Пределы измерения вольтметра: Пределы — измерение — вольтметр

Пределы — измерение — вольтметр

Пределы — измерение — вольтметр

Cтраница 1

Пределы измерения вольтметра подгоняют по ранее описанной методике.
[2]

Переключать пределы измерения вольтметра на более чувствительные, если измеряемое напряжение превышает эти пределы.
[3]

Переключать пределы измерения вольтметра на более чувствительные, если измеряемое напряжение превышает эти пределы.
[4]

Чтобы расширить пределы измерения вольтметра при постоянном токе, подключаем последовательно к нему добавочное сопротивление.
[5]

Трансформатор напряжения изменяет пределы измерения вольтметра также в k раз. Многовитковая первичная обмотка трансформатора напряжения подключается параллельно участку, напряжение на котором измеряется, а вторичная обмотка — к зажимам вольтметра.
[6]

Трансформаторы напряжения позволяют расширить пределы измерения вольтметра. Вторичная обмотка замыкается на вольтметр. Обмотка вольтметра имеет большое сопротивление, поэтому ток в ней мал и мощность трансформатора незначительна. Режим его работы приближается к режиму холостого хода. Это обеспечивает практически постоянное соотношение между первичным и вторичным напряжениями на зажимах трансформатора, равное его коэффициенту трансформации.
[7]

В этом случае надо изменить только пределы измерений вольтметра, так чтобы они были кратны делениям шкалы: 3, 30, 300 в.
[8]

При применении добавочных резисторов не только расширяются пределы измерения вольтметров, но и уменьшается их температурная погрешность.Пределы измерения вольтметра: Пределы - измерение - вольтметр
[10]

Переключатель ПГ с добавочными сопротивлениями позволяет переключать пределы измерения вольтметра ( 300, 30, 3 В), что обеспечивает более точную регулировку и вместе с тем предохраняет вольтметр от перегрузок при грубой настройке. Настройка защиты производится при отключенной накладке Ях. По окончании настройки накладка Ях включается и защита вводится в — работу.
[11]

При применении добавочных резисторов не только расширяются пределы измерения вольтметров, но и уменьшается их температурная погрешность.
[13]

Требуется определить сопротивление фазы обмотки статора, если пределы измерения вольтметра о в, а амперметра 10 а, число делений шкал обоих приборов 200, показания приборов соответственно 120 и 100 делений.
[14]

Страницы:  

1

2




9. Вольтметр. Как изменить предел измерения. Как переделать из постоянного тока на переменный. :: АвтоМотоГараж

Переходим к работе над измерительными приборами. Здесь их будет задействовано достаточно много: тахометр, два прецизионных мультиметра с функцией True RMS, осциллограф, двухканальный тестер температуры, аналоговый вольтметр и аналоговый амперметр. Из всего перечисленного у нас в полноценном виде нет только двух последних. Поэтому будем их изготавливать самостоятельно.

Аналоговые приборы включены в состав стенда чтобы отслеживать динамику изменения напряжения и тока нагрузки в реальном времени. При работе цифровые мультиметры, в рамках некоторых процессоров, тратят значительное время на преобразование сигнала и его последующий вывод. Получается, что пока выполняются математические вычисления и отображение информации, значение тока или напряжения может существенно измениться, вернуться к ранее выведенному значению и данный факт замечен не будет.Пределы измерения вольтметра: Пределы - измерение - вольтметр После того как будет завершена работа по созданию стенда, в качестве наглядного примера подобной ситуации, можно будет привести измерения параметров цепи при работе указателей поворотов.

Приступаем к изготовлению. Аналоговые приборы будем делать из промышленных измерительных головок, которые устанавливают в распределительные щиты. У нас есть вольтметр, который рассчитан на работу с напряжением до 250 вольт и амперметр с рабочим током до 150 амперметр. Амперметр конечно использовался с шунтирующем резистором. Для того, чтобы нам использовать эти приборы, их потребуется переделать. В цепях, в которые планируется включить амперметр и вольтметр, течёт переменный ток, а приборы рассчитаны на работу с постоянным. Таким образом нам придётся изменить не только предел измерения, но и адаптировать их для работы с переменным током.

Особых проблем с изменением рабочих диапазонов и типом тока мы не видим. Сами точные значения аналоговых приборов пока нам не требуются, поэтому новая шкала в процессе изготовления будет упрощена.

Работу начинаем с создания корпусов. Их мы сделаем из обрезков десятимиллиметровой фанеры. Процесс до безобразия прост, поэтому акцент на нём ставить не будем. Чтобы оценить масштабы переделки мы начали разбирать вольтметр.

Параллельно с переделкой приборов, сразу выполним покрасочные работы. После того как покрытие высохнет, в корпуса установим блоки клемм и приклеим ножки.

Продолжаем работу над вольтметром. Для полного понимания того, что потребуется сделать с измерительным прибором, снимаем пластину на которой находится его шкала.

Внутри корпуса расположены две катушки, измерительная головка и две клеммы которые вмонтированы в основание.

На этапе модернизации устройства стоит более подробно остановиться на принципиальных схемах.

Первой мы рассмотрим схему, которая позволит нам поменять предел измерения напряжения. Если погрузиться в схемотехнику, то мы обнаружим, что измерительная головка — это миллиамперметр.Пределы измерения вольтметра: Пределы - измерение - вольтметр На базе его строятся абсолютно все стрелочные измерительные приборы и индикаторы. В зависимости от того какие радиокомпоненты окружают миллиамперметр и как впоследствии всё это включено в схему, и будет определять назначение измерительного прибора, станет ли он амперметром или вольтметром.

В магнитоэлектрических вольтметрах измеряемое напряжение Uизм. преобразует в ток. Цепь преобразование включает в себя сумму сопротивлений Rма и Rд, где Rма сопротивление измерительной головки, а Rд — добавочное сопротивление.

Rд и отвечает за максимальный предел измерений. Из этих двух сопротивлений и состоит сопротивление самого вольтметра — Rв.

Предел измерения максимального напряжения Uизм.макс. зависит от тока полного отклонения стрелки Iизм.макс. и внутреннего сопротивления измерительной головки Rма.

Вернёмся к нашему вольтметру и посмотрим, что там. Две катушки которые находятся внутри корпуса это и есть добавочные сопротивления. Каждая из них имеет сопротивление 16700 Ом. В последствии, нам потребуется эти две катушки отсоединить, а взамен установить построечный резистор. Им мы установим требуемый нам предел измерения.

Рассмотрим вторую схему, которая нам позволит адаптировать вольтметр для нашего стенда. Как ранее уже было замечено, вольтметр М309 предназначен для работы в цепях с постоянным током. В нашем случае ток будет переменный. Для того чтобы вольтметр мог измерять переменное напряжение есть несколько вариантов схем. Первая с однополупериодным выпрямителем, и вторая с двухполупериодным выпрямителем. Для вольтметров с выпрямителем расчёт Rд будет немного отличаться. Рассчитав добавочный резистор по основной формуле (её см. выше) мы полученное значение Rд должны разделитель на коэффициент. Для однополупериодной схемы этот коэффициент составляет от 2,5 до 3-х единиц, а для двухполупериодной схемы коэффициент составляет от 1,25 до 1,5.

Отсоединив добавочные сопротивления, мы к входным клеммам крепим диодный мост (двухполупериодная схема).Пределы измерения вольтметра: Пределы - измерение - вольтметр Далее к одной из ножек диодного моста припаиваем построечный резистор. От резистора припаиваем провод к измерительной головки. От второй клеммы измерительной головки припаиваем провод к оставшейся клемме диодного моста.

Коммутация электрической схемы внутри вольтметра завершена.

Для проведения испытаний воспользуемся лабораторные автотрансформатором. Им совместно с мультиметром проверим работоспособность модернизированного вольтметра. Как и прогнозировалось, всё работает. Собираем конструкцию дальше. Устанавливаем шкалу обратно и прикручиваем два провода для коммутации клемм на корпусе с вольтметром.

Устанавливаем вольтметр в корпус и подключаем его к корпусным клеммам.

Закрутив заднюю крышку корпуса, мы ещё до изготовления шкалы протестируем вольтметр включив его в схему стенда. Прибор работает.

Переходим к изготовлению новой шкалы. Как уже ранее заявляли она будет иметь упрощённый вид. Её создадим в программе MS Visio и распечатаем на бумаге на принтере.

Наклеиваем шкалу на пластину и собираем прибор.

В следующей статье рассмотрим, что нам потребуется сделать, чтобы можно было включить амперметр М367 в схему нашего стенда.

изменение пределов измерения амперметра и вольтметра

2.10.  Изменение пределов измерения амперметра
и вольтметра

(расчет шунтов и добавочных резисторов)

В практике электрических измерений встречается
необходимость измерять токи, напряжения и другие величины в очень широком
диапазоне их значений. Для измерения малых токов и напряжений используется
гальванометр. Рассмотрим, каким образом можно расширить его возможности
(пределы измерения) для измерения токов и напряжений.

Допустим, гальванометр может
измерять максимальную силу тока
Iг,
а нам необходимо измерить силу тока
I.Пределы измерения вольтметра: Пределы - измерение - вольтметр Тогда ток
I –

Iг
необходимо пропустить не через гальванометр (микроамперметр), а рядом, по параллельной цепи (рис. 2.13 а).
Такую электрическую цепь, включаемую параллельно гальванометру и служащую для
расширения пределов измерения амперметра, называют шунтом. В этом случае
возникает необходимость рассчитать сопротивление шунта и проградуировать шкалу
гальванометра в новых значениях силы тока.

Пусть
I
– сила тока, которую необходимо измерить,
Iг
– максимальная сила тока, которую может измерить гальванометр. Тогда
Iш
= I
– Iг 
 – сила тока, которая должна
протекать через шунт. Обозначим
Rг
– сопротивление гальванометра,
Rш
– сопротивление шунта. По законам параллельного соединения проводников
Uш=Uг
или Iш×Rш=Iг×Rг.
Отсюда, с учетом силы тока через шунт, получим:

Rш=(
Iг×Rг)/
Iш=(
Iг×Rг)/(
I
– Iг)
= Rг/(n-1).                      
(2.18)

Здесь
n
= I/Iг
– коэффициент шунтирования. Рассчитав по формуле (2.18) сопротивление шунта,
подбираем шунт. Для изготовления шунтов на небольшие токи используют провод из
манганина, а на большие – манганиновые пластины (манганин обладает малым
температурным коэффициентом сопротивления и поэтому сопротивление шунта почти не
изменяется при нагревании протекающим током). Схема подключения многопредельных
шунтов на небольшие токи показана на рисунке 2.13 б.

Шунты на токи до 30 А обычно
встраивают внутрь прибора. Для измерения больших токов (до 6000 А) используют
приборы с наружными шунтами. Наружные шунты имеют массивные наконечники из
красной меди, к которым подключаются токовые и потенциальные зажимы. Шунт
представляет собой четырехзажимный резистор.Пределы измерения вольтметра: Пределы - измерение - вольтметр Два зажима шунта, к которым
подводится ток, называются токовыми, а два зажима, с которых снимается
напряжение, называются потенциальными. К потенциальным зажимам шунта
подключается измерительный механизм. Схема подключения четырехзажимного шунта
показана на рисунке 2.14.

Наружные шунты делают взаимозаменяемыми. Шунты в
соответствии с ГОСТ могут иметь номинальное падение напряжения на потенциальных
зажимах 10, 15, 30, 50, 60, 75, 300 мВ.

Для расширения пределов измерения гальванометра при использовании его в
качестве вольтметра последовательно с гальванометром включают добавочный
резистор
(рис. 2.15 а).  Рассчитаем  сопротивление  добавочного  резистора.

Пусть
U
– напряжение, которое надо измерить вольтметром,
Uг
– максимальное напряжение, которое может измерить гальванометр. Тогда
Uд=U–Uг 
— напряжение, которое должно падать
на добавочном резисторе. Обозначим
Rг
– сопротивление гальванометра,
Rд
– сопротивление добавочного резистора. По законам последовательного соединения
проводников Iг=Iд
или  Uг/Rг=Uд/Rд.

Отсюда с учетом напряжения на добавочном
резисторе получим:

Rд
=
Rг
(U-Uг)/Uг
= Rг
(n
– 1),                             (2.19)

где
n
= U/Uг.



Рассчитав сопротивление добавочного резистора,
выбирают соответствующий постоянный резистор с учетом его мощности рассеяния.
Далее градуируют шкалу гальванометра в новых значениях напряжения. Добавочные
резисторы бывают встраиваемые в корпус прибора и наружные. На рисунках 2.15б
и 2.15в показаны различные способы подключения встроенных добавочных
резисторов. Добавочные резисторы для работы на переменном токе должны иметь
бифилярную намотку (проволочный резистор, имеющий бифилярную намотку, не
обладает индуктивным сопротивлением).Пределы измерения вольтметра: Пределы - измерение - вольтметр

Шунты и добавочные резисторы в основном применяют
с магнитоэлектрическими измерительными механизмами.

5. Расширение пределов измерений амперметров и вольтметров

Расширение предела
измерения амперметра производится с
помощью шунта. Шунт
– это резистор,
подключенный параллельно зажимам
амперметра в цепь измеряемого тока и
обладающий малым омическим сопротивлением
(рис.1.1).

Рис.
1.1.
Схема
включения шунта

Сопротивление шунта
рассчитывается следующим образом.

,
(1.8)

где
,– расширенный предел измерения,– исходный предел измерения амперметра;– внутреннее сопротивление амперметра;n
– коэффициент расширения предела
измерений.

Расширение предела
измерения вольтметра производится с
помощью добавочного резистора.

Добавочным
называется резистор, включенный
последовательно с вольтметром и
обеспечивающий расширение предела
измерения напряжения (рис.1.2).

Рис.
1.2. Схема включения добавочного резистора

Значение сопротивления
добавочного резистора определяется по
формуле

,
(1.9)

где
;

– расширенный
предел измерения;
– исходный предел измерения вольтметра;RV

внутреннее
сопротивление вольтметра; m
– коэффициент расширения предела
измерений.

6. Примеры решения задач

Задача 1.1.
Выразить значения ФВ в дольных и кратных
единицах:

а) тока 0,05 А и
0,086 мА в микроамперах,

б) частоты 4108 Гц
и 250 кГц в мегагерцах.

Решение.
Используя множители, соответствующие
кратным и дольным единицам физических
величин, выразим:

а) I
= 0,05 А = 5010310-6 А=
50103 мкА;

I
= 0,086 мА= 8610-6 А
= 86 мкА;

б) f
= 4108 Гц
= 400106 Гц
= 400 MГц;

f
= 250 кГц = 0,25106 Гц= 0,25 МГц.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Задача 1.2.
Показания прибора равны Uпок
= 73,7538 В. Абсолютная погрешность
СИ составляет ∆ = ±2,623 В. Записать
правильно результат измерений.

Решение.
В соответствии с правилами округления
произведем округление значения абсолютной
погрешности. Первая значащая цифра –
«2», поэтому необходимо оставить две
значащих цифры, причем округление
выполняем в сторону увеличения абсолютного
значения (модуля), то есть

Число, выражающее
результат измерений, округляем до того
же десятичного знака, что и округленное
значение абсолютной погрешности. При
этом, так как округляемая цифра равна
«5», но за ней следуют цифры отличные от
нуля, то последнюю сохраняемую цифру
увеличиваем на «1», то есть.

Правильная запись
результата:

Задача 1.3.
При измерении напряжения сигнала стрелка
вольтметра установилась на отметке
50 В. Вольтметр имеет равномерную
шкалу от 0 до 100 В. Класс точности
прибора – 1,0. Определить максимальные
значения абсолютной, относительной и
приведенной погрешностей вольтметра.
Считая, что погрешность измерения
полностью определяется погрешностью
средства измерения, записать результат
измерения.

Решение.
Класс точности вольтметра (согласно
таблице 1.5) соответствует пределу
допускаемой приведенной погрешности,
то есть
.

По определению
,
следовательно,.

При равномерной
шкале и нулевой отметке на краю диапазона
измерений нормирующее значение XNопределяется
верхним пределом измерения (100 В).

Тогда
.

Исходя из определения
относительной погрешности,

Результат измерения:
Ux= 50,0 В 
1,0 В или Ux= (50,0 
1,0) В.

Задача 1.4.
Решить задачу 1.3, если класс точности
вольтметра

Другие условия
задачи сохраняются.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Решение.
При указанном обозначении класс точности
соответствует пределу допускаемой
относительной погрешности, то есть

Так как

,
то,

где
X

значение измеренного вольтметром
напряжения.

.

Результат измерения:
Ux
= 50,0 В  0,5 В.

Задача 1.5.
Решить задачу 1.3, если класс точности
вольтметра обозначается.
Другие условия задачи сохраняются.

Решение. При
указанном обозначении класса точности

=

Абсолютная погрешность
равна
.

,

Результат измерения
Ux= 50,000 В

0,015 В.

Задача 1.6.
Определить сопротивление шунта Rш
к миллиамперметру со шкалой 050 мА
и внутренним сопротивлением RA
= 100 Ом для расширения предела измерения
до 800 мА.

Решение.
Сопротивление шунта определяется по
формуле

,

где

расширенный предел измерения,

исходный предел измерения миллиамперметра.

Подставив численные
значения, получим

.

Задача 1.7.
Определить добавочное сопротивление
к милливольтметру со шкалой 030 мВ
и сопротивлением Rд
= 25 кОм для
расширения его предела измерений до
6 В.

Решение.
Добавочное сопротивление определяется
по формуле

,

где
;Uпp
– расширенный
предел измерения, UV

исходный предел измерения милливольтметра.

Подставив численные
значения, получим

Задача 1.8.
Определить внутреннее сопротивление
амперметра методом вольтметра-амперметра,
если: вольтметр В7-15 с классом точности
2,5 показал 15 В на пределе 30 В;
амперметр с классом точности 1,5 показал
30 мА на пределе 50 мA.Пределы измерения вольтметра: Пределы - измерение - вольтметр
Оценить относительную погрешность
косвенного метода измерения сопротивления
данным методом.

Решение:
Рассчитать сопротивление исследуемого
прибора, зная значения силы тока и
напряжения, можно по закону Ома

.

Подставив численные
значения, получим

.

Погрешность измерений
при косвенном измерении определяется
погрешностью измерения значения
напряжения и силы тока

,

где δA
– относительная
погрешность измерения тока; δV
– относительная
погрешность измерения.

Расчет относительной
погрешности измерения напряжения
вольтметром

;

;

.

Расчет относительной
погрешности измерения тока амперметром

Искомая погрешность
равна

Расширение пределов измерения амперметра и вольтметра. 10-й класс

Цель: закрепить знания учащихся и отработать навыки расчёта шунта и добавочного сопротивления для расширения пределов измерения амперметра и вольтметра.

Оборудование: демонстрационные амперметры и вольтметры.

Ход урока.

I. Повторение теоретического материала.

  1. Как расширить предел измерения амперметра?
  2. Как расширить предел измерения вольтметра?

Пока два ученика готовятся на доске, беседую с классом.

  1. Что измеряет амперметр? Вольтметр?
  2. Как амперметр подключают в цепь?
  3. Как вольтметр подключают в цепь?
  4. Почему сопротивление с амперметром очень маленькое (0,1-0,001 Ом)?
    Ответ: Чтобы не вызвать заметных изменений токов.
  5. Почему сопротивление шунта должно быть немного меньше сопротивления амперметра?
    Ответ: Чтобы через него пошёл максимальный ток.
  6. Добавочное сопротивление должно быть намного больше, чем внутреннее сопротивление вольтметра.Пределы измерения вольтметра: Пределы - измерение - вольтметр Почему?
    Ответ: Чтобы напряжение на нём было намного больше.

Ответы учащихся на 1 и 2 вопросы:



АмперметрВольтметр
Y=Ya+Yш
Ya — max ток амперметра
Y — измерительный ток
Y >>> YaY:Ya=n – ток показываетво сколько раз Y >>> Ya
Ra — сопротивление амперметра (гальванометра)
U=Uв+Uд
U — maxнапряжение на вольтметре
U — измеряемое напряжение U >>> в nраз больше Uв
n=U:Uв
Rд=Rв(n-1)
Rд=Rв(U:Uв-1)
Rд>Rв в (n-1) раз

II. Практическая часть.

1) Давайте вместе с вами рассчитаем добавочное сопротивление вольтметра. Из гальванометра сделаем вольтметр на 5В. Для этого переставим стрелку на «0» слева и поставим Rд. на 5В на «-» «+» вольтметра.

С верхнего левого угла шкалы гальванометра запишем сопротивление прибора на зажимах гальванометра и деление гальванометра.




Дано:Решение:
Rг = 2,3 Ом

Си = 1,9*10-3
U=5В
Uг=1,9*10-3 В/дел * 5 делений =9,5*10-3 В
n=U:Uг=5В: 9,5*10-3 B=530;
Rд=Rг(n-1)
Rд=2,3 Ом*(530-1)=1217 Ом

Rд-?

Вы видите, что Rд >>> Rг,

1217 Ом >>> 2,3 Ом

2) Теперь вы сами будете рассчитывать Rш и Rд, т.е.

Из гальванометра делать амперметр и вольтметр.



1-й ряд2-й ряд3-й ряд
Вольтметр (на 15В)Амперметр (3А)Амперметр (10А)

Вывод: Итак, чему мы научились? Что мы увидели?

Ответ:

Что Rд>>>Rг

4310 Ом>>>2,3 Ом

Что Rш<<<Rг

0,022 Ом<<<385 Ом

А теперь решим ещё по одной задаче по вариантам:


Вольтметр рассчитан на измерение max напряжения на 30В.Пределы измерения вольтметра: Пределы - измерение - вольтметр При этом через вольтметр идёт ток 10мА. Какого сопротивление дополнительный резистор нужно присоединить у вольтметру, чтобы им можно было измерить напряжение до 150В?К амперметру, внутреннее сопротивление которого 0,1 Ом, подключение шунт сопротивлением 0,0111 Ом. Определите силу тока, текущую через, если сила тока в общей цепи 0,27А.

Устройства для расширения пределов измерений приборов

В практике электрических измерений встречается необходимость измерить токи, напряжения и другие величины в очень широком диапазоне их значений. Обмотки приборов магнитоэлектрической и динамической систем допускают ток до 30 мА, электромагнитной — до 10 А.

Для расширения пределов измерений приборов применяют различные устройства: в цепях постоянного тока — шунты и добавочные резисторы, в цепях переменного тока — измерительные трансформаторы тока и напряжения.

Шунт (рис. 1,а) представляет собой резистор, включаемый в цепь измеряемого тока.
Параллельно резистору присоединяется амперметр. Шунт имеет очень небольшое сопротивление, и по нему проходит почти весь ток, тогда как к амперметру подводится лишь падение напряжения на зажимах шунта и, следовательно, через прибор протекает небольшая часть измеряемого тока.

Рис. 1. Схемы включения устройств для расширения пределов измерений приборов постоянного тока

Сила измеряемого тока:

Падения напряжений на приборе и на шунте равны, следовательно,

или

Подставляя значение Is, получим

откуда

где р — шунтирующий множитель т. е. коэффициент, показывающий, во сколько раз необходимо расширить пределы измерения амперметра.

Из последнего выражения можно определить:

Из равенства следует, что для расширения пределов измерения силы тока в р раз сопротивление шунта должно быть в р — 1 раз меньше сопротивления амперметра.

Добавочные резисторы (рис. 1,б) включаются последовательно с вольтметром с таким расчетом, чтобы общее падение напряжения на зажимах обмотки прибора и добавочного резистора возросло, что позволяет измерять большие напряжения.Пределы измерения вольтметра: Пределы - измерение - вольтметр Измеряемое напряжение равно сумме падений напряжений на вольтметре и на добавочном резисторе:

Обозначим отношение n = U/Uv как коэффициент расширения пределов измерения вольтметра. Разделив уравнение напряжений на Uv, получим:

откуда

Таким образом, для расширения пределов измерения вольтметра в n раз добавочный резистор должен иметь сопротивление в n — 1 раз больше, чем сопротивление вольтметра.

Добавочные резисторы выполняют из константановой проволоки или манганинового сплава.

⇓ДОБАВИТЬ В ЗАКЛАДКИ⇓

⇒ВНИМАНИЕ⇐

  • Материал на блоге⇒ Весь материал предоставляется исключительно в ознакомительных целях! При распространении материала используйте пожалуйста ссылку на наш блог!
  • Ошибки⇒ Если вы обнаружили ошибки в статье, то сообщите нам через контакты или в комментариях к статье. Мы будем очень признательны!
  • Файлообменники⇒ Если Вам не удалось скачать материал по причине нерабочих ссылок или отсутствующих файлов на файлообменниках, то сообщите нам через контакты или в комментариях к статье.
  • Правообладателям⇒ Администрация блога отрицательно относится к нарушению авторских прав на www.electroengineer.ru. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала.

⇓ОБСУДИТЬ СТАТЬЮ⇓

Сопротивление вольтметра 400 Ом, предел измерения 4 В. Какое дополнительное сопротивление

Условие задачи:

Сопротивление вольтметра 400 Ом, предел измерения 4 В. Какое дополнительное сопротивление надо подключить, чтобы данным вольтметром можно было измерять до 36 В?

Задача №7.5.1 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

\(R_v=400\) Ом, \(U_0=4\) В, \(U=36\) В, \(R_{доп}-?\)

Решение задачи:

Для измерения напряжения на каком-либо участке электрической цепи, к нему параллельно подключают вольтметр.Пределы измерения вольтметра: Пределы - измерение - вольтметр При этом если предел измерения вольтметра (т.е. максимальное значение напряжения, которое может измерить вольтметр) не позволяет измерить напряжение на этом участке, то к вольтметру последовательно соединяют дополнительное (также называют добавочное) сопротивление \(R_{доп}\). Оно уменьшает значение напряжения на вольтметре.

При этом величину этого дополнительного сопротивления можно определить из следующих соображений. Так как вольтметр и добавочное сопротивление соединены последовательно, то через них течет одинаковый ток \(I\). Напряжение на вольтметре не должно превышать предела измерения \(U_0\), тогда на добавочном сопротивлении напряжение будет равно \(\left( {U – {U_0}} \right)\). Запишем дважды закон Ома для участка цепи:

\[\left\{ \begin{gathered}
I = \frac{{{U_0}}}{{{R_v}}} \hfill \\
I = \frac{{U – {U_0}}}{{{R_{доп}}}} \hfill \\
\end{gathered} \right.\]

Тогда, очевидно, имеем:

\[\frac{{{U_0}}}{{{R_v}}} = \frac{{U – {U_0}}}{{{R_{доп}}}}\]

В итоге получим такую формулу для получения ответа на вопрос задачи:

\[{R_{доп}} = {R_v}\frac{{U – {U_0}}}{{{U_0}}}\]

Подставим численные данные задачи в эту формулу и посчитаем ответ:

\[{R_{доп}} = 400 \cdot \frac{{36 – 4}}{4} = 3200\;Ом = 3,2\;кОм\]

Ответ: 3,2 кОм.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Воздействие вольтметра

на измеряемую цепь | Цепи измерения постоянного тока

Каждый метр в некоторой степени влияет на контур, который он измеряет, точно так же, как любой манометр в шинах слегка изменяет измеренное давление в шинах, поскольку для работы манометра выпускается некоторое количество воздуха. Хотя некоторое воздействие неизбежно, его можно свести к минимуму за счет хорошей конструкции расходомера.

Схема делителя напряжения

Поскольку вольтметры всегда подключаются параллельно тестируемому компоненту или компонентам, любой ток через вольтметр будет вносить вклад в общий ток в тестируемой цепи, потенциально влияя на измеряемое напряжение.Пределы измерения вольтметра: Пределы - измерение - вольтметр Идеальный вольтметр имеет бесконечное сопротивление, поэтому он не потребляет ток из тестируемой цепи. Однако идеальные вольтметры существуют только на страницах учебников, а не в реальной жизни! Возьмем следующую схему делителя напряжения в качестве крайнего примера того, как реалистичный вольтметр может повлиять на схему, которую он измеряет:

При отсутствии вольтметра, подключенного к цепи, на каждом резисторе 250 МОм в последовательной цепи должно быть ровно 12 Вольт, причем два резистора равного номинала делят общее напряжение (24 В) точно пополам.Однако, если рассматриваемый вольтметр имеет сопротивление между выводами 10 МОм (обычное значение для современного цифрового вольтметра), его сопротивление создаст параллельную подсхему с нижним резистором делителя при подключении:

Это эффективно снижает нижнее сопротивление с 250 МОм до 9,615 МОм (250 МОм и 10 МОм параллельно), резко изменяя падение напряжения в цепи. На нижнем резисторе теперь будет гораздо меньшее напряжение, чем раньше, а на верхнем резисторе — намного больше.

Делитель измеряемого напряжения

Делитель напряжения с сопротивлением 250 МОм и 9,615 МОм разделит 24 В на части 23,1111 В и 0,8889 В соответственно. Поскольку вольтметр является частью этого сопротивления 9,615 МОм, он будет показывать именно это: 0,8889 вольт.

Теперь вольтметр может показывать только напряжение, подключенное к нему. Он не имеет возможности «знать», что на нижнем резисторе 250 МОм упал потенциал 12 В до того, как он был подключен к нему.Сам факт подключения вольтметра к цепи делает его частью цепи, а собственное сопротивление вольтметра изменяет соотношение сопротивлений цепи делителя напряжения, следовательно, влияя на измеряемое напряжение.

Как работает вольтметр?

Представьте, что вы используете манометр в шинах, для работы которого требуется такой большой объем воздуха, что он может спустить воздух из любой шины, к которой он подключен.Пределы измерения вольтметра: Пределы - измерение - вольтметр Количество воздуха, потребляемого манометром во время измерения, аналогично току, затрачиваемому движением вольтметра для перемещения иглы.Чем меньше воздуха требуется манометру для работы, тем меньше он будет спускать воздух из тестируемой шины. Чем меньше ток, потребляемый вольтметром для приведения в действие иглы, тем меньше нагрузка на тестируемую цепь.

Этот эффект называется нагрузкой, и он в той или иной степени присутствует в каждом случае использования вольтметра. Показанный здесь сценарий является наихудшим: сопротивление вольтметра существенно ниже, чем сопротивление резисторов делителя. Но всегда будет некоторая степень нагрузки, из-за которой измеритель будет показывать меньшее, чем истинное напряжение, без подключенного измерителя.Очевидно, что чем выше сопротивление вольтметра, тем меньше нагрузка на тестируемую цепь, и поэтому идеальный вольтметр имеет бесконечное внутреннее сопротивление.

Вольтметрам с электромеханическими механизмами движения обычно даются номинальные значения в диапазоне «Ом на вольт», чтобы обозначить величину удара цепи, создаваемого током, потребляемым движением. Поскольку в таких измерителях используются разные значения резисторов умножителя для получения разных диапазонов измерения, их сопротивление между выводами будет изменяться в зависимости от того, на какой диапазон они настроены.Цифровые вольтметры, с другой стороны, часто демонстрируют постоянное сопротивление на измерительных выводах независимо от настройки диапазона (но не всегда!), И поэтому обычно измеряются просто в омах входного сопротивления, а не чувствительности «Ом на вольт».

«Ом на вольт» означает, сколько Ом сопротивления между выводами на каждый вольт диапазона, установленного на селекторном переключателе. Давайте возьмем наш пример вольтметра из последнего раздела в качестве примера:

По шкале 1000 вольт полное сопротивление составляет 1 МОм (999.5 кОм + 500 Ом), что дает 1000000 Ом на 1000 вольт диапазона или 1000 Ом на вольт (1 кОм / В).Пределы измерения вольтметра: Пределы - измерение - вольтметр Этот рейтинг «чувствительности» в омах на вольт остается постоянным для любого диапазона этого измерителя:

Проницательный наблюдатель заметит, что номинальное сопротивление любого измерителя определяется одним фактором: током полной шкалы механизма, в данном случае 1 мА. «Ом на вольт» — это математическая величина, обратная «вольт на ом», которая определяется законом Ома как ток (I = E / R). Следовательно, ток полной шкалы механизма определяет чувствительность измерителя Ω / вольт, независимо от того, какие диапазоны разработчик снабдил его через резисторы умножителя.В этом случае номинальный ток полной шкалы измерительного механизма, равный 1 мА, дает ему чувствительность вольтметра 1000 Ом / В независимо от того, как мы измеряем его с помощью резисторов умножителя.

Чтобы свести к минимуму нагрузку вольтметра на любую схему, разработчик должен стремиться минимизировать ток, потребляемый его движением. Этого можно достичь, изменив конструкцию самого механизма для обеспечения максимальной чувствительности (для полного отклонения требуется меньший ток), но здесь обычно возникает компромисс: более чувствительный механизм имеет тенденцию быть более хрупким.

Другой подход — электронное усиление тока, подаваемого на механизм, так что от тестируемой цепи требуется очень небольшой ток. Эта специальная электронная схема известна как усилитель, а построенный таким образом вольтметр представляет собой усиленный вольтметр.

Внутренняя работа усилителя слишком сложна, чтобы обсуждать ее здесь, но достаточно сказать, что схема позволяет измеряемому напряжению контролировать, какой ток батареи направляется на движение счетчика.Таким образом, потребность механизма в токе обеспечивается внутренней батареей вольтметра, а не проверяемой схемой. Усилитель все еще в некоторой степени нагружает тестируемую цепь, но обычно в сотни или тысячи раз меньше, чем сам по себе счетчик.

Вольтметры вакуумные (ВТВМ)

До появления полупроводников, известных как «полевые транзисторы», вакуумные лампы использовались в качестве усилительных устройств для выполнения этого повышения.Пределы измерения вольтметра: Пределы - измерение - вольтметр Такие ламповые вольтметры или (VTVM) когда-то были очень популярными приборами для электронных испытаний и измерений.Вот фотография очень старого VTVM с открытой лампой!

Теперь схемы усилителя на твердотельных транзисторах решают ту же задачу при разработке цифровых измерителей. Хотя этот подход (использование усилителя для увеличения тока измеряемого сигнала) работает хорошо, он значительно усложняет конструкцию измерителя, делая почти невозможным для начинающего студента-электронщика понять его внутреннюю работу.

Последним и гениальным решением проблемы нагрузки вольтметра является использование потенциометрического прибора или прибора с нулевым балансом.Это не требует продвинутых (электронных) схем или чувствительных устройств, таких как транзисторы или электронные лампы, но требует большего участия и навыков технического специалиста. В потенциометрическом приборе прецизионно регулируемый источник напряжения сравнивается с измеренным напряжением, а чувствительное устройство, называемое детектором нуля, используется для индикации равенства двух напряжений.

В некоторых схемах для обеспечения регулируемого напряжения используется прецизионный потенциометр, следовательно, потенциометрический на этикетке.Когда напряжения равны, из проверяемой цепи будет подаваться нулевой ток, и, таким образом, на измеренное напряжение не должно влиять. Легко показать, как это работает, на нашем последнем примере, схеме высоковольтного делителя напряжения:

Детектор нуля

«Детектор нуля» — это чувствительное устройство, способное указывать на наличие очень малых напряжений. Если в качестве нуль-детектора используется электромеханический датчик, он будет иметь пружинно-центрированную стрелку, которая может отклоняться в любом направлении, чтобы быть полезной для индикации напряжения любой полярности.Поскольку цель нулевого детектора состоит в том, чтобы точно указать состояние нулевого напряжения, а не указывать какую-либо конкретную (ненулевую) величину, как это делал бы обычный вольтметр, шкала используемого инструмента не имеет значения.Пределы измерения вольтметра: Пределы - измерение - вольтметр Детекторы нуля обычно проектируются так, чтобы быть максимально чувствительными, чтобы более точно указывать состояние «нуля» или «баланса» (нулевое напряжение).

Чрезвычайно простой тип нуль-детектора — это набор аудионаушников, динамики внутри которых действуют как своего рода движение измерителя.Когда к динамику изначально подается постоянное напряжение, возникающий через него ток будет перемещать диффузор динамика и производить слышимый «щелчок». Другой звук щелчка будет слышен при отключении источника постоянного тока. Основываясь на этом принципе, чувствительный нуль-детектор может быть сделан не более чем из наушников и переключателя мгновенного действия:

Если для этой цели используются наушники «8 Ом», их чувствительность можно значительно повысить, подключив их к устройству, называемому трансформатором.Трансформатор использует принципы электромагнетизма для «преобразования» уровней напряжения и тока импульсов электрической энергии. В этом случае тип используемого трансформатора представляет собой понижающий трансформатор, и он преобразует слаботочные импульсы (создаваемые путем замыкания и размыкания кнопочного переключателя при подключении к небольшому источнику напряжения) в более сильные импульсы для более эффективного управления двигателем. конусы динамиков внутри наушников.

Трансформатор «аудиовыхода» с коэффициентом импеданса 1000: 8 идеально подходит для этой цели.Трансформатор также увеличивает чувствительность детектора, накапливая энергию слаботочного сигнала в магнитном поле для внезапного выброса в динамики наушников при размыкании переключателя. Таким образом, он будет производить более громкие «щелчки» для обнаружения более слабых сигналов:

Подключенный к потенциометрической схеме в качестве детектора нуля, переключатель / трансформатор / наушники используется как таковое:

Назначение любого нуль-детектора — действовать как лабораторные весы, показывая, когда два напряжения равны (отсутствие напряжения между точками 1 и 2) и ничего более.Пределы измерения вольтметра: Пределы - измерение - вольтметр Балансир лабораторных весов фактически ничего не весит; скорее, это просто указывает на равенство между неизвестной массой и стопкой стандартных (калиброванных) масс.

Аналогичным образом, нулевой детектор просто указывает, когда напряжение между точками 1 и 2 одинаково, что (согласно закону Кирхгофа о напряжении) будет, когда регулируемый источник напряжения (символ батареи с диагональной стрелкой, проходящей через него) точно равен напряжение к падению на R2.

Для работы с этим прибором техник должен вручную регулировать выход точного источника напряжения до тех пор, пока нулевой детектор не покажет точно ноль (при использовании аудионаушников в качестве нулевого детектора, техник будет многократно нажимать и отпускать кнопочный переключатель, прислушиваясь к тишине, чтобы указывает, что схема была «сбалансированной»), а затем отметьте напряжение источника, показанное вольтметром, подключенным к прецизионному источнику напряжения, это показание представляет напряжение на нижнем резисторе 250 МОм:

Вольтметр, используемый для прямого измерения прецизионного источника, не обязательно должен иметь чрезвычайно высокую чувствительность Ω / V, потому что источник будет обеспечивать весь ток, необходимый для работы.Пока на нуль-детекторе есть нулевое напряжение, между точками 1 и 2 будет нулевой ток, что означает отсутствие нагрузки на тестируемую схему делителя.

Стоит еще раз отметить тот факт, что этот метод, при правильном выполнении, накладывает практически нулевую нагрузку на измеряемую цепь. В идеале он абсолютно не нагружает тестируемую схему, но для достижения этой идеальной цели нуль-детектор должен иметь абсолютно нулевое напряжение на нем, что потребует бесконечно чувствительного нуль-метра и идеального баланса напряжения от регулируемого источника напряжения. .

Однако, несмотря на практическую неспособность достичь абсолютного нуля нагрузки, потенциометрическая схема по-прежнему является отличным методом для измерения напряжения в цепях с высоким сопротивлением.Пределы измерения вольтметра: Пределы - измерение - вольтметр И в отличие от электронного усилителя, который решает проблему с помощью передовых технологий, потенциометрический метод обеспечивает гипотетически идеальное решение, используя фундаментальный закон электричества (KVL).

ОБЗОР:

  • Идеальный вольтметр имеет бесконечное сопротивление.
  • Слишком низкое внутреннее сопротивление в вольтметре отрицательно повлияет на измеряемую цепь.
  • Вольтметры с вакуумной трубкой (VTVM), транзисторные вольтметры и потенциометрические схемы — все это средства минимизации нагрузки на измеряемую цепь. Из этих методов потенциометрический («нулевой баланс») метод — единственный, способный установить нулевую нагрузку на схему.
  • Нулевой детектор — это устройство, созданное для максимальной чувствительности к небольшим напряжениям или токам.Он используется в цепях потенциометрического вольтметра для индикации отсутствия напряжения между двумя точками, что указывает на состояние баланса между регулируемым источником напряжения и измеряемым напряжением.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Мультиметр

Цифровой мультиметр

Мультиметр или мультитестер , также известный как вольт / омметр или VOM , представляет собой электронный измерительный прибор, который объединяет несколько функций измерения в одном устройстве.Типичный мультиметр может включать такие функции, как возможность измерения напряжения, тока и сопротивления. Мультиметры могут использовать аналоговые или цифровые схемы — аналоговые мультиметры и цифровые мультиметры (часто сокращенно DMM или DVOM ). Аналоговые приборы обычно основаны на микроамперметре, указатель которого перемещается по шкале калибровки для всех различных измерений, которые может быть изготовлен; цифровые приборы обычно отображают цифры, но могут отображать полосу, длина которой пропорциональна измеряемой величине.

Мультиметр может быть портативным устройством, используемым для базового поиска неисправностей и работы в полевых условиях, или настольным прибором, который может выполнять измерения с очень высокой степенью точности.Пределы измерения вольтметра: Пределы - измерение - вольтметр Их можно использовать для поиска и устранения электрических проблем в широком спектре промышленных и бытовых устройств, таких как электронное оборудование, средства управления двигателем, бытовые приборы, источники питания и системы электропроводки.

Измеряемые величины

Современные мультиметры могут измерять множество величин.Наиболее распространенными являются:

Кроме того, некоторые мультиметры измеряют:

Цифровые мультиметры могут также включать в себя схемы для:

  • непрерывности; пищит, когда цепь проводит.
  • Диоды (измерение прямого падения диодных переходов, т. Е. Диодов и переходов транзисторов) и транзисторы (измерение усиления по току и других параметров).
  • Проверка аккумуляторов для простых аккумуляторов на 1,5 и 9 В. Это шкала напряжения с текущей нагрузкой.Проверка батареи (игнорирование внутреннего сопротивления, которое увеличивается по мере разряда батареи) менее точна при использовании шкалы напряжения постоянного тока.

Разрешение

Цифровой

Разрешение мультиметра часто указывается в «разрядах» разрешения. Например, термин 5½ цифр относится к количеству цифр, отображаемых на дисплее мультиметра.

По соглашению, половина цифры может отображать либо ноль, либо единицу, в то время как цифра в три четверти может отображать цифру больше единицы, но не девять.Обычно цифра в три четверти соответствует максимальному значению 3 или 5. Дробная цифра всегда является самой старшей цифрой в отображаемом значении. Мультиметр на 5½ разрядов будет иметь пять полных цифр, отображающих значения от 0 до 9, и половину цифры, которая может отображать только 0 или 1. [3] Такой измеритель может отображать положительные или отрицательные значения от 0 до 199 999. Трехзначный счетчик может отображать количество от 0 до 3 999 или 5 999, в зависимости от производителя.

В то время как цифровой дисплей может быть легко увеличен в точности, дополнительные цифры не имеют никакого значения, если не сопровождаются тщательным проектированием и калибровкой аналоговых частей мультиметра.Пределы измерения вольтметра: Пределы - измерение - вольтметр Значимые измерения с высоким разрешением требуют хорошего понимания технических характеристик прибора, хорошего контроля условий измерения и прослеживаемости калибровки прибора.

Указание «счетчиков дисплея» — еще один способ указать разрешение. Счетчики на дисплее дают наибольшее число или наибольшее число плюс один (чтобы число счёта выглядело лучше), которое может отображать дисплей мультиметра, игнорируя десятичный разделитель. Например, мультиметр на 5½ разряда может быть указан как мультиметр с отображением 199999 или 200000 счетчиков.Часто счетчик на дисплее в спецификациях мультиметра называется просто счетчиком.

Аналоговый

Разрешение аналоговых мультиметров ограничено шириной указателя шкалы, вибрацией указателя, точностью печати шкал, калибровкой нуля, количеством диапазонов и ошибками из-за негоризонтального использования механического дисплея . Точность получаемых показаний также часто снижается из-за неправильного подсчета разметки деления, ошибок в мысленной арифметике, ошибок наблюдения параллакса и несовершенного зрения.Для улучшения разрешения используются зеркальные шкалы и более крупные измерительные приборы; Эквивалентное разрешение от двух с половиной до трех цифр является обычным (и обычно достаточно для ограниченной точности, необходимой для большинства измерений).

Измерения сопротивления, в частности, имеют низкую точность из-за типичной схемы измерения сопротивления, которая сильно сжимает шкалу при более высоких значениях сопротивления. Недорогие аналоговые измерители могут иметь только одну шкалу сопротивления, что серьезно ограничивает диапазон точных измерений.Обычно аналоговый измеритель имеет панель регулировки для установки калибровки измерителя при нулевом сопротивлении, чтобы компенсировать изменяющееся напряжение батареи измерителя.

Точность

Цифровые мультиметры обычно выполняют измерения с точностью, превосходящей их аналоговые аналоги. Стандартные аналоговые мультиметры обычно производят измерения с точностью до трех процентов, [4] , хотя бывают и более точные приборы.Пределы измерения вольтметра: Пределы - измерение - вольтметр Стандартные портативные цифровые мультиметры обычно имеют точность 0.5% в диапазонах постоянного напряжения. Стандартные настольные мультиметры доступны с указанной точностью лучше ± 0,01%. Приборы лабораторного класса могут иметь точность до нескольких миллионных долей. [5]

Значения точности следует интерпретировать с осторожностью. Точность аналогового прибора обычно относится к полномасштабному отклонению; при измерении 10 В по шкале 100 В 3% счетчика возможна погрешность в 3 В, 30% от показания. Цифровые измерители обычно определяют точность в процентах от показаний плюс процент от полного значения, иногда выраженный в единицах, а не в процентах.

Заявленная точность определяется как нижняя граница диапазона милливольт (мВ) постоянного тока и известна как «базовая точность измерения постоянного напряжения». Более высокие диапазоны постоянного напряжения, тока, сопротивления, переменного тока и других диапазонов обычно имеют более низкую точность, чем базовое значение постоянного напряжения. Измерения переменного тока соответствуют указанной точности только в указанном диапазоне частот.

Производители могут предоставлять услуги по калибровке, так что новые счетчики могут быть приобретены с сертификатом калибровки, указывающим, что счетчик был настроен на стандарты, отслеживаемые, например, в Национальном институте стандартов и технологий США (NIST) или другой национальной лаборатории стандартов. .

Измерительное оборудование имеет тенденцию отклоняться от калибровки с течением времени, и на указанную точность нельзя полагаться бесконечно. Для более дорогого оборудования производители и третьи стороны предоставляют услуги по калибровке, чтобы старое оборудование могло быть откалибровано и повторно сертифицировано. Стоимость таких услуг непропорциональна недорогому оборудованию; однако предельная точность не требуется для большинства рутинных испытаний. Мультиметры, используемые для критических измерений, могут быть частью метрологической программы для обеспечения калибровки.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Чувствительность и входное сопротивление

При использовании для измерения напряжения входное сопротивление мультиметра должно быть очень высоким по сравнению с импедансом измеряемой цепи; в противном случае работа схемы может измениться, и показания также будут неточными.

Измерители с электронными усилителями (все цифровые мультиметры и некоторые аналоговые измерители) имеют фиксированный входной импеданс, достаточно высокий, чтобы не мешать работе большинства цепей. Часто это один или десять МОм; Стандартизация входного сопротивления позволяет использовать внешние высокоомные пробники, которые образуют делитель напряжения с входным сопротивлением, чтобы расширить диапазон напряжений до десятков тысяч вольт.

Большинство аналоговых мультиметров с подвижной стрелкой не имеют буферизации и потребляют ток от тестируемой цепи, чтобы отклонить указатель измерителя. Импеданс измерителя варьируется в зависимости от базовой чувствительности движения измерителя и выбранного диапазона. Например, измеритель с типичной чувствительностью 20 000 Ом / В будет иметь входное сопротивление 2 миллиона Ом в диапазоне 100 В (100 В * 20 000 Ом / В = 2 000 000 Ом). В каждом диапазоне при полном напряжении диапазона полный ток, необходимый для отклонения движения измерителя, берется из тестируемой цепи.Более низкие движения измерителя чувствительности приемлемы для тестирования в цепях, где полное сопротивление источника низкое по сравнению с импедансом измерителя, например, силовые цепи; эти счетчики механически более прочны. Некоторые измерения в сигнальных цепях требуют движений с более высокой чувствительностью, чтобы не нагружать тестируемую цепь импедансом измерителя. [6]

Иногда чувствительность путают с разрешением измерителя, которое определяется как наименьшее изменение напряжения, тока или сопротивления, которое может изменить наблюдаемые показания.

Для цифровых мультиметров общего назначения самый низкий диапазон напряжения обычно составляет несколько сотен милливольт переменного или постоянного тока, но самый низкий диапазон тока может составлять несколько сотен миллиампер, хотя доступны инструменты с более высокой чувствительностью по току.Пределы измерения вольтметра: Пределы - измерение - вольтметр Для измерения низкого сопротивления необходимо вычесть сопротивление выводов (измеренное путем соприкосновения измерительных щупов) для обеспечения максимальной точности.

Верхний предел диапазонов измерения мультиметра значительно варьируется; Для измерения напряжений более 600 вольт, 10 ампер или 100 МОм может потребоваться специальный измерительный прибор.

Напряжение нагрузки

Любой амперметр, в том числе и мультиметр в диапазоне токов, имеет определенное сопротивление. Большинство мультиметров по своей сути измеряют напряжение и пропускают измеряемый ток через шунтирующее сопротивление, измеряя напряжение, возникающее на нем. Падение напряжения называется нагрузочным напряжением и выражается в вольтах на ампер. Значение может меняться в зависимости от диапазона, который выбирает измеритель, поскольку в разных диапазонах обычно используются разные шунтирующие резисторы. [7] [8]

Напряжение нагрузки может быть значительным в цепях низкого напряжения.Чтобы проверить его влияние на точность и работу внешней цепи, счетчик может быть переключен на различные диапазоны; текущее показание должно быть таким же, и работа схемы не должна нарушаться, если напряжение нагрузки не является проблемой. Если это напряжение является значительным, его можно уменьшить (также уменьшая присущую точность и точность измерения), используя более высокий диапазон тока.

Измерение переменного тока

Поскольку основная индикаторная система в аналоговом или цифровом измерителе реагирует только на постоянный ток, мультиметр включает в себя схему преобразования переменного тока в постоянный для выполнения измерений переменного тока.В базовых измерителях используется схема выпрямителя для измерения среднего или пикового абсолютного значения напряжения, но они откалиброваны для отображения вычисленного среднеквадратичного значения (RMS) для синусоидальной формы волны; это даст правильные показания переменного тока, используемого при распределении энергии.Пределы измерения вольтметра: Пределы - измерение - вольтметр Руководства пользователя для некоторых таких измерителей дают поправочные коэффициенты для некоторых простых несинусоидальных сигналов, чтобы можно было вычислить правильное эквивалентное среднеквадратичное значение (RMS). Более дорогие мультиметры включают преобразователь переменного тока в постоянный, который измеряет истинное среднеквадратичное значение сигнала в определенных пределах; в руководстве пользователя измерителя могут быть указаны пределы пик-фактора и частоты, для которых действительна калибровка измерителя.Измерение среднеквадратичного значения необходимо для измерений несинусоидальных периодических сигналов, таких как звуковые сигналы и частотно-регулируемые приводы.

См. Также

Ссылки

Что такое вольтметр? — Определение с сайта WhatIs.com

К

Вольтметр, также известный как измеритель напряжения, — это прибор, используемый для измерения разности потенциалов или напряжения между двумя точками в электрической или электронной цепи.Некоторые вольтметры предназначены для использования в цепях постоянного тока (DC); другие предназначены для цепей переменного тока. Специализированные вольтметры могут измерять радиочастотное (РЧ) напряжение.

Базовый аналоговый вольтметр состоит из последовательно включенного чувствительного гальванометра (измерителя тока) с высоким сопротивлением. Внутреннее сопротивление вольтметра должно быть высоким. В противном случае он будет потреблять значительный ток и тем самым нарушить работу тестируемой цепи. Чувствительность гальванометра и значение последовательного сопротивления определяют диапазон напряжений, который может отображать измеритель.

Цифровой вольтметр показывает напряжение цифрами. Некоторые из этих измерителей могут определять значения напряжения с точностью до нескольких значащих цифр. Практические лабораторные вольтметры имеют максимальные диапазоны от 1000 до 3000 вольт (В). Большинство серийно выпускаемых вольтметров имеют несколько шкал, увеличивающихся в десятичной степени; например, 0–1 В, 0–10 В, 0–100 В и 0–1000 В.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Осциллограф может использоваться для измерения низких напряжений; вертикальное смещение соответствует мгновенному напряжению.Осциллографы также отлично подходят для измерения пиковых и размахов напряжения в приложениях переменного тока и ВЧ. Вольтметрам для измерения большой разности потенциалов требуются прочные зонды, проводка и изоляторы.

В компьютерной практике стандартные лабораторные вольтметры подходят, поскольку встречающиеся напряжения умеренные, обычно от 1 В до 15 В. Мониторы с электронно-лучевой трубкой (ЭЛТ) работают при нескольких сотнях вольт. Типичный лабораторный вольтметр может показывать эти напряжения, но ЭЛТ-блоки должны обслуживаться только квалифицированными специалистами, поскольку напряжения достаточно высоки, чтобы привести к летальному исходу.

Последний раз обновлялся в сентябре 2005 г.

Страница не найдена | MIT

Перейти к содержанию ↓

  • Образование
  • Исследование
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓

    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT

Меню ↓

Поиск

Меню

Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще!

Что вы ищете?

Увидеть больше результатов

Предложения или отзывы?

4.

Пределы измерения вольтметра: Пределы - измерение - вольтметр 4 Вольтметры и амперметры постоянного тока

Измерения изменяют схему

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему. В идеале вольтметры и амперметры не оказывают заметного влияния на схему, но полезно изучить обстоятельства, при которых они влияют или не влияют.

Сначала рассмотрим вольтметр, который всегда размещается параллельно с измеряемым устройством.Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, поэтому это не оказывает заметного влияния на цепь (см. Рисунок 4.34 (a)). Большое сопротивление, параллельное малому, имеет суммарное сопротивление, по существу, равное малому. Если, однако, сопротивление вольтметра сопоставимо с сопротивлением измеряемого устройства, то два параллельно подключенных устройства имеют меньшее сопротивление, что существенно влияет на схему (см. Рисунок 4.34 (b)). Напряжение на устройстве не такое, как при отключенном вольтметре от цепи.

Рисунок 4.34 (a) Вольтметр, имеющий сопротивление намного больше, чем устройство (RVoltmeter >> RRVoltmeter >> R, размер 12 {V «>>» R} {}), с которым он подключен параллельно, создает параллельное сопротивление, по существу такое же, как прибора и не оказывает заметного влияния на измеряемую цепь. (b) Здесь вольтметр имеет то же сопротивление, что и устройство (RVoltmeter≅RRVoltmeter≅R size 12 {V simeq R} {}), так что параллельное сопротивление составляет половину от того, которое есть, когда вольтметр не подключен.Это пример значительного изменения схемы, которого следует избегать.

Амперметр подключается последовательно к ветви измеряемой цепи, чтобы его сопротивление добавлялось к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому дополнительное сопротивление незначительно (см. Рисунок 4.35 (a)). Однако, если задействованы очень маленькие сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление значительно больше, и ток в измеряемой ветви уменьшается (см.Пределы измерения вольтметра: Пределы - измерение - вольтметр Рисунок 4.35 (б)).

Практическая проблема может возникнуть, если амперметр подключен неправильно. Если его подключить параллельно с резистором для измерения тока в нем, вы можете повредить счетчик; низкое сопротивление амперметра позволит большей части тока в цепи проходить через гальванометр, и этот ток будет больше, поскольку эффективное сопротивление меньше.

Рис. 4.35 (a) Амперметр обычно имеет настолько малое сопротивление, что общее последовательное сопротивление в измеряемой ветви существенно не увеличивается.Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как сопротивление ветви, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого существенного изменения схемы следует избегать.

Одним из решений проблемы вольтметров и амперметров, мешающих измеряемым цепям, является использование гальванометров с большей чувствительностью. Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.

Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности измерителя.

Связи: границы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что приводит к погрешности измерения. Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью исключить его нельзя.Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что невозможно сделать сколь угодно малым. Это фактически ограничивает знания о системе — даже ограничивает то, что природа может знать о самой себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Существует еще один метод измерения, основанный на полном отсутствии тока и, следовательно, без изменения схемы.Они называются нулевыми измерениями и являются темой нулевых измерений. Цифровые измерители, которые используют твердотельную электронику и нулевые измерения, могут достигать точности одной части 106.106. размер 12 {«10» rSup {размер 8 {6}}} {}

Проверьте свое понимание

Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Решение

Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые счетчики, они изменяют схему меньше, чем аналоговые счетчики.Их сопротивление в качестве вольтметра может быть намного больше, чем у аналогового измерителя, а их сопротивление в качестве амперметра может быть намного меньше, чем у аналогового измерителя. См. Рис. 4.30 и рис. 4.31 и их обсуждение в тексте.

Факты о вольтметре

для детей | KidzSearch.com

Вольтметр, подключенный к печатной плате.

Вольтметр — прибор для измерения напряжения. Например, вольтметр можно использовать, чтобы узнать, осталось ли в батарее больше электричества. Создание вольтметров стало возможным, когда Ганс Эрстед изобрел самый простой вольтметр в 1819 году. [1]

Подключение вольтметра

Вольтметр можно подключить, соединив два провода туда, где есть напряжение. Один провод — положительный, а другой — отрицательный. С некоторыми вольтметрами необходимо убедиться, что провода подключены к правильным точкам: положительное соединение на вольтметре с более положительной «частью» источника напряжения, а отрицательное — с более отрицательной «частью». Таким образом, вольтметр параллелен электрической цепи. [2]

Также следует проявлять осторожность при обращении с соединением: при высоком напряжении (много вольт) можно получить травму или даже убить, если непосредственно прикоснуться к металлическим соединениям под напряжением.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Как вольтметры показывают напряжение

Когда подключения сделаны, вольтметр покажет напряжение. Поскольку нет прямого доступа к напряжению, вольтметры разработаны как особый вид амперметра, который может рассчитывать напряжение, оценивая электрический ток и применяя закон Ома. [1]

Есть два вида вольтметров. У одного из них есть стрелка или «указатель», указывающая на число, указывающее количество вольт. Это тот вид вольтметра, в котором нужно быть осторожным при правильном подключении положительного и отрицательного полюсов — в случае неправильного подключения вольтметр может быть поврежден.

Вольтметры второго типа показывают числа в «цифровом» виде, как и цифровые часы и калькуляторы. Такой вольтметр не повреждается из-за «неправильного» подключения; вместо этого они показывают отрицательное число.

Кроме того, существует два типа вольтметров в зависимости от типа тока: одни вольтметры предназначены для использования с постоянным током (DC), а другие — с переменным током (AC). Современные вольтметры могут работать на обоих токах. [3]

Использование подходящего вольтметра

Все вольтметры имеют верхний предел или «максимальное количество» вольт, с которым они могут «работать».Если вольтметр используется для более высоких напряжений, чем он был предназначен для «обработки», он может повредить или разрушить его.

Вольтметры с настройками и мультиметры

Поскольку важно использовать правильный тип вольтметра, их чаще всего делают так, чтобы их можно было настроить для измерения всех видов напряжений. Такие вольтметры обычно имеют «ручку» или переключатель, который можно настроить по-разному. Если вольтметр настроен на одно направление, вольтметр работает с напряжениями, например, до 10 вольт. Если переключатель установлен по-другому, вольтметр может выдержать 100 вольт и так далее.Внутри вольтметра переключатель обычно работает путем замены резисторов в делителе напряжения.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Таким образом, один вольтметр можно использовать для множества различных напряжений, больших и малых. Некоторые современные вольтметры могут выполнять эту настройку сами по себе, нужно просто выполнить подключение и не беспокоиться о том, сможет ли вольтметр справиться с напряжением. Он автоматически найдет настройку, которая сможет с этим справиться.

Сегодня вольтметр обычно является частью мультиметра, прибора, который может работать как вольтметр, так и как амперметр, и, как правило, еще несколько измерительных приборов.У них также есть переключатели, используемые, чтобы «сказать» мультиметру, что он «вольтметр».

Мультиметры часто имеют более двух подключений, и часть «указания» мультиметру того, что измерять (то есть, вольтметр или амперметр), осуществляется путем выбора правильных двух подключений. Это объясняется в руководстве к мультиметру и часто отображается рядом с точками подключения.

Использование усилителей для чувствительного измерения напряжения

Вольтметры первого типа показывают напряжение с помощью стрелки или «указателя», указывающего на количество вольт.Эти вольтметры берут энергию от объекта измерения для перемещения стрелки. Некоторым источникам очень слабого напряжения может не хватить энергии, чтобы переместить стрелку на нужное напряжение. В таком случае такой вольтметр показывает слишком мало вольт. Вольтметр недостаточно чувствителен.

Одно из решений вышеупомянутой проблемы — заставить иглу использовать как можно меньше энергии для движения. Однако есть предел чувствительности такого вольтметра. Когда были изобретены электронные лампы и транзисторы, стало возможным создавать электронные усилители.Используя усилитель, вольтметр может измерять очень малые напряжения от очень слабых источников. Современные вольтметры и мультиметры обычно имеют такой усилитель.

Список литературы

Как пользоваться мультиметром

Не знаете, что такое мультиметр и что с ним можно делать? Тогда вы попали в нужное место! Ниже представлен обзор того, что такое мультиметры и для чего они нужны.Пределы измерения вольтметра: Пределы - измерение - вольтметр Чтобы узнать, как использовать мультиметр, найти идеи использования мультиметра или найти фотографии с пометками различных моделей мультиметра, щелкните другие вкладки (выше) в этом руководстве по мультиметру.

В этом разделе даны ответы на следующие вопросы:

Что такое мультиметр?

Мультиметр — это удобный инструмент, который вы используете для измерения электричества, точно так же, как вы использовали бы линейку для измерения расстояния, секундомер для измерения времени или весы для измерения веса. Плюс мультиметра в том, что он, в отличие от линейки, часов или весов, может измерять разные вещи — что-то вроде мультитула.У большинства мультиметров есть ручка на передней панели, которая позволяет вам выбирать, что вы хотите измерить. Ниже представлен типичный мультиметр. Есть много разных моделей мультиметров; посетите галерею мультиметра, чтобы увидеть фотографии дополнительных моделей с этикетками.

Рисунок 1. Типичный мультиметр.

Что могут измерять мультиметры?

Практически все мультиметры могут измерять напряжение , ток и сопротивление .См. Следующий раздел для объяснения того, что означают эти термины, и щелкните вкладку «Использование мультиметра» выше, чтобы получить инструкции по выполнению этих измерений.

Некоторые мультиметры оснащены функцией проверки целостности цепи , что приводит к громкому звуковому сигналу, если два объекта электрически соединены. Это полезно, если, например, вы собираете схему и соединяете провода или пайки; звуковой сигнал означает, что все подключено и ничего не отсоединилось. Вы также можете использовать его, чтобы убедиться, что две вещи не соединены, чтобы предотвратить короткое замыкание.

Некоторые мультиметры также имеют функцию проверки диода . Диод похож на односторонний клапан, который пропускает электричество только в одном направлении.Пределы измерения вольтметра: Пределы - измерение - вольтметр Точная функция проверки диодов может варьироваться от мультиметра к мультиметру. Если вы работаете с диодом и не можете сказать, в каком направлении он проходит в цепи, или если вы не уверены, что диод работает должным образом, функция проверки может оказаться весьма удобной. Если в вашем мультиметре есть функция проверки диодов, прочтите руководство, чтобы узнать, как именно она работает.

Усовершенствованные мультиметры

могут иметь другие функции, такие как возможность измерения и идентификации других электрических компонентов, таких как транзисторы или конденсаторы. Поскольку не все мультиметры имеют эти функции, мы не будем рассматривать их в этом руководстве. Вы можете прочитать руководство к мультиметру, если вам нужно использовать эти функции.

Что такое напряжение, сила тока и сопротивление?

Если вы раньше не слышали об этих терминах, мы дадим здесь очень простое вводное объяснение.Вы можете узнать больше о напряжении, токе и сопротивлении на вкладке «Ссылки» выше. Помните, что напряжение, ток и сопротивление — это измеримые величины, каждая из которых измеряется в блоке , который имеет символ , точно так же, как расстояние — это величина, которую можно измерить в метрах, а символ для метров — м .

  • Напряжение показывает, насколько сильно электричество «проталкивается» через цепь. Более высокое напряжение означает, что электричество подается сильнее.Напряжение измеряется в вольт . Обозначение для вольт — В .
  • Ток — это количество электричества, протекающего по цепи. Более высокий ток означает, что протекает больше электричества. Сила тока измеряется в ампер . Обозначение для ампер — A .
  • Сопротивление — это то, насколько трудно электричеству проходить через что-то. Более высокое сопротивление означает, что электричеству труднее течь.Сопротивление измеряется в Ом . Обозначение для омов — Ом (заглавная греческая буква омега).Пределы измерения вольтметра: Пределы - измерение - вольтметр

Техническая нота

Символ, используемый для единицы измерения, обычно отличается от символа переменной в уравнении. Например, напряжение, ток и сопротивление связаны законом Ома (см. Вкладку «Ссылки», чтобы узнать больше о законе Ома):

[Пожалуйста, включите JavaScript, чтобы просмотреть уравнение]

, который обычно выражается как

[Пожалуйста, включите JavaScript, чтобы просмотреть уравнение]

В этом уравнении В, представляет напряжение, I представляет ток, а R представляет сопротивление.Обращаясь к единицам измерения вольт, ампер и ом, мы используем символы В, , A, и Ом, , как объяснено выше. Таким образом, «V» используется как для напряжения, так и для вольт, но ток и сопротивление имеют разные символы для их переменных и единиц. Не волнуйтесь, если это сбивает с толку; эта таблица поможет вам отслеживать:

переменная Символ Установка Символ
Напряжение В Вольт В
Текущий Я Ампер A
Сопротивление R Ом Ом

Это очень распространено в физике.Например, во многих уравнениях «положение» и «расстояние» представлены переменными «x» или «d», но они измеряются в единицах измерения, а символ для метров — м .

Простая аналогия, чтобы лучше понять напряжение, ток и сопротивление: представьте, что вода течет по трубе.Пределы измерения вольтметра: Пределы - измерение - вольтметр Количество воды, протекающей по трубе, похоже на ток. Чем больше поток воды, тем больше ток. Величина давления, заставляющая воду течь, подобна напряжению; более высокое давление будет сильнее «толкать» воду, увеличивая поток.Сопротивление похоже на препятствие в трубе. Например, труба, забитая мусором или предметами, будет труднее проходить воду и будет иметь более высокое сопротивление, чем труба без препятствий.

Что такое постоянный ток (DC) и переменный ток (AC)?

Постоянный ток (сокращенно DC) — это ток, который всегда течет в одном направлении. Постоянный ток обеспечивается повседневными батареями, такими как батарейки типа AA и AAA, или батареей вашего мобильного телефона.Большинство ваших проектов Science Buddies, вероятно, связаны с измерением постоянного тока. Различные мультиметры имеют разные символы для измерения постоянного тока (и соответствующего напряжения), обычно «DCA» и «DCV» или «A» и «V» с прямой полосой над или рядом с ними. Видеть
«Что означают все символы на передней панели мультиметра?» для получения дополнительной информации о сокращениях и символах на мультиметрах.

Переменный ток (сокращенно AC) — это ток, который меняет направление, обычно много раз за одну секунду.Настенные розетки в вашем доме обеспечивают переменный ток, который переключает направление 60 раз в секунду (в США, но 50 раз в секунду в других странах). (Предупреждение : Не используйте мультиметр для измерения розеток в вашем доме. Это очень опасно.) Если вам нужно измерить переменный ток в цепи, разные мультиметры имеют разные символы для его измерения (и соответствующего напряжения). , обычно «ACA» и «ACV» или «A» и «V» с волнистой линией (~) рядом или над ними.

Что такое последовательные и параллельные цепи?

Когда вы проводите измерения с помощью мультиметра, вам нужно будет решить, подключать ли его к вашей цепи в серии или в параллельно , в зависимости от того, что вы хотите измерить.Пределы измерения вольтметра: Пределы - измерение - вольтметр В последовательной цепи каждый элемент цепи имеет одинаковый ток. Итак, чтобы измерить ток в цепи, вы должны подключить мультиметр последовательно. В параллельной цепи все измерения цепи имеют одинаковое напряжение. Итак, чтобы измерить напряжение в цепи, вы должны подключить мультиметр параллельно.Чтобы узнать, как выполнять эти измерения, см. Вкладку «Использование мультиметра».

На рисунке 2 показаны основные последовательные и параллельные схемы без подключенного мультиметра. Чтобы узнать больше о напряжении, токе и сопротивлении в последовательных и параллельных цепях, перейдите на вкладку «Ссылки».

Рис. 2. В базовой последовательной цепи (слева) каждый элемент имеет одинаковый ток (но не обязательно одинаковое напряжение; это произойдет только в том случае, если их сопротивления одинаковы).В базовой параллельной схеме (справа) каждый элемент имеет одинаковое напряжение (но не обязательно одинаковый ток; это произойдет только в том случае, если их сопротивления одинаковы).

Что означают все символы на передней панели мультиметра?

Вас могут смутить все символы на передней панели мультиметра, особенно если вы на самом деле нигде не видите таких слов, как «напряжение», «ток» и «сопротивление». Не волнуйтесь! Помните из «Что такое напряжение, сила тока и сопротивление?» В разделе, где напряжение, ток и сопротивление указаны в вольтах, амперах и омах, которые представлены соответственно V, A и Ω.Большинство мультиметров используют эти сокращения вместо написания слов. На вашем мультиметре могут быть и другие символы, о которых мы поговорим ниже.

В большинстве мультиметров также используется метрический префикс . Метрические префиксы работают с единицами измерения электричества так же, как и с другими единицами, с которыми вы, возможно, более знакомы, такими как расстояние и масса. Например, вы, вероятно, знаете, что метр — это единица расстояния, километр, — одна тысяча метров, а миллиметр — — одна тысячная метра.Пределы измерения вольтметра: Пределы - измерение - вольтметр То же самое касается миллиграммов, граммов и килограммов массы. Вот общие метрические префиксы, которые вы найдете на большинстве мультиметров (полный список см. На вкладке «Ссылки»):

  • µ (микро): одна миллионная
  • м (милли): одна тысячная
  • к (кило): одна тысяча
  • M : (мега): один миллион

Эти метрические префиксы используются одинаково для вольт, ампер и ом.Например, 200 кОм произносится как «двести килоом» и означает двести тысяч (200 000) Ом.

Некоторые мультиметры имеют «автоматический выбор диапазона», тогда как другие требуют, чтобы вы вручную выбирали диапазон для измерения. Если вам нужно вручную выбрать диапазон, вы всегда должны выбирать значение, которое немного выше, чем значение, которое вы ожидаете измерить. Подумайте об этом как о линейке и мериле. Если вам нужно измерить что-то длиной 18 дюймов, 12-дюймовая линейка будет слишком короткой; вам нужно использовать мерку.То же самое и с мультиметром. Предположим, вы собираетесь измерить напряжение батареи AA, которое, как вы ожидаете, составит 1,5 В. Мультиметр слева на Рисунке 3 имеет варианты для 200 мВ, 2 В, 20 В, 200 В и 600 В (для постоянного тока). 200 мВ слишком мало, поэтому вы должны выбрать следующее максимальное значение, которое работает: 2 В. Все остальные параметры излишне велики и могут привести к потере точности (это было бы похоже на использование 50-футовой рулетки, у которой есть только отметки на каждой ступне, а не дюймовые отметки; это не так точно, как использование мерка с разметкой в ​​1 дюйм).

Рис. 3. Мультиметр слева предназначен для ручного выбора диапазона, с множеством различных опций (обозначенных метрическими префиксами) для измерения различных величин напряжения, тока и сопротивления. Мультиметр справа имеет автоматический выбор диапазона (обратите внимание, что у него меньше вариантов для ручки выбора), что означает, что он автоматически выберет соответствующий диапазон.Пределы измерения вольтметра: Пределы - измерение - вольтметр

Что означают другие символы на мультиметре?

Вы могли заметить некоторые другие символы, помимо V, A, Ω и метрических префиксов, на передней панели мультиметра.Мы объясним некоторые из этих символов здесь, но помните, что все мультиметры разные, поэтому мы не можем охватить все возможные варианты в этом руководстве. Обратитесь к руководству по мультиметру, если вы все еще не можете понять, что означает один из символов. Вы также можете просмотреть нашу галерею мультиметров, чтобы увидеть маркированные изображения различных мультиметров.

Символ мультиметра Образцы
~ (волнистая линия): вы можете увидеть волнистую линию рядом или над буквами V или A на передней панели мультиметра, помимо метрических префиксов.Это означает переменного тока (AC). Обратите внимание, что напряжение в цепи переменного тока обычно называют «напряжением переменного тока» (хотя звучит странно называть «напряжение переменного тока»). Эти настройки используются при измерении цепи переменного тока (или напряжения).
, — — — (сплошная или пунктирная линия): как и волнистая линия, вы можете увидеть это рядом или над буквой V или A. Прямые линии обозначают постоянный ток .Вы используете эти настройки, когда измеряете цепь с постоянным током (например, большинство цепей, которые питаются от батареи).
DCV , ACV , ACA , DCA , VAC или VDC : Иногда вместо (или в дополнение к) кривых или пунктирных линий мультиметры используют сокращения AC и DC, что означает переменный ток и постоянный ток соответственно. Обратите внимание, что некоторые мультиметры могут иметь переменный и постоянный ток после V и A, а не до.
Проверка целостности (серия параллельных дуг): это параметр, используемый для проверки того, электрически ли соединены два объекта.Пределы измерения вольтметра: Пределы - измерение - вольтметр Мультиметр издаст звуковой сигнал, если между двумя наконечниками пробников есть токопроводящий путь (то есть, если сопротивление очень близко к нулю), и не будет издавать никаких шумов, если токопроводящий путь отсутствует. Обратите внимание, что иногда проверка непрерывности может быть объединена с другими функциями в одной настройке.
Проверка диода (треугольник с несколькими линиями, проходящими через него): эта функция используется для проверки диода , который похож на односторонний клапан для подачи электричества; он позволяет току течь только в одном направлении.Точная функция проверки диодов может отличаться на разных мультиметрах. Обратитесь к руководству по мультиметру, чтобы узнать, как работает функция проверки диодов в вашей модели.

Таблица 1. Некоторые примеры символов различных мультиметров. Посмотрите галерею, чтобы увидеть больше примеров.

Какие бывают красный и черный провода (щупы)? Куда их подключить?

Ваш мультиметр, вероятно, поставляется с красными и черными проводами, которые выглядят примерно так, как на рисунке 4.Эти провода называются зондами , или , проводами (произносится как «светодиоды»). Один конец провода называется банановым домкратом ; этот конец подключается к вашему мультиметру (Примечание: у некоторых мультиметров есть гнезда штырей , которые меньше банановых гнезд; если вам нужно купить запасные щупы, обязательно проверьте руководство к мультиметру, чтобы узнать, какой тип вам нужен). Другой конец называется наконечником зонда ; это конец, который вы используете для проверки своей схемы. Следуя стандартным правилам электроники, красный датчик используется для положительного полюса, а черный — для отрицательного.

Рисунок 4. Типичная пара щупов мультиметра.

Несмотря на то, что они поставляются с двумя датчиками, многие мультиметры имеют более двух мест для подключения датчиков, что может вызвать некоторую путаницу.Пределы измерения вольтметра: Пределы - измерение - вольтметр То, где именно вы подключаете щупы, будет зависеть от того, что вы хотите измерить (напряжение, ток, сопротивление, проверка целостности или проверка диодов) и типа имеющегося у вас мультиметра. Мы привели один пример на изображениях ниже — и вы можете проверить нашу галерею, чтобы найти мультиметр, похожий на ваш — но, поскольку все мультиметры немного отличаются, вам может потребоваться обратиться к руководству для вашего мультиметра.

Большинство мультиметров (кроме очень недорогих) имеют плавкие предохранители для защиты от слишком большого тока. Предохранители «перегорают», если через них протекает слишком большой ток; это останавливает электрический ток и предотвращает повреждение остальной части мультиметра. Некоторые мультиметры имеют разные предохранители, в зависимости от того, будете ли вы измерять высокий или низкий ток, который определяет, куда вы подключаете щупы. Например, мультиметр, показанный на рисунке 5, имеет один предохранитель на 10 ампер (10 А) и один предохранитель на 200 миллиампер (200 мА).

На левом изображении показан мультиметр без датчиков. Центральное изображение представляет собой мультиметр, у которого черный датчик вставлен в центральный порт, а красный датчик вставлен в крайний правый порт. Эта установка рассчитана на измерение тока до 200 мА. На правом изображении показан мультиметр, в центральный порт которого вставлен черный датчик, а в крайний левый порт — красный датчик. Эта установка рассчитана на измерение тока до 10 ампер.

Рисунок 5. Этот мультиметр имеет три разных порта, обозначенных 10A, COM (что означает «общий») и mAVΩ. Предохранитель между mAVΩ и COM рассчитан на 200 мА, что является относительно «низким» током. Итак, чтобы измерить небольшие токи — или напряжение, или сопротивление (при измерении напряжения или сопротивления через мультиметр проходит очень небольшой ток) — вы подключаете черный щуп к COM, а красный щуп к порту, обозначенному mAVΩ.Пределы измерения вольтметра: Пределы - измерение - вольтметр Предохранитель между 10 А и СОМ рассчитан на 10 А, поэтому для измерения больших токов вы подключаете черный щуп к СОМ, а красный щуп к порту с маркировкой 10 А.

У вас есть мультиметр, но вы не знаете, как им пользоваться, или получаете неожиданные показания? Если да, то приведенные ниже разделы помогут вам разобраться, что делать. Если есть слова или понятия, которые вы не понимаете, или символы на мультиметре, которые вас озадачивают, вернитесь на вкладку «Обзор мультиметра». Если вы ищете идеи использования мультиметра или фотографии с этикетками различных моделей мультиметра, посетите другие вкладки в этом руководстве по мультиметру.

В этом разделе даны ответы на следующие вопросы:

Как измерить напряжение?

Чтобы измерить напряжение, выполните следующие действия:

  1. Подключите черный и красный щупы к соответствующим гнездам (также называемым «портами») на мультиметре.Для большинства мультиметров черный щуп следует подключать к разъему с надписью «COM», а красный щуп — к разъему, помеченному буквой «V» (на нем также могут быть другие символы). Не забудьте заглянуть в нашу галерею изображений, на вкладку «Обзор мультиметра» или в руководство к мультиметру, если у вас возникли проблемы с определением правильного гнезда.
  2. Выберите соответствующее значение напряжения на шкале мультиметра. Помните, что в большинстве схем с батарейным питанием будет постоянный ток, но выбранная вами настройка будет зависеть от научного проекта, который вы выполняете.Если вы работаете с мультиметром с ручным выбором диапазона, вы можете оценить необходимый диапазон на основе батареи (или батареек), питающей вашу схему. Например, если ваша схема питается от одной батареи 9 В, вероятно, нет смысла выбирать настройку на 200 В, а 2 В будет слишком низким. Если доступно, вы можете выбрать 20 В.
  3. Прикоснитесь наконечниками щупа к вашей цепи в параллельно с элементом, на котором вы хотите измерить напряжение (см.Пределы измерения вольтметра: Пределы - измерение - вольтметр Вкладку «Обзор мультиметра» для объяснения последовательной и параллельной цепей).Например, на рисунке 6 показано, как измерить падение напряжения на лампочке, питаемой от батареи. Обязательно используйте красный щуп на стороне, подключенной к положительной клемме батареи, и черный щуп на стороне, подключенной к отрицательной клемме батареи (ничто не пострадает, если вы перевернете это назад, но ваше показание напряжения будет отрицательным).

Рисунок 6. Измерение напряжения на лампочке путем параллельного подключения щупов мультиметра.Текущий поток представлен желтыми стрелками. В режиме измерения напряжения сопротивление мультиметра очень велико, поэтому почти весь ток проходит через лампочку, и мультиметр не оказывает большого влияния на цепь. Обратите внимание на то, как ручка была установлена ​​для измерения постоянного напряжения (DCV), а красный зонд вставлен в правильный порт для измерения напряжения (обозначенный «VΩ», потому что он также используется для измерения сопротивления).

  1. Если ваш мультиметр не поддерживает автоматический выбор диапазона, вам может потребоваться отрегулировать диапазон.Если на экране вашего мультиметра отображается просто «0», возможно, выбранный вами диапазон слишком велик. Если на экране отображается «OVER», «OL» или «1» (это разные способы сказать «перегрузка»), то выбранный вами диапазон слишком мал. Если это произойдет, при необходимости увеличьте или уменьшите свой диапазон. Помните, что вам может потребоваться обратиться к руководству по мультиметру для получения более подробной информации о вашей модели.

Как измерить ток?

Чтобы измерить ток, выполните следующие действия:

  1. Вставьте красный и черный щупы в соответствующие гнезда (также называемые «портами») на мультиметре.Для большинства мультиметров черный щуп следует подключать к разъему с надписью «COM». Для измерения тока может быть несколько розеток с такими метками, как «10A» и «mA». Примечание: всегда безопаснее начинать с розетки, которая может измерять больший ток. Подключите красную розетку к сильноточному порту.
  2. Выберите соответствующую настройку тока на мультиметре. Не забудьте проверить, является ли ваша цепь постоянным или переменным током, и что почти все цепи с батарейным питанием будут постоянным током.Если ваш измеритель не имеет автоматического выбора диапазона, вам может потребоваться угадать масштаб, который будет использоваться (вы можете изменить это позже, если не получите точных показаний).
  3. Подключите щупы мультиметра в серии к току, который вы хотите измерить (см. Вкладку «Обзор мультиметра» для объяснения последовательной и параллельной цепей). Например, на рисунке 7 показано, как измерить ток через лампочку, которая питается от батареи. Обязательно поднесите красный щуп к положительной стороне батареи, иначе текущее показание будет отрицательным.

Для измерения тока через лампочку мультиметр становится частью цепи и передает электричество от батареи к лампочке. Положительный щуп мультиметра (красный) подключается к положительному полюсу батареи, а отрицательный щуп мультиметра (черный) подключается к одному проводу лампочки. Затем свободный провод лампочки подключается к отрицательной стороне батареи с помощью провода. Ток будет течь от батареи к мультиметру, а затем в лампочку.

Рис. 7. Измерение тока через лампочку путем последовательного подключения мультиметра. Текущий поток представлен желтыми стрелками. В режиме измерения тока сопротивление мультиметра очень низкое, поэтому ток может легко протекать через мультиметр, не влияя на остальную цепь. Обратите внимание, как ручка была установлена ​​для измерения постоянного тока (DCA), а красный зонд вставлен в порт для измерения тока, помеченный буквой «A».

  1. Если ваш мультиметр не поддерживает автоматический выбор диапазона, вам может потребоваться отрегулировать диапазон.Если на экране вашего мультиметра отображается просто «0», возможно, выбранный вами диапазон слишком велик. Если на экране отображается «OVER», «OL» или «1» (это разные способы сказать «перегрузка»), то выбранный вами диапазон слишком мал. Если это произойдет, при необходимости увеличьте или уменьшите свой диапазон. Помните, что вам может потребоваться обратиться к руководству по мультиметру для получения более подробной информации о вашей модели.

Как измерить сопротивление?

Чтобы измерить сопротивление, выполните следующие действия:

  1. Подключите красный и черный щупы к соответствующим гнездам на мультиметре.Для большинства мультиметров черный щуп следует подключать к разъему с надписью «COM», а красный щуп — к разъему, помеченному символом «Ω».
  2. Выберите соответствующую настройку измерения сопротивления на шкале мультиметра. Если у вас есть оценка сопротивления, которое вы будете измерять (например, если вы измеряете резистор с известным значением), это поможет вам выбрать диапазон.
  3. Важно : Перед измерением сопротивления отключите питание вашей цепи.Если в вашей схеме есть выключатель питания, вы можете сделать это, выключив его. Если переключателя нет, можно вынуть батарейки. Если вы этого не сделаете, ваше чтение может быть неверным. Если ваша схема состоит из нескольких компонентов, вам может потребоваться удалить компонент, который вы хотите измерить, чтобы точно определить его сопротивление. Например, если в вашей схеме два параллельно подключенных резистора, вам придется удалить один резистор, чтобы измерить их сопротивления по отдельности.

    Подключите один из щупов мультиметра к каждой стороне объекта, сопротивление которого вы хотите измерить.Сопротивление всегда положительное и одинаково в обоих направлениях, поэтому не имеет значения, поменяете ли вы черный и красный щупы в этом случае (если вы не имеете дело с диодом, который действует как односторонний клапан для электричества, поэтому он имеет высокое сопротивление в одном направлении и низкое сопротивление в другом направлении). На рисунке 8 показано, как измерить сопротивление лампочки.

Рисунок 8. Измерение сопротивления лампочки с помощью мультиметра.Обратите внимание, как лампочка была отключена от цепи. Мультиметр подает небольшой собственный ток, который позволяет измерять сопротивление. Обратите внимание, как ручка была установлена ​​в положение «Ω» для измерения сопротивления, а красный зонд вставлен в соответствующий порт для измерения сопротивления (обозначенный «VΩ», поскольку он также используется для измерения напряжения).

  1. Если ваш мультиметр не поддерживает автоматический выбор диапазона, вам может потребоваться отрегулировать диапазон. Если на экране вашего мультиметра отображается просто «0», возможно, выбранный вами диапазон слишком велик.Если на экране отображается «OVER», «OL» или «1» (это разные способы сказать «перегрузка»), то выбранный вами диапазон слишком мал. Если это произойдет, при необходимости увеличьте или уменьшите свой диапазон. Помните, что вам может потребоваться обратиться к руководству по мультиметру для получения более подробной информации о вашей модели.

Как проверить непрерывность?

Чтобы выполнить проверку непрерывности (которая гарантирует наличие токопроводящего пути между двумя точками в вашей цепи), выполните следующие действия:

  1. Установите мультиметр на символ проверки целостности цепи.Помните, что этот символ может не выглядеть одинаково на всех мультиметрах (а на некоторых мультиметрах его вообще нет), поэтому посмотрите вкладку «Обзор мультиметра» или нашу галерею изображений мультиметра, чтобы увидеть примеры.
  2. Вставьте датчики в соответствующие розетки. На большинстве мультиметров черный щуп должен входить в гнездо с надписью «COM», а красный датчик должен входить в то же гнездо, которое вы использовали бы для измерения напряжения или сопротивления (не тока), помеченного буквами V и / или Ω.
  3. Важно : Перед проверкой целостности отключите питание вашей цепи.Если в вашей схеме есть выключатель питания, вы можете сделать это, выключив его. Если переключателя нет, можно вынуть батарейки.

    Коснитесь щупами двух частей вашей цепи. Если две части схемы электрически соединены с очень небольшим сопротивлением между ними, ваш мультиметр должен издать звуковой сигнал. Если они не подключены, он не будет издавать шума и может отображать что-то на экране, например «OL», «OVER» или «1», что означает «перегрузка». Самый простой способ проверить эту функцию с помощью мультиметра — проверить ее с помощью одного куска проводящего материала (большинство металлов) и куска непроводящего материала, например дерева или пластика.См. Пример на Рисунке 9.

Рисунок 9. Использование мультиметра для проверки целостности цепи. Если между наконечниками щупов образуется токопроводящий путь, мультиметр подаст звуковой сигнал. Если токопроводящий путь нарушен (возможно, из-за ослабленного провода в цепи или из-за плохой пайки), мультиметр не подаст звуковой сигнал. Обратите внимание на то, как ручка была установлена ​​на символ непрерывности, а красный зонд вставлен в порт VΩ (этот порт не всегда помечен символом целостности).

Как мне проверить диод?

Функция проверки диодов полезна, чтобы определить, в каком направлении проходит электричество через диод. Точная работа функции «проверка диодов» будет отличаться для разных мультиметров, а некоторые мультиметры вообще не имеют функции проверки диодов. Из-за такого разнообразия и из-за того, что эта функция не требуется для большинства проектов Science Buddies, мы не включили сюда указания. Если вам нужно проверить диод, обратитесь к руководству по эксплуатации вашего мультиметра.

Как мне узнать, какую шкалу выбрать для напряжения, тока или сопротивления, и как мне прочитать числа в разных шкалах?

Если ваш мультиметр не поддерживает автоматический выбор диапазона, то узнать, какую шкалу выбрать, может быть непросто, особенно если вы не очень хорошо знакомы с метрическими префиксами. Вот два практических правила, которым вы можете следовать при измерении напряжения, тока и сопротивления:

  • Напряжение : Многие мультиметры с ручным выбором диапазона имеют настройки 200 мВ, 2 В и 20 В.Очень маловероятно, что цепи с батарейным питанием превысят 20 В (например, две батареи 9 В, соединенные последовательно, обеспечат максимум 18 В). Одна батарея AA или AAA обеспечивает напряжение 1,5 В. Две батареи AA или AAA, объединенные в батарейный блок, обеспечат 3 В, четыре — 6 В, а восемь — 12 В. Итак, если вы знаете, какой тип батарей (и сколько) питает вашу схему, вы можете выбрать начальный диапазон для измерения напряжения. Помните, что вы хотите выбрать следующую по величине настройку напряжения (точно так же, как при измерении расстояния; вам понадобится мерка, а не 12-дюймовая линейка, чтобы измерить что-то, что имеет длину 18 дюймов).Итак, для схемы, питаемой от одной батареи AA (1,5 В), вы должны выбрать настройку 2 В. Для схемы, питаемой от батареи 9 В, вы должны выбрать 20 В.
  • Ток : при измерении тока всегда рекомендуется начинать с максимально возможной настройки тока (и соответствующей сильноточной розетки, если у вашего мультиметра есть несколько розеток для измерения тока), чтобы избежать перегорания предохранитель. Если ток, который вы измеряете, достаточно низкий, чтобы безопасно использовать ваши слаботочные настройки и розетку, вы можете снять новое показание, чтобы получить более точное измерение.Например, предположим, что у вашего мультиметра есть розетка с предохранителем на 10 А и розетка с предохранителем на 200 мА. Используя розетку на 10 А, вы измеряете ток 150 мА. Тогда было бы безопасно провести повторные измерения с розеткой 200 мА (и более низким значением на ручке).
  • Сопротивление : Если вы измеряете объект с известным сопротивлением, вы можете использовать это значение, чтобы выбрать соответствующую настройку сопротивления. Как и в случае с током и напряжением, вам нужно выбрать следующее по величине значение сопротивления на вашей шкале.Например, чтобы измерить резистор 4,7 кОм, вы должны выбрать 20 кОм. Если вы измеряете объект с неизвестным сопротивлением, вам просто нужно будет догадываться, но сложно повредить мультиметр или объект, который вы проверяете при измерении сопротивления, так что это не большая проблема.

Одно и то же значение может отображаться по-разному при измерении с другой шкалой, выбранной на шкале мультиметра. Например, давайте измеряем напряжение постоянного тока от батареи AA, которое, как мы ожидаем, будет равно 1.5 В — с помощью мультиметра с настройками на 200 мВ, 2 В, 20 В, 200 В и 600 В. При замере батареи с каждой настройкой получаем такие показания:

Настройка шкалы мультиметра Чтение экрана
200 мВ 1.
2V 1,607
20 В 1,60
200В 1.6
600В 001

Таблица 2. Показания при измерении напряжения одной батареи AA с использованием различных настроек шкалы на мультиметре с ручным выбором диапазона.

Знак «1». Это способ мультиметра сказать, что он «перегружен» — значение 1,6 В выходит за пределы выбранного диапазона 200 мВ. В этом случае другие мультиметры могут отображать «OVER» или «OL». Обратите внимание, что по мере увеличения диапазона точность уменьшается.При настройке 2 В показание отображается с 3 десятичными знаками. При настройке 200 В показание отображает только один десятичный разряд.

Вам также может потребоваться учитывать метрические префиксы при считывании числа с экрана мультиметра. Например, предположим, что ваш экран показывает «6.1», когда вы измеряете ток с настройкой «10A». Это означает, что ваше текущее измерение составляет 6,1 ампер. Однако, если на экране отображается «6,1», когда текущая шкала установлена ​​на 20 мА, это означает, что вы измеряете 6.1 миллиампер.

Мой мультиметр не работает! Что случилось?

Не паникуйте! Есть несколько распространенных ошибок, которые легко исправить.

  • Убедитесь, что в мультиметре свежие батарейки.
  • Некоторые мультиметры имеют функцию автоматического энергосбережения и отключаются после определенного периода бездействия. В этом случае поверните шкалу мультиметра в положение «выключено», а затем снова включите его.
  • Убедитесь, что ваши датчики подключены к правильным портам для того, что вы хотите измерить (см. «Как я измеряю… «разделы выше).
  • Убедитесь, что вы подключаете свои щупы к цепи правильным образом (последовательно или параллельно) для того, что вы хотите измерить (см. Разделы «Как измерить …» выше).
  • Убедитесь, что на шкале мультиметра выбрана правильная настройка того, что вы хотите измерить; например, если вам нужно измерить напряжение постоянного тока, убедитесь, что на шкале не выбран ток, сопротивление или напряжение переменного тока.
  • Если ваш мультиметр не поддерживает автоматический выбор диапазона, вам может потребоваться вручную настроить диапазон.Если на экране мультиметра всегда отображается «0», это может означать, что выбранный вами диапазон слишком велик. Если отображается «OL», «OVER» или «1», возможно, выбранный вами диапазон слишком мал. Каждый мультиметр отличается, поэтому вам может потребоваться прочитать руководство к мультиметру, чтобы узнать, что означает дисплей на экране. Затем вы можете соответствующим образом отрегулировать диапазон.
    • Например, если вы пытаетесь измерить напряжение батареи 9 В, но у вашего мультиметра установлено значение 2 постоянного тока, этот диапазон слишком мал, и вам придется увеличить его до более высокого значения, например 20 постоянного тока.

Все еще не работает? Возможно, в мультиметре перегорел предохранитель. См. Предложения в следующем разделе.

Как узнать, нужно ли заменить предохранитель?

У некоторых мультиметров есть предохранитель (или несколько предохранителей), который «перегорает», когда через них проходит слишком большой ток, что затем предотвращает протекание большего количества электричества и, надеюсь, спасает остальную часть мультиметра от повреждений. В некоторых мультиметрах эти предохранители можно заменить, если они перегорели, но инструкции по их замене (и выяснение, нужно ли их вообще заменять) будут отличаться для разных моделей мультиметра.

Возможно, вам потребуется открыть мультиметр, чтобы получить доступ к предохранителям ( Важно : всегда отсоединяйте щупы перед тем, как это сделать). У некоторых мультиметров есть крышки, которые отрываются или соскальзывают, а у некоторых есть винты, которые необходимо сначала удалить. Предохранители обычно выглядят как маленькие стеклянные цилиндры с металлическими крышками на конце и тонкой проволокой, идущей посередине:

Рисунок 10. Типовой предохранитель.

Если предохранитель перегорел, он мог заметно почернеть или обгореть.Проволока внутри могла полностью сгореть и больше не видна.

Как заменить предохранитель?

Важно : Всегда отключайте провода от мультиметра, прежде чем открывать крышку для замены предохранителя.

Инструкции по замене предохранителя различаются в зависимости от модели мультиметра, поэтому вам необходимо ознакомиться с инструкциями в руководстве к мультиметру. В этом руководстве от SparkFun представлены инструкции по замене предохранителя на мультиметре их марки, но помните, что эти указания могут не относиться к вашей модели.Обратите внимание, что в некоторых мультиметрах, особенно в недорогих, вы не сможете заменить предохранитель.

.