В 85°C $0,08 + –
10мкФ 50В 105°C $0,02 + –220мкФ 25В 85°C $0,08 + –
10мкФ 160В 85°C $0,12 + –

Маркировка конденсаторов электролитических радиальных:

220мкФ Номинальная емкость.
25В Номинальное напряжение.
85°C Рабочая температура.

Габаритные и установочные размеры конденсаторов электролитических радиальных:

ЕмкостьРазмеры DxL, мм
16В25В35В50В63В100В160В
1мкФ5×115×11
2,2мкФ5×115×116,3×11
3,3мкФ6,3×116,3×118×11,510×16
4,7мкФ5×115×116,3×116,3×118×11,510×16
10мкФ5×116,3×116,3×118×11,58×11,510×1613×20
22мкФ6,3×118×11,58×11,510×12,510×1612,5×2013×25
33мкФ8×11,58×11,510×12,510×1610×2012,5×2516×25
47мкФ8×11,510×12,510×1610×2012,5×2016×2516×35
100мкФ10×1610×2012,5×2012,5×2516×2516×31,519×35
220мкФ10×2012,5×2012,5×2516×31,516×31,516×35,5
Подробные характеристики неполярных электролитических конденсаторов
Номинальное напряжение16В25В35В50В63В100В160В
Импульсное напряжение20В32В44В63В79В125В200В
Тангенс угла потерь0,170,150,120,120,120,120,15
Коэффициент импеданса
-25°С / +20°С
2222224
Коэффициент импеданса
-40°С / +20°С
654433

Устройство электролитических конденсаторов:

В цилиндрическом алюминиевом корпусе расположены две электродные фольги – электроды, между которыми находится бумага, пропитанная электролитом, диэлетрик (тонкая оксидная пленка) и бумажный разделитель. В неполярных конденсаторах диэлетрик (тонкая оксидная пленка) нанесена на оба электрода для симметрии их электрических параметров.

В нижней части конденсатора размещен резиновый уплотнитель и вывода. Алюминиевый корпус конденсатора покрыт изолирующей оболочкой.

На верхней торцевой части корпуса расположен предохранительный клапан или защитные надсечки (крестообразные, в форме буквы К или Т), которые обеспечивают взрывобезопасность конденсатора при его выходе из строя вследствие перегрева, пробоя или переполюсовки. Суть защитного устройства базируется на возможности выброса накопленного внутри корпуса излишнего давления паров газа электролита. Возрастание внутреннего давления сопровождается выбросом пробки клапана или разрушением корпуса по надсечкам, но без взрыва, разбрасывания обкладок и сепаратора, предотвращая таким образом повреждения соседних элементов схемы.

Емкость электролитического конденсатора обратно пропорциональна минусовой температуре: с понижением температуры вязкость электролита увеличивается, тем самым снижая его проводимость. Повышение температурного режима приводит к уменьшению срока службы конденсатора, поэтому при их установке следует избегать близкого расположения тепловыделяющих компонентов.

Неполярный конденсатор из полярных:

Получить неполярный электролитический конденсатор можно путем последовательного соединения двух одинаковых полярных электролитов полюсами друг к другу — плюс к плюсу или минус к минусу. В этом случае его емкость будет равна половине емкости одного полярного конденсатора, а номинальное напряжение останется неизменным.

Изменение емкости электролитических конденсаторов от температуры и частоты:

  • Типовая зависимость емкости электролитического конденсатора от температуры

  • Типовая зависимость емкости электролитического конденсатора от

    частоты

Монтаж электролитических конденсаторов на плату:

  • Монтаж электролитических конденсаторов осуществляется на печатную плату методом групповой пайки или с помощью паяльника.

    При установке конденсатора нужно обязательно соблюдать классификационные параметры (ёмкость, номинальное напряжение).

    Пространство вокруг конденсатора в радиусе до 3 мм следует оставить свободным для возможного срабатывания защитного клапана, а зазор между конденсатором и печатной платой должен быть минимальным (приблизительно 1 мм).

Рекомендации по монтажу и эксплуатации:

  • Располагайте конденсаторы так, чтобы другие компоненты и проводники находились на расстоянии от вентиляционного отверстия конденсатора.
  • Конденсаторы с жесткими выводами «snap-in» должны плотно, без люфта и зазора устанавливаться на печатную плату.
  • Конденсаторы под винт «screw terminal» монтируются в вертикальном положении выводами вниз или горизонтально с положительным выводом сверху относительно отрицательного.
  • После хранения конденсаторы рекомендуется «тренировать» подачей постоянного напряжения через токоограничивающий резистор сопротивлением примерно 1кОм.
  • Перед установкой конденсаторы следует разрядить, замыкая выводы через резистор сопротивлением 1кОм.

Допустимое расстояние между корпусом конденсатора и стенкой корпуса оборудования:

Диаметр конденсатораЗазор
6,3 – 16 мм> 2 мм
18 – 35 мм> 3 мм
более 40 мм> 5 мм

Пайка электролитических конденсаторов:

Режимы пайки (длительности и температуры на каждой операции) должны соответствовать указаниям в спецификации к конденсатору.

Есть два способа пайки электролитических конденсаторов:

  • Пайка волной – выполняется при температуре до 260°С и не более 10 секунд.
  • Групповая пайка оплавлением пасты в печи с конвекционным или инфракрасным нагревом.
  • Параметры режима групповой пайки оплавлением пасты

  • Параметры режима групповой пайки оплавлением пасты бессвинцовыми припоями

Меры предосторожности:

  • При появлении «дыма» с предохранительного клапана электролитического конденсатора следует немедленно обесточить электрическую цепь.
  • Не приближайте лицо к предохранительному клапану электролитического конденсатора. Газы, выбрасываемые из конденсатора, могут достигать температуры свыше 100°C.
  • Не препятствуйте работе вентиляционных систем, соблюдайте необходимый зазор между корпусом конденсатора и стенкой корпуса оборудования.
  • Не используйте конденсаторы в системах с частыми внезапными зарядами и разрядами, т.к. конденсаторы могут быть повреждены.
  • Подаваемое на конденсатор напряжение не должно превышать значения номинального напряжения.
  • Используйте конденсатор при допустимом значении тока пульсации, т.к. превышение допустимого тока пульсации может вызвать перегрев, уменьшение емкости или повреждение конденсатора.
  • Используйте конденсаторы при допустимом диапазоне рабочих температур.
  • Не применяйте чрезмерную силу воздействия на терминалы и выводы конденсаторов, чтобы исключить повреждение и нарушение внутренних элементов.
  • Длительное хранение конденсаторов допускается только в сухих прохладных помещениях.

Неполярный электролитический конденсатор маркировка — Морской флот

1. Маркировка тремя цифрами.

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировказначениемаркировказначениемаркировказначениемаркировказначение
A1.0J2.2S4.7a2.5
B1.1K2.4T5.1b3.5
C1.2L2.7U5.6d4.0
D1.3M3.0V6.2e4.5
E1.5N3.3W6.8f5.0
F1.6P3.6X7.5m6.0
G1.8Q3.9Y8.2n7.0
H2.0R4.3Z9.1t8.0

5. Планарные электролитические конденсаторы.

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

букваeGJACDEVH (T для танталовых)
напряжение2,5 В4 В6,3 В10 В16 В20 В25 В35 В50 В

Кодовая маркировка, дополнение

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475

С. Маркировка емкости в микрофарадах

Вместо десятичной точки может ставиться буква R.

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: 23. Вы найдете их список внизу страницы.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Маркировка конденсаторов обладает большим разнообразием по сравнению с маркировкой резисторов. Довольно сложно увидеть маркировку маленьких конденсаторов, потому что площадь поверхности их корпусов очень незначительная. В этой статье рассказывается, как читать маркировку практически всех типов современных конденсаторов, произведенных за рубежом. Возможно, на вашем конденсаторе маркировка будет нанесена в другом порядке (по сравнению с описываемым в этой статье). Более того, на некоторых конденсаторах отсутствуют значения напряжения и допуска – для создания низковольтной цепи вам понадобится только значение емкости.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача – как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора – мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт – знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT – Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера – мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен – для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие – на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП – батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Другой способ проверки отличается тем, что мультиметр, параллельно подключенный к сопротивлению, переводится в режим измерения постоянного напряжения. В этом случае при правильном подключении емкости прибор покажет напряжение, величина которого затем будет стремиться к нулю. При неправильном подключении напряжение сначала будет падать, но потом зафиксируется на ненулевой величине.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Конденсаторы электролитические неполярные — Радиодетали

µFVразмерС˚Фирма1 +10 +50+
1505×11105Elzet0,600,600,50
2,21006×11105Elzet0,600,600,50
 3,3505×11 105 Jamicon0,600,600,50
4,71005×1185Capxon0,600,600,50
10506,3×1185Capxon0,750,700,60
1016010×1685Capxon2,502,302,00
22508×1285Capxon1,501,401,00
2210010×1685Capxon3,002,702,50
47256×11105Capxon0,600,600,50
475010×1285Capxon1,501,401,20
100168×1285Samwha1,501,401,20
1005010×17105Elzet2,502,302,00
2202510×1285Capxon2,001,801,50
4701610×1685Capxon3,002,702,50

КОНДЕНСАТОР

   Конденсаторы  являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Разные конденсаторы рисунок

   Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Устройство простейшего конденсатора

   Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Формулы соединение конденсаторов

   Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

Полярный конденсатор изображение на схеме

   К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

Фото электролитический конденсатор

   У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Фото конденсатора с насечками

   Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

   На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный

Керамический

   Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

Расшифровка цифровой маркировки конденсаторов

   На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Таблица номиналов конденсаторов

   Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Фото SMD конденсатора

   Далее показано фото электролитических SMD конденсаторов:

Фото электролитических SMD конденсаторов

   Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы

   Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Рисунок как устроен переменный конденсатор

   Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

Фото переменный конденсатор

   На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

Переменный конденсатор изображение на схеме

   На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Подстроечный конденсатор изображение на схеме

   Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

Фото подстроечный конденсатор

   На следующем рисунке изображено строение подстроечного конденсатора:

Рисунок строение подстроечного конденсатора

   Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV.

   Форум по различным радиоэлементам

   Форум по обсуждению материала КОНДЕНСАТОР

Можно ли сделать неполярный электролитический конденсатор из двух обычных электролитических конденсаторов?

Резюме:

  • Да «поляризованные» алюминиевые конденсаторы с «влажным электролитом» могут быть законно подключены «спина к спине» (т. Е. Последовательно с противоположной полярностью), образуя неполярный конденсатор.

  • C1 + C2 всегда равны по емкости и номинальному напряжению
    Ceffective = = C1 / 2 = C2 / 2

  • Veffective = скорость C1 и C2.

  • См. «Механизм» в конце, чтобы узнать, как это (вероятно) работает.


При этом принято считать, что два конденсатора имеют одинаковую емкость.
Результирующий конденсатор с половиной емкости каждого отдельного конденсатора.
, например, если два конденсатора по 10 мкФ соединить последовательно, результирующая емкость будет 5 мкФ.

Я прихожу к выводу, что полученный конденсатор будет иметь такое же номинальное напряжение, как и отдельные конденсаторы.(Я могу ошибаться).

Я видел, как этот метод использовался много раз на протяжении многих лет и, что более важно, видел метод, описанный в примечаниях по применению от ряда производителей конденсаторов. См. В конце одну из таких ссылок.

Понимание того, как отдельные конденсаторы заряжаются правильно, требует либо веры в заявления производителей конденсаторов («действовать так, как если бы они были шунтированы диодами»), либо дополнительных сложностей, НО легче понять, как устройство работает после включения.
Представьте себе две заглушки с полностью заряженным Cl и полностью разряженным Cr.
Если теперь через последовательную схему проходит ток, так что Cl затем разряжается до нулевого заряда, то обратная полярность Cr заставит его заряжаться до полного напряжения. Попытки подать дополнительный ток и дополнительно разрядить Cl, принимая неправильную полярность, приведут к тому, что Cr будет заряжаться выше его номинального напряжения. то есть это может быть предпринято, НО будет вне спецификации для обоих устройств.

Учитывая вышеизложенное, можно ответить на конкретные вопросы:

Какие причины для последовательного подключения конденсаторов?

Может создать биполярный колпачок из двух полярных колпачков.
OR может удвоить номинальное напряжение, если соблюдается баланс распределения напряжения. Иногда для достижения баланса используются параллельные резисторы.

«оказывается, что то, что может выглядеть как два обычных электролита, на самом деле не является двумя обычными электролитиками».

Это можно сделать с помощью обычных электролитов.

«Нет, не делайте этого. Он также будет действовать как конденсатор, но как только вы пропустите несколько вольт, он выйдет из строя.«

Работает нормально, если рейтинги не превышены.

‘Что-то вроде «БЮТ из двух диодов не сделаешь»‘

Причина для сравнения указана, но не действительна. Каждый полуконденсатор подчиняется тем же правилам и требованиям, что и отдельный.

«Это процесс, который не может выполнить мастер»

Тинкерер может — вполне законно.

Так является ли неполярный (NP) электролитический колпачок электрически идентичным двум электролитическим колпачкам в обратной последовательности или нет?

Как бы то ни было, производители обычно вносят изменения в производство, так что есть две анодные фольги, НО результат тот же.

Разве он не выдерживает такие же напряжения?

Номинальное напряжение — это напряжение одиночной крышки.

Что происходит с конденсатором с обратным смещением, когда на комбинацию подается большое напряжение?

При нормальной работе крышки с обратным смещением НЕТ. Каждая крышка обрабатывает полный цикл переменного тока в целом, фактически видя половину цикла. Смотрите мое объяснение выше.

Существуют ли практические ограничения, кроме физического размера?

Я не могу придумать очевидных ограничений.

Имеет ли значение какая полярность снаружи?

Нет. Нарисуйте изображение того, что каждая крышка видит изолированно, без привязки к тому, что находится «за ее пределами. Теперь измените их порядок в цепи. То, что они видят, идентично.

Я не вижу, в чем разница, но многие люди думают, что она есть.

Вы правы. Функционально с точки зрения «черного ящика» они одинаковы.


ПРИМЕР ПРОИЗВОДИТЕЛЯ:

В этом документе Руководство по применению, Алюминиевые электролитические конденсаторы от компании Cornell Dubilier, компетентного и уважаемого производителя конденсаторов, говорится (возраст 2.183 и 2.184)

  • Если два алюминиевых электролитических конденсатора одинакового номинала
    соединены последовательно, спина к спине с положительным
    клеммы или подключенные отрицательные клеммы,
    в результате одиночный конденсатор представляет собой неполярный конденсатор с
    половина емкости.

    Два конденсатора выпрямляют
    приложенного напряжения и действуют так, как если бы они были обойдены
    диодами.

    При подаче напряжения конденсатор правильной полярности получает полное напряжение.

    В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах для запуска двигателя вторая анодная фольга заменяет катодную фольгу, чтобы в одном случае был неполярный конденсатор.

Этот комментарий со страницы 2.183 имеет отношение к пониманию всего действия.

  • Хотя может показаться, что емкость между
    две фольги, на самом деле емкость находится между
    анодная фольга и электролит.

    Положительная пластина — это
    анодная фольга;

    диэлектрик изоляционный алюминий
    оксид на анодной фольге;

    настоящая отрицательная пластина — это
    проводящий жидкий электролит и катодная фольга
    просто подключается к электролиту.

    Эта конструкция обеспечивает колоссальную емкость.
    потому что травление фольги может увеличить площадь поверхности
    более чем в 100 раз, а толщина диэлектрика из оксида алюминия составляет менее микрометра. Таким образом, в результате
    конденсатор имеет очень большую площадь пластины, и пластины
    ужасно близко друг к другу.


ДОБАВЛЕНО:

Я интуитивно чувствую, как и Олин, что необходимо обеспечить средства для поддержания правильной полярности. На практике кажется, что конденсаторы хорошо справляются с «граничным условием» запуска.Корнелл Дабиллерс «действует как диод» требует лучшего понимания.


МЕХАНИЗМ:

Думаю, следующее описывает, как работает система.

Как я описал выше, когда один конденсатор полностью заряжен на одном конце формы волны переменного тока, а другой полностью разряжен, система будет работать правильно, при этом заряд будет проходить на внешнюю «пластину» одной крышки напротив внутренней пластины этот колпачок к другому колпачку и «другой конец». т.е. масса заряда передается между двумя конденсаторами и позволяет чистому заряду течь к и от двойной крышки.Пока проблем нет.

Правильно смещенный конденсатор имеет очень низкую утечку.
Конденсатор с обратным смещением имеет большую утечку и, возможно, намного больше.
При запуске одна крышка смещается в обратном направлении на каждом полупериоде, и течет ток утечки.
Поток заряда таков, чтобы привести конденсаторы к правильно сбалансированному состоянию.
Это упоминаемое «действие диода» — не формальное выпрямление как таковое, а утечка при неправильном рабочем смещении.
После нескольких циклов баланс будет достигнут.Чем «негерметичнее» крышка в обратном направлении, тем быстрее будет достигнут баланс.
Этот саморегулирующийся механизм компенсирует любые недостатки или неравенства.
Очень аккуратный.

Что такое неполяризованный конденсатор

Ⅰ Введение

Неполяризованный конденсатор — это один из многих конденсаторов. По полярности конденсатора конденсатор можно разделить на неполяризованный конденсатор и поляризованный конденсатор.И эта статья подробно расскажет: что такое неполяризованный конденсатор? Для чего это используется? Как выбрать неполяризованные конденсаторы? В чем разница между электролитическими конденсаторами и неполяризованными конденсаторами?

Поляризованный конденсатор против неполяризованного конденсатора

Как проверить неполяризованный конденсатор?

Каталог


Ⅱ Conception

Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть произвольно вставлены в схему и не будут протекать, в основном используются в схемах связи, развязки, обратной связи, компенсации и колебаний.На рисунке ниже показана справочная схема неполяризованного конденсатора.

Рисунок 1. Конденсатор неполяризованный

Идеальный конденсатор не имеет полярности. Однако на практике для получения большой емкости используются некоторые специальные материалы и конструкции, что приводит к тому, что сами конденсаторы несколько поляризованы. Общие поляризованные конденсаторы включают алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы. Электролитические конденсаторы обычно имеют относительно большую емкость.Сделать неполяризованный конденсатор большой емкости не так-то просто, потому что объем станет очень большим. Вот почему в реальной цепи так много поляризованных конденсаторов. Поскольку его размер невелик, а напряжение в этой цепи имеет только одно направление, могут пригодиться поляризованные конденсаторы.

Мы используем поляризованные конденсаторы, чтобы избежать их недостатков и воспользоваться их преимуществами. Мы можем понять это так: поляризованный конденсатор на самом деле является конденсатором, который может использоваться только в одном направлении напряжения.Для неполяризованных конденсаторов можно использовать оба направления напряжения. Следовательно, только с точки зрения направления напряжения неполяризованные конденсаторы лучше, чем поляризованные. Вполне возможно заменить поляризованные конденсаторы неполяризованными конденсаторами, если емкость, рабочее напряжение, объем и т. Д. Могут соответствовать требованиям.


Ⅲ Функция

Неполяризованные конденсаторы используются в цепях чистого переменного тока, и из-за их небольшой емкости они также могут применяться для фильтрации высоких частот.Вот пример, иллюстрирующий применение конденсатора:

В данном случае в основном используется RC-искрогаситель. Когда антенна принимает радио- и телепрограмму, если люминесцентная лампа включена, а люминесцентная лампа мигает, будет слышен нерегулярный звук радио или динамика телевизора. Многие сильные яркие линии и яркие пятна на экране телевизора — это высокочастотные помехи, вызванные электрическими искрами.

При отключении цепей с индуктивностью между контактами возникает искра. Как показано в схеме слева на рисунке 2, переключатель S внезапно выключается, и ток быстро исчезает, то есть изменение тока велико, поэтому на обоих концах катушки генерируется большая самоиндукция. . Эта электродвижущая сила может препятствовать изменению тока, и ее направление согласуется с направлением приложенного напряжения. Когда они накладываются друг на друга, напряжение U1 на переключателе будет очень высоким, а когда напряжение выше определенного значения, это «резкое» напряжение разрушит воздух и образует электрическую искру.

Искра может вызвать абляцию контактов и окисление, что приведет к неисправности. Поэтому важно исключить искру между контактами. При отключении цепи, пока ток управляющей катушки не упадет, напряжение на двух концах катушки не будет слишком большим, поэтому искры не будет, как показано на схеме справа внизу. RC-цепь искрогасителя подключена к обоим концам индуктора. Когда переключатель внезапно выключается, i1 заряжает конденсатор.Часть энергии магнитного поля в катушке индуктивности рассеивается на R и r, а часть преобразуется в энергию электрического поля в конденсаторе C, что вызывает повторный разряд конденсатора C, тем самым устраняя искру.

Рисунок 2. Цепь с индуктивностью и цепью поглощения искры


Ⅳ Как выбрать неполяризованные конденсаторы?

Неполяризованные конденсаторы очень удобны в выборе и использовании. Вы можете напрямую выбрать конденсаторы той же модели и тех же технических характеристик.Если ни одно из вышеперечисленных условий не выполняется, вы можете обратиться к следующим методам:

1. Выберите конденсатор разумной точности. В большинстве случаев требования к емкости не очень высоки, и допустимо иметь емкость, примерно равную эталонной емкости. В колебательных схемах, схемах фильтрации, схемах задержки и схемах тонального сигнала абсолютное значение ошибки должно быть в пределах 0,3% -0,5%.

2. Выберите конденсатор в соответствии с требованиями схемы.Бумажный конденсатор обычно используется для низкочастотной цепи байпаса переменного тока. Слюдяной конденсатор или керамический конденсатор обычно используются в цепях с высокой частотой или высоким напряжением.

3. Можно выбрать конденсаторы с номинальным напряжением больше или равным фактическим потребностям.

4. Конденсаторы высокой частоты нельзя заменить конденсаторами низкой частоты.

5. Учитывайте рабочую температуру, рабочий диапазон, температурный коэффициент конденсатора в зависимости от случая применения.

6. Последовательный или параллельный метод может использоваться, когда номинальная емкость не может быть достигнута, но добавляемое к конденсатору напряжение должно быть меньше выдерживаемого напряжения конденсатора.


Ⅴ Разница между неполяризованными конденсаторами и поляризованными конденсаторами

И полярные, и неполяризованные конденсаторы имеют одинаковые принципы, то есть накопление и высвобождение зарядов; напряжение на пластине (здесь электродвижущая сила накопления заряда называется напряжением) не может внезапно измениться

Различные носители, разная производительность, разная емкость и разная структура приводят к разным условиям использования и использованию.И наоборот, с развитием науки и технологий и открытием новых материалов появятся более совершенные и разнообразные конденсаторы.

Рисунок 3. Различные типы конденсаторов

5.1 Другой диэлектрик

Что такое диэлектрик? Другими словами, это вещество между двумя обкладками конденсатора. В большинстве конденсаторов полярности в качестве диэлектрика используются электролиты, благодаря чему конденсатор полярности имеет большую емкость по сравнению с другими конденсаторами того же объема.Кроме того, конденсаторы полярности, произведенные из разных материалов и процессов электролита, будут иметь разную емкость. Между тем, устойчивость к напряжению в основном связана с диэлектрическим материалом. Также существует множество неполяризованных материалов, в том числе наиболее часто используемые металлооксидные пленки и полиэстер, использование полярности и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой.

Рисунок 4. Неполяризованный конденсатор и поляризованный конденсатор

5.2 Различная производительность

Производительность и максимизация спроса — это требование использования. Если в блоке питания телевизора используется металлооксидный пленочный конденсатор в качестве фильтра, и если для соответствия фильтру требуются емкость и выдерживаемое напряжение, я боюсь, что внутри корпуса можно установить только источник питания.

Следовательно, в фильтре можно использовать только конденсатор полярности, а емкость полярности необратима. Как правило, электролитический конденсатор имеет емкость более 1 МФ, которая участвует в связи, развязке, фильтрации источника питания и т. Д.Неполярный конденсатор обычно меньше 1 MF, который участвует в резонансе, связи, выборе частоты, ограничении тока и так далее. Конечно, существуют также неполярные конденсаторы большой емкости и высокого напряжения, которые в основном используются для компенсации реактивной мощности, фазового сдвига двигателя, фазового сдвига мощности с преобразованием частоты и других целей. Есть много видов неполяризованных конденсаторов.

Рисунок 5. Конденсаторы

5.3 Различная емкость

Как упоминалось ранее, конденсаторы одного объема имеют разную емкость при разном диэлектрике.

5.4 Другая конструкция

В принципе, можно использовать конденсатор любой формы в окружающей среде без учета точечного разряда. Чаще всего используются электролитические конденсаторы круглой формы, а квадратные — редко. Конденсаторы имеют различную форму: трубчатые, деформированные прямоугольные, листовые, квадратные, круглые, комбинированные квадратные или круглые и т. Д., В зависимости от того, где они используются. Конечно, есть и невидимые конденсаторы, называемые распределенными конденсаторами, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.

5.5 Различные условия использования и использования

Из-за внутреннего материала и конструкции емкость конденсатора полярности (например, электролиз алюминия) может быть очень большой, но его высокочастотные характеристики не очень хороши, поэтому он подходит для силовых фильтров и в других случаях. Есть еще полярные конденсаторы с хорошими высокочастотными характеристиками — танталовые электролизные, цена которых относительно высока;

Включая керамические конденсаторы, монолитные конденсаторы, полиэтиленовые (CBB) конденсаторы и т. Д., Эти неполяризованные конденсаторы имеют небольшой размер, низкую цену и хорошие высокочастотные характеристики, но они не подходят для большой емкости.Керамические конденсаторы обычно используются в высокочастотной фильтрации, колебательном контуре.

Рисунок 6. Конденсаторы разные

В магнитных диэлектрических конденсаторах в качестве мезона используется керамический материал, а в качестве электрода — слой серебра на поверхности. Обладая стабильной производительностью и малой утечкой, магнитные диэлектрические конденсаторы подходят для использования в высокочастотных и высоковольтных цепях.

Вообще говоря, в зависимости от изоляционного материала между двумя полюсами конденсатора.Материал с большой диэлектрической проницаемостью (например, сегнетоэлектрическая керамика, электролиты) подходит для конденсаторов большой емкости и небольшого объема, потери которых также велики. Материал с небольшой диэлектрической проницаемостью (например, керамика) имеет низкие потери и подходит для высокочастотных применений.

Ⅵ FAQ

1. Можно ли использовать неполяризованный конденсатор вместо поляризованного?

Практически всегда можно заменить электролитический (полярный) конденсатор на электростатический (неполярный) того же номинала с необходимым номинальным напряжением.Однако обратное невозможно.

2. В чем основное отличие полярного конденсатора от неполярного (кроме наличия полюсов)? Где мы их используем?

Главное отличие в том, из чего они сделаны. Кстати, это также определяет, насколько они должны быть большими для данной емкости и сколько они стоят.

Полярные конденсаторы также известны как электролитические конденсаторы, поскольку в качестве диэлектрика они используют электролит. Он обеспечивает чрезвычайно высокую емкость с небольшим током утечки в небольшом корпусе.Керамический конденсатор с эквивалентной емкостью должен быть очень и очень большим.

Существует множество различных типов неполярных конденсаторов. Два самых распространенных из них, которые я видел, — это керамика и слюда. Керамика дешевая, слюда дороже, но я считаю, что слюдяные конденсаторы выдерживают более высокое напряжение. В целом они предлагают меньший ток утечки, чем электролитические, но также меньшую емкость в зависимости от размера. Основным преимуществом является то, что они сохраняют свою емкость при смещении в обоих направлениях.

Электролитические конденсаторы полезны в местах, где напряжение никогда не изменит полярность на них при правильных условиях использования. Их высокая емкость означает, что их можно более эффективно использовать для фильтрации источника питания, уменьшения пульсаций в выпрямителе и смягчения включения / выключения.

Но для развязки компонентов они не так хороши, потому что без очень хорошего смещения они получат обратное напряжение, а при обратном напряжении они ломаются, теряют свою емкость и утекают как сумасшедшие.

Они также испускают «волшебный дым» при слишком высоком обратном смещении. Неполярные конденсаторы этого не делают.

3. Что такое полярные и неполярные конденсаторы?

Все электростатические конденсаторы могут быть подключены к цепям переменного или постоянного тока без ссылки на какие-либо соединения, маркированные для положительной или отрицательной полярности. Каким бы способом они ни были связаны, они обладают одинаковыми свойствами. Это неполярные конденсаторы.

Электролитические конденсаторы имеют диэлектрик, сформированный в виде оксидного слоя на одном электроде за счет химического воздействия под действием тока в одном направлении.Пропускание тока в обратном направлении приведет к повреждению конденсатора.

Поэтому клеммы электролитических конденсаторов имеют специальную маркировку с положительной и отрицательной полярностью (в большинстве случаев маркирована отрицательная клемма). Конденсаторы обязательно должны быть подключены в цепи с одинаковой соответствующей полярностью. Это полярные конденсаторы.


Вам может понравиться:

Как выбрать конденсатор

Что такое коррекция коэффициента мощности (компенсация)

Что такое технология распознавания лиц?

Радиальные неполяризованные электролитические конденсаторы — конденсаторы

100/16 NON Radial 100 мкФ 16V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

220/16 НЕ радиально 220 мкФ 16V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

330/16 НЕ радиально 330 мкФ 16V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

470/16 НЕ радиально 470 мкФ 16V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

1000/16 НЕ радиально 1000 мкФ 16V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

2,2 / 25 НЕ радиально 2.2UF 25V NON POLAR BI POLAR Радиальный конденсатор

5,60 долл. США

В наличии

4.7/25 NON Радиальный 4.7UF 25V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

5,6 / 25 НЕ радиально 5.6UF 25V NON POLAR BI POLAR Радиальный конденсатор

6 долларов.60

В наличии

10/25 НЕ радиально 10 мкФ 25V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

22/25 НЕ радиально 22 мкФ 25 В NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

33/25 НЕ радиально 33UF 25V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

47/25 НЕ радиально 47UF 25V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

100/25 НЕ радиально 100 мкФ 25V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

220/25 НЕ радиально 220 мкФ 25V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

330/25 НЕ радиально 330 мкФ 25V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

470/25 НЕ Радиальное 470 мкФ 25V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

1000/25 НЕ радиально 1000 мкФ 25V NON POLAR BI POLAR Радиальный конденсатор

2,01 доллара США

В наличии

.47/50 НЕ Радиальный .47 мкФ 50V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

1/50 НЕ радиально 1 мкФ 50 В NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

2,2 / 50 НЕ радиально 2.2UF 50V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

3.3/50 NON Радиальный 3.3UF 50V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

4,7 / 50 НЕ радиально 4.7UF 50V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

4,7 / 50 НЕРАДИАЛЬНАЯ ВЫСОКАЯ ЧАСТОТА 4.7UF 50V NON POLAR BI POLAR Радиальный конденсатор

6,50 долл. США

В наличии

10/50 НЕ радиально 10 мкФ 50 В NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

22/50 НЕ радиально 22 мкФ 50 В NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

33/50 НЕ радиально 33UF 50V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

47/50 НЕ радиально 47UF 50V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

100/50 НЕ радиально 100 мкФ 50 В NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

220/50 НЕ радиально 220 мкФ 50 В NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

330/50 НЕ радиально 330 мкФ 50V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.61 год

В наличии

.47 / 100 НЕ радиально .47 мкФ 100V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

1/100 НЕ радиально 1 мкФ 100 В NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

1,5 / 100 НЕ радиально 1.5UF 100V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

2.2/100 NON Радиальный 2.2UF 100V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

3,3 / 100 НЕ радиально 3.3UF 100V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

4,7 / 100 НЕ радиально 4.7UF 100V NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

10/100 НЕ Радиальное 10 мкФ 100 В NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

22/100 НЕ радиально 22 мкФ 100 В NON POLAR BI POLAR Радиальный конденсатор

1,49 $

В наличии

33/100 НЕ радиально 33UF 100V NON POLAR BI POLAR Радиальный конденсатор

1 доллар.49

В наличии

47/100 НЕ радиально 47UF 100V NON POLAR BI POLAR Радиальный конденсатор

1,53 доллара США

В наличии

100/100 НЕ радиально 100 мкФ 100 В NON POLAR BI POLAR Радиальный конденсатор

2 доллара.54

В наличии

% PDF-1.3
%
25 0 объект
>
эндобдж

xref
25 74
0000000016 00000 н.
0000002260 00000 н.
0000002359 00000 п.
0000002932 00000 н.
0000003076 00000 н.
0000003349 00000 п.
0000003931 00000 н.
0000004015 00000 н.
0000004606 00000 н.
0000005166 00000 н.
0000005684 00000 п.
0000006155 00000 н.
0000006691 00000 н.
0000006875 00000 п.
0000006988 00000 н.
0000007099 00000 н.
0000007952 00000 н.
0000008552 00000 н.
0000008664 00000 н.
0000008911 00000 н.
0000009483 00000 н.
0000010188 00000 п.
0000010317 00000 п.
0000010918 00000 п.
0000011171 00000 п.
0000011731 00000 п.
0000012157 00000 п.
0000012523 00000 п.
0000013289 00000 п.
0000013440 00000 п.
0000014290 00000 п.
0000014979 00000 п.
0000015652 00000 п.
0000016372 00000 п.
0000017070 00000 п.
0000021193 00000 п.
0000048916 00000 н.
0000077622 00000 п.
0000109041 00000 н.
0000113030 00000 н.
0000113468 00000 н.
0000113977 00000 н.
0000114435 00000 н.
0000114860 00000 н.
0000115407 00000 н.
0000115518 00000 н.
0000115631 00000 н.
0000115700 00000 н.
0000115791 00000 н.
0000129129 00000 н.
0000129415 00000 н.
0000129651 00000 н.
0000129676 00000 н.
0000130030 00000 н.
0000130099 00000 н.
0000130194 00000 н.
0000147403 00000 н.
0000147663 00000 н.
0000147942 00000 н.
0000147967 00000 н.
0000148367 00000 н.
0000148454 00000 н.
0000148784 00000 н.
0000149044 00000 н.
0000176511 00000 н.
0000176778 00000 н.
0000177238 00000 п.
00001

00000 н.
00001

00000 н.
0000191183 00000 н.
0000192200 00000 н.
0000192237 00000 н.
0000194664 00000 н.
0000001776 00000 н.
трейлер
] / Назад 381707 >>
startxref
0
%% EOF

98 0 объект
> поток
h | QO (q ~ 3; f «! \ v9, M˶splJ! b [B (.n # = KusPFI ~ HW

Различия между поляризованным и неполяризованным конденсатором

Конденсатор — это электронное устройство, которое накапливает электрическую энергию через электрическое поле. Конденсаторы, очень широко применяемые в электронике. В этой статье я объясню простую, но важную тему о конденсаторах.

Фактически, оба типа конденсаторов выполняют одну и ту же работу. Да это же :). Тогда почему есть два типа конденсаторов? Основная причина — физические ограничения. Наиболее важными факторами, влияющими на размер конденсатора, являются напряжение и емкость.Чем больше емкость, тем больше размер.

Наиболее распространенным неполяризованным конденсатором является керамический конденсатор. Производители не производят керамические конденсаторы большой емкости. Потому что их размер тоже будет увеличиваться. Также конденсатор будет более нестабильным. Поляризованный конденсатор обеспечивает большую емкость при меньшем размере. Чаще всего используются поляризованные конденсаторы электролитического типа.

Таким образом, основная разница заключается в изменении производственного процесса для увеличения мощности. Это вызывает поляризованный конденсатор. Использование поляризованного конденсатора необходимо для большей емкости.2) * R (потрясающая формула :))

Благодаря этой формуле неполяризованный конденсатор потребляет меньше энергии. Это означает, что керамический конденсатор имеет большую пропускную способность по пульсирующему току.

Взаимозаменяемы ли типы конденсаторов?

Поляризованные конденсаторы необходимо подключать с соблюдением полярности. В противном случае конденсаторы взорвутся. Неполяризованный конденсатор можно подключать в обоих направлениях. Поляризованный конденсатор можно использовать только на постоянном токе. Неполяризованный конденсатор используется как при переменном, так и постоянном токе.

В конце концов, вы можете заменить поляризованный конденсатор неполяризованным.Но нельзя заменить неполяризованный конденсатор на поляризованный. Также вы должны быть осторожны с возможностью пульсации тока.

Взорванный конденсатор

Типы неполяризованных конденсаторов

Конденсаторы — это электронные устройства, которые имеют две проводящие поверхности (пластины), разделенные изолятором (диэлектриком). Они могут временно накапливать электрический заряд. Единственный тип конденсатора, который поляризован (работает по-разному в зависимости от того, в каком направлении течет ток) — это электролитический конденсатор.Электролитические конденсаторы имеют более высокую емкость, но для большинства целей предпочтительнее неполяризованный конденсатор. Они дешевле, могут устанавливаться в любом направлении и служат дольше.

Керамические конденсаторы

Керамические конденсаторы являются наиболее распространенным типом неполяризованных конденсаторов. Это проверенная технология и самый дешевый вид конденсатора. Самый старый стиль (относящийся к 1930-м годам) имеет форму диска, но более новые стили имеют форму блока. Они хорошо работают в радиочастотных цепях, а более новые модели работают в микроволновом диапазоне.Они доступны в диапазоне от 10 пикофарад до 1 микрофарада. Они имеют некоторую утечку (через диэлектрик), а их характеристики и температурная стабильность варьируются в зависимости от производителя.

Серебряные слюдяные конденсаторы

Серебряные слюдяные конденсаторы встречаются нечасто — в основном потому, что они относительно дороги. Они очень стабильны и устойчивы к температуре. Они работают в диапазоне от 1 пикофарада до 3000 пикофарад и имеют очень небольшую утечку. Они используются в схемах генераторов и фильтров, а также там, где важна стабильность.

Полиэфирные конденсаторы

Полиэфирные конденсаторы также известны как майларовые конденсаторы. Они недорогие, точные (имеют точный номинал, который на них указан) и имеют небольшую утечку. Они работают в диапазоне от 0,001 до 50 микрофарад и используются, когда точность и стабильность не так важны.

Конденсаторы из полистирола

Конденсаторы из полистирола очень точны, имеют небольшую утечку и используются в фильтрах и других местах, где важны стабильность и точность.Они относительно дороги и работают в диапазоне от 10 пикофарад до 1 микрофарада. Ходят слухи, что они уходят с рынка, поэтому они все реже и реже появляются в схемотехнике.

Конденсаторы из поликарбоната

Конденсаторы из поликарбоната дорогие и очень качественные, с высокой точностью и очень низкой утечкой. К сожалению, они были сняты с производства, и сейчас их трудно найти. Они хорошо преформируются в суровых условиях и при высоких температурах в диапазоне от 100 пикофарад до 20 микрофарад.

Конденсаторы полипропиленовые

Конденсаторы полипропиленовые — дорогие и высокоэффективные конденсаторы в диапазоне от 100 пикофарад до 50 мкФ. Они очень стабильны во времени, очень точны и имеют чрезвычайно низкую утечку.

Тефлоновые конденсаторы

Это самые стабильные конденсаторы на рынке. Они очень точны и почти не имеют протечек. Они широко считаются лучшими из имеющихся конденсаторов. Особо следует отметить то, как они ведут себя одинаково в широком диапазоне частотных колебаний.Они работают в диапазоне от 100 пикофарад до 1 микрофарада.

Стеклянные конденсаторы

Стеклянные конденсаторы очень прочные, и их лучше всего использовать в суровых условиях. Они стабильны и работают в диапазоне от 10 до 1000 пикофарад. К сожалению, они также являются самыми дорогими конденсаторами.

В чем сходство и различие между полярными и неполярными конденсаторами с точки зрения производительности и принципиальной конструкции?

В чем сходство и различие между полярными и неполярными конденсаторами с точки зрения рабочих характеристик и принципиальной конструкции?

821 Опубликовано в Октябрь 14, 2019

В чем сходство и различие между полярными и неполярными конденсаторами с точки зрения производительности и принципиальной конструкции?

Полярный конденсатор относится к конденсатору, например, электролитическому конденсатору.Он образован алюминиевой фольгой анода и электролитом катода соответственно, а два электрода образованы пленкой оксида алюминия, сформированной на анодной алюминиевой фольге в качестве диэлектрического конденсатора. Структура имеет полярность. Когда конденсатор подключен положительно, пленка оксида алюминия остается стабильной из-за электрохимической реакции. При обратном подключении слой оксида алюминия станет тоньше, так что конденсатор легко повредится в результате пробоя. Поэтому электролитический конденсатор в схеме должен обращать внимание на полярность.Обычный конденсатор неполярный, и два анода или катода электролитического конденсатора могут быть соединены последовательно, чтобы сформировать неполярный электролитический конденсатор.

1. Принцип тот же. (1) Оба хранят заряд и высвобождают заряд; (2) Напряжение на пластине (где нарастает электрический потенциал заряда, называется напряжением) не может быть резко изменено.

2. СМИ разные. Что такое среда? Грубо говоря, это вещество между двумя пластинами конденсатора.В большинстве полярных конденсаторов в качестве диэлектрического материала используется электролит, и обычно такой же объем конденсатора имеет большую емкость. Кроме того, различные материалы и процессы электролита позволяют производить полярные конденсаторы одинаковой емкости. Также существует тесная взаимосвязь между сопротивлением давлению и использованием диэлектрических материалов. Также существует множество неполярных диэлектрических материалов для конденсаторов, в основном с использованием пленки оксида металла, полиэстера и так далее. Из-за обратимых или необратимых характеристик среды определяется среда с экстремальной и неполярной емкостью.

3. Производительность разная. Производительность — это требование использования, а максимальное увеличение спроса — это требование для использования. Если блок питания телевизора фильтруется с помощью металлооксидного пленочного конденсатора, должны быть достигнуты емкость конденсатора и выдерживаемое напряжение, необходимые для фильтрации. Боюсь, что мне удастся установить блок питания только внутри корпуса. Поэтому в качестве фильтра можно использовать только полярные конденсаторы, а полярные конденсаторы необратимы. То есть положительный полюс должен быть подключен к концу с высоким потенциалом, а отрицательный полюс должен быть подключен к концу с низким потенциалом.Обычно электролитический конденсатор имеет емкость более 1 мкФ и используется для связи, развязки и фильтрации источника питания. Большинство неполярных конденсаторов имеют емкость менее 1 мкФ, участвуют в резонансе, связи, выборе частоты, ограничении тока и т. Д. Конечно, есть также большая емкость и высокое выдерживаемое напряжение, которые часто используются для компенсации реактивной мощности электроэнергии, фазового сдвига двигателя и источника питания с переменной частотой. Есть много типов неполярных конденсаторов, не говоря уже о них один за другим.

4, емкость разная. Как было сказано выше, конденсаторы одного объема имеют разную емкость и не описываются по очереди. 5. Структура разная. В принципе, можно использовать конденсатор любой формы в среде, в которой не учитывается разряд на игле. Обычно используемые электролитические конденсаторы (с полярным конденсатором) имеют круглую форму, а квадратная форма используется редко. Форма неполярного конденсатора очень разнообразна. Как тип трубы, деформированный прямоугольник, листовой тип, квадратный тип, круглый тип, комбинированный квадратный и круглый тип и т. Д., он используется там, где он используется. Конечно, есть невидимое, здесь невидимое относится к распределенной емкости. Для распределенных конденсаторов нельзя игнорировать устройства высокой и промежуточной частоты. Функция такая же. Основное отличие состоит в том, что с точки зрения емкости из-за влияния структуры материала емкость обычных неполярных конденсаторов относительно мала, обычно ниже 10 мкФ, а емкость полярных конденсаторов обычно велика. Например, при фильтрации мощности необходимо использовать полярные конденсаторы большой емкости.