Сопротивление электрическому току. SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор Сопротивление 470
В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).
SMT технология (от англ. Surface Mount Technology
) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких – SMD резистор.
SMD резисторы
SMD резисторы
– это миниатюрные , предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.
Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.
Типоразмеры SMD резисторов
В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.
Типоразмер SMD резисторов
стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.
Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.
Размеры SMD резисторов и их мощность
Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.
Маркировка SMD резисторов
Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.
В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.
Маркировка с 3 и 4 цифрами
В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.
Еще несколько примеров определения сопротивлений в рамках данной системы:
- 450 = 45 х 10 0 равно 45 Ом
- 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
- 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
- 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)
Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.
SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.
Эта система маркировки состоит из трех элементов: две цифры указывают код , а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)
Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:
- 01А = 100 Ом ±1%
- 38С = 24300 Ом ±1%
- 92Z = 0.887 Ом ±1%
Онлайн калькулятор SMD резисторов
Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.
Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).
Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.
Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.
И как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе
или как по старинке его еще называют сопротивление
.
Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением
и служат для ограничения прохождения тока
в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.
1. Основные параметры резисторов.
Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению
, номинальной мощности
и допуску
. Рассмотрим эти три основных параметра более подробно.
1.1. Сопротивление.
Сопротивление
— это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.
Сопротивление измеряется в омах (Ом
), килоомах (кОм
) и мегаомах (МОм
):
1кОм = 1000 Ом
;
1МОм = 1000 кОм = 1000000 Ом
.
Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:
1,0
; 1,1
; 1,2
; 1,5
; 2,0
; 2,2
; 2,7
; 3,0
; 3,3
; 3,9
; 4,3
; 4,7
; 5,6
; 6,2
; 6,8
; 7,5
; 8,2
; 9,1
Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10
.
Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой
, цифровой
или цветовой маркировки
.
Буквенно-цифровая маркировка
.
При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е
» и «R
», единицу килоом буквой «К
», а единицу мегаом буквой «М
».
а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е
» и «R
». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω
»:
3R
— 3 Ом
10Е
— 10 Ом
47R
— 47 Ом
47Ω
– 47 Ом
56
– 56 Ом
б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К
». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R
» на конце, или только одно числовое значение величины без буквы:
К12
= 0,12 кОм = 120 Ом
К33
= 0,33 кОм = 330 Ом
К68
= 0,68 кОм = 680 Ом
360R
— 360 Ом
в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К
»:
2К0
— 2кОм
10К
— 10 кОм
47К
— 47 кОм
82К
— 82 кОм
г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М
». Букву ставят на месте нуля или запятой:
М18
= 0,18 МОм = 180 кОм
М47
= 0,47 МОм = 470 кОм
М91
= 0,91 МОм = 910 кОм
д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М
»:
1М
— 1 МОм
10М
— 10 МОм
33М
— 33 МОм
е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е
, R
, К
и М
, обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:
R22
– 0,22 Ом
1Е5
— 1,5 Ом
3R3
— 3,3 Ом
1К2
— 1,2 кОм
6К8
— 6,8 кОм
3М3
— 3,3 МОм
Цветовая маркировка
.
Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.
Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают в Омах, третье кольцо является множителем
, а четвертое — обозначает допуск
или класс точности
резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.
Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.
Например. Резистор маркирован четырьмя кольцами:
красное — (2
)
фиолетовое — (7
)
красное — (100
)
серебристое — (10%
)
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм
с допуском ±10%
.
Резистор маркирован пятью кольцами:
красное — (2
)
фиолетовое (7
)
красное (2
)
красное (100
)
золотистое (5%
)
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм
с допуском ±5%
Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета
.
И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в статье.
Цифровая маркировка
.
Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя
или четырьмя
цифрами.
При трехзначной
маркировке первые две цифры обозначают численную величину сопротивления
в Омах, третья цифра обозначает множитель
. Множителем является число 10 возведенное в степень третьей цифры:
221
– 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом
;
472
– 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм
;
564
– 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм
;
125
– 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 1,2 МОм
.
Если последняя цифра ноль
, то множитель будет равен единице
, так как десять в нулевой степени равно единице:
100
– 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом
;
150
– 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом
;
330
– 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом
.
При четырехзначной
маркировке первые три цифры также обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:
1501
– 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм
;
1602
– 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм
;
3243
– 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм
.
1.2. Допуск (класс точности) резистора.
Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском
(классом точности).
Допускаемое отклонение выражается в процентах
и указывается на корпусе резистора в виде буквенного кода
, состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:
Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.
На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода
или цифрового значения
в процентах.
У резисторов с цветовой маркировкой допуск указывается последним
цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.
1.3. Номинальная мощность рассеивания.
Третьим важным параметром резистора является его мощность рассеивания
При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания
называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.
Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.
За единицу измерения мощности принят ватт
(Вт).
Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.
В зависимости от геометрических размеров
резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.
Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.
На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».
С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку
. Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в статье.
Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев
.
Резисторы можно разделить на две группы: резисторы постоянного сопротивления
(постоянные резисторы) и резисторы переменного сопротивления
(переменные резисторы).
2. Резисторы постоянного сопротивления (постоянные резисторы).
Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным
. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.
Керамическую трубку называют резистивным элементом
и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные
и проволочные
.
Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки
, нанесенной на керамическое основание.
Полупроводящая пленка называется резистивным слоем
и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций
. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.
В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).
Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.
2.2. Проволочные резисторы.
Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.
Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.
Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.
По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.
Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.
С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.
На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника
, а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).
Рядом с условным обозначением ставят латинскую букву «R
» и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.
Значение сопротивления от 0 до 999 Ом обозначают в омах
, но единицу измерения не ставят:
15
— 15 Ом
680
– 680 Ом
920
— 920 Ом
На некоторых зарубежных схемах для обозначения Ом ставят букву R
:
1R3
— 1,3 Ом
33R
– 33 Ом
470R
— 470 Ом
Значение сопротивления от 1 до 999 кОм обозначают в килоомах
с добавлением буквы «к
»:
1,2к
— 1,2 кОм
10к
— 10 кОм
560к
— 560 кОм
Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом
с добавлением буквы «М
»:
1М
— 1 МОм
3,3М
— 3,3 МОм
56М
— 56 МОм
Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.
4. Последовательное и параллельное соединение резисторов.
Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.
При последовательном
соединении резисторов их общее сопротивление Rобщ
равно сумме всех сопротивлений резисторов, соединенных в эту цепь:
Rобщ = R1 + R2 + R3 + … + Rn
Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.
При параллельном
соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:
Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:
И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.
Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью , в которой способы соединения рассказаны более подробно.
Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.
Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления
. Во второй части статьи мы познакомимся с .
Удачи!
Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.
Резисторы керамические проволочные цементные
– постоянные резисторы, номинальное сопротивление в зависимости от номинала составляет от 0,01 Ом до 100 кОм
, рассеиваемая мощность – 5Вт, 10Вт, 15Вт, 25Вт
. Предназначены для эксплуатации в цепях постоянного или переменного тока, обеспечивая ограничение силы тока и распределение напряжения.
Конструктивно проволочные резисторы выполнены в виде трубчатого основания из керамики
(чистый глинозём Al 2 O 3), в качестве резистивного элемента используется проволочный проводник
(медно-никелевый или хромово-никелевый сплав) с высоким удельным сопротивлением. Основание с обмоткой помещено в литой прямоугольный корпус
из стеатитовой керамики и закапсулировано кремнезёмом
(диоксид кремния SiO 2).
Монолитная керамическая конструкция резисторов обладает высокими характеристиками огнестойкости, влагостойкости и способностью к самозатуханию.
Вывода керамических резисторов
– гибкие осевые аксиальные проволочного типа. В качестве материала выводов используется луженая медь. Монтаж осуществляется с использованием пайки по THT-технологии – вывода монтируются непосредственно в сквозные отверстия печатной платы.
Положение монтажа
– любое, но следует помнить о резистивных особенностях, сопровождающихся нагревом корпуса резистора. Поэтому, не рекомендуется размещение резисторов на близком расстоянии к печатной плате или термочувствительным элементам.
Допустимое отклонение сопротивления цементных аксиальных резисторов составляет ±5%
. Ряд промежуточных значений номинальных сопротивлений – Е24 E24 —
один из рядов постоянных резисторов, который является результатом стандартизации номинальных сопротивлений резисторов. . При переменном токе предельное рабочее напряжение составляет 1500В
, при постоянном токе – 1000В
. Рабочая повышенная температура среды не превышает +275°С
, пониженная – до -55°С
. Сопротивление изоляции составляет не менее 1000 МОм
.
При подборе необходимого номинала расчет
рекомендуется проводить, используя гибкий , с помощью которого можно определить общее параллельное или последовательное сопротивление резисторов
, а также сопротивление резисторов в цепи.
В представлены особенности конструкции и характеристики мощных резисторов С5-35В, С5-36В, ПЭВ, ПЭВР, RX24 и SQP.
Применяются
мощные керамические резисторы в различной промышленной электронике, радио- и телевизионных приемниках, блоках питания и управления, усилителях, автомобильной электронике, а также в качестве испытательной нагрузки или нагревательных элементов (например, в видеокамерах наружного видеонаблюдения).
Более подробные характеристики представленных мощных керамических цементных резисторов
, а также расшифровка маркировки, габаритные и установочные размеры приведены ниже.
Гарантийный срок
работы поставляемых нашей компанией мощных резисторов составляет 2 года
, что подкрепляется соответствующими документами по качеству.
Окончательная цена на мощные проволочные керамические цементные резисторы зависит от количества, сроков поставки и формы оплаты.
Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.
Радиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.
Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.
Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.
Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны , а также многое другое.
Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.
Компоненты электронных схем
При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.
Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т.е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, и многое другое.
Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.
К пассивным относятся такие детали, как резисторы, и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.
Резисторы
Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных .
Рисунок 1. Схемы включения свтодиода
Свойства резисторов
Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы
.
Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.
Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.
Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I 2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.
Резисторы на схемах
Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.
Рисунок 2. УГО резисторов
Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I 2 * R, P = U 2 / R.
Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.
Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 — 5,1МОм.
Современная маркировка резисторов
В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.
Рисунок 3. Маркировка резисторов
На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип — резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.
На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.
Рисунок 4. Резисторы для поверхностного монтажа SMD
Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.
Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.
В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.
Рисунок 5.
Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.
Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.
Соединение резисторов
Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.
Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления
В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в . Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.
При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.
Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.
Продолжение читайте в следующей статье.
Прежде всего, определимся с понятием и обозначением сопротивления, как электрической величины. Согласно теории сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока. В международной системе единиц (СИ) единицей измерения сопротивления является Ом (Ω). Для электротехники это относительно небольшая величина, поэтому мы чаще будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого нужно усвоить следующую табличку:
1 кОм = 1000 Ом;
1 Мом = 1000 кОм;
И наоборот:
1 Ом = 0.001 кОм;
1 кОм = 0.001 Мом;
Ничего сложного, но знать это надо твердо.
Теперь о номиналах (величинах). Конечно, промышленность не выпускает для радиолюбителей резисторов со всеми номиналами. Изготовление высокоточных резисторов – дело трудоемкое и используются такие резисторы лишь в специальной высокоточной аппаратуре. Вы, к примеру, не найдете в обычном магазине резистора на 1.9 кОм и в такой точности чаще всего нет необходимости – она нужна редко, а если нужна, то для этого существуют подстроечные резисторы.
Весь стандартный ряд, с которым мы будем сталкиваться, я здесь приводить не буду – он достаточно длинный и учить его специально не стоит. Лучше научимся отличать один резистор от другого. Маркировать приборы могут по-разному. Самая удобная, по моему мнению, была цифровая маркировка. Делалась она, к примеру, на самых ходовых в свое время резисторах типа МЛТ.
Одного взгляда на резистор было достаточно, чтобы узнать какое у него сопротивление
К примеру, на втором сверху резисторе читаем 2,2 и ниже К5% . Номинал этого резистора – 2.2 килоома с точностью 5%. Для мегаомных резисторов используется «М» вместо «К» а омы обозначаются буквами «R», «Е» или вообще без буквы:
470 — 470 Ом
18Е — 18 Ом
Очень часто любая из букв может стоять вместо запятой:
2к2 – 2,2 килоома
М15 – 0,15 мегаом или 150 килоом
Вот и вся хитрость. Еще один параметр – мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (сгорания). Снова вернемся к верхнему рисунку. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0.5 Вт, 0.25 Вт, 0.125 Вт. Первые три настолько велики, что на них даже нашлось место для маркировки мощности: МЛТ-2, МЛТ-1, МЛТ-0.5. Остальные на глаз. Конечно, выпускаются (но большинство, увы, выпускалось) и другие типы (и мощности) с «человеческой» маркировкой, перечислять я их не буду, а принцип обозначения у них тот же.
ПЭВР-30, к примеру, выглядит как приличных размеров цилиндр, но маркируется так же
Но эта мода уже практически отошла, взамен цифр появились цветные полоски и специальные коды и с этим придется мириться.
Что это за резистор и каков его номинал? Для этого придется обратиться к специальным таблицам, которые я здесь и привожу.
Калькулятор цветовой маркировки резисторов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения
Определения и расчет
Резистор и сопротивление
Резистор — пассивный электрический элемент, создающий электрическое сопротивление в электронных схемах. Резисторы можно найти практически во всех электронных устройствах. Они используются для различных целей, в частности, для ограничения тока в цепях, в качестве делителей напряжения, для обеспечения напряжения смещения для активных элементов электрических цепей, в качестве терминаторов (согласованных нагрузок) линий передачи, в резистивно-емкостных цепях в качестве времязадающего элемента… Список можно продолжать бесконечно.
Декадный магазин сопротивлений
Электрическое сопротивление резистора или любого проводника является мерой его противодействия протеканию электрического тока. В СИ сопротивление измеряется в омах. Сопротивление имеет практически любой материал кроме сверхпроводников, имеющих нулевое сопротивление. Подробнее о сопротивлении, удельном сопротивлении и проводимости.
Допустимое отклонение от номинального значения
Конечно, можно сделать резистор с очень точным значением сопротивления, однако он будет очень дорогим. К тому же, очень точные и дорогие резисторы бывают нужны достаточно редко, например, в качестве делителей напряжения в мультиметрах. Здесь мы поговорим о недорогих и не очень точных резисторах, используемых в электронных устройствах. В большинстве случаев точность ±20% вполне допустима. Для резистора сопротивлением 1 кОм это означает, что любой резистор с сопротивлением в диапазоне от 800 Ом до 1200 Ом будет считаться резистором 1 кОм. Допуск на некоторые особо критичные компоненты может быть ±1% или даже ±0.05%. В то же время следует отметить, что в наше время сложно найти резисторы с допуском 20%. Обычными являются 5-процентные и 1-процентные резисторы. Когда-то, во времена ламповых и первых транзисторных радиоприемников, такие резисторы были очень дорогими и обычными были 20-процентные резисторы.
Сравнение 0,1-ваттных резисторов для поверхностного монтажа в корпусе 1608 (1,6 × 0,8 мм) с 10-ваттным керамическим резистором сопротивлением 1 Ом
Рассеиваемая мощность
Если через резистор проходит электрический ток, электрическая энергия преобразуется в тепловую и резистор нагревается. Тепло рассеивается в окружающую среду. Причем, тепловая энергия должна быть передана в окружающую среду так, чтобы температура резистора и окружающих его элементов оставалась в пределах нормы. Мощность, выделяемая на резисторе, определяется по формуле:
Здесь V — напряжение в вольтах на резисторе сопротивлением R в омах, I — протекающий через резистор ток в амперах. Мощность, которую резистор может рассеивать без ухудшения параметров в течение длительного периода времени, называется предельной рассеиваемой мощностью. В общем случае, чем больше корпус резистора, тем большую мощность может он рассеивать. Выпускаются резисторы различной мощности и можно встретить резисторы от 0,01 Вт до сотен ватт. Углеродистые резисторы обычно выпускаются мощностью 0,125–2 Вт.
Резисторы с цветовой кодировкой мощностью 0,125, 0,25, 0,5 и 1 Вт в компьютерном блоке питания
Ряды предпочтительных величин электронных компонентов
В начале XX века резисторы использовались главным образом в радиоприемниках и назывались вместе с другими компонентами радиодеталями. Сейчас это название относится ко всем элементам, применяемым в электронных схемах, которые к радио не имеют отношения и поэтому радиодетали стали называть электронными элементами компонентами (это, как всегда, калька с английского). Хотя это как сказать! В телефоне есть как минимум пять радиоприемников (для связи с базовой станцией, GPS/GLONASS, Wi-Fi, NFC, УКВ-приемник), но никто об этом не помнит и не считает телефон радиоприемным устройством. Но мы отвлеклись от темы.
Несмотря на то, что можно изготовить резистор с любым сопротивлением, удобнее выпускать ограниченное число компонентов, особенно если учесть, что каждый резистор имеет определенный допуск на номинал. Более точные резисторы стоят дороже, чем менее точные. Обычная логика показывает, что для стандартных значений удобно выбрать логарифмическую шкалу, с одинаковыми интервалами между стандартными значениями, которые определяются с учетом допустимого отклонение от номинала. Например, для точности ±10% имеет смысл для декады (интервала, в котором сопротивление изменяется от 1 до 10, от 10 до 100 и так далее) взять 12 значений: 1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2, затем 10; 12; 15; 18; 22; 27; 33; 39; 47; 56; 68;82 и так далее. Эти значения называют рядами номиналов. Они стандартизированы в форме рядов E3–E192 и используются не только для резисторов, но также для конденсаторов, катушек индуктивности и стабилитронов. Каждый ряд (E3, E3, E6, E12, E24, E48, E96, и E192) разделяет декаду на 3, 6, 12, 24, 48, 96 и 192 стандартных значения. Отметим, что ряд E3 устарел и используется крайне редко.
Список значений номинальных рядов E6–E192
Современный мощный 10-ваттный керамический резистор 8,6 Ом и 2-ваттный резистор ВЗР 3,3 кОм советского производства, изготовленный в 1969 г.
Значения E6 (допуск 20%):
1,0; 1,5; 2,2; 3,3; 4,7; 6,8.
Значения E12 (допуск 10%):
1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2.
Значения E24 (допуск 5%):
1,0; 1,1; 1,2; 1,3; 1,5; 1,6; 1,8; 2,0; 2,2; 2,4; 2,7; 3,0; 3,3; 3,6; 3,9; 4,3; 4,7; 5,1; 5,6; 6,2; 6,8; 7,5; 8,2; 9,1.
Значения E48 (допуск 2%):
1,00; 1,05; 1,10; 1,15; 1,21; 1,27; 1,33; 1,40; 1,47; 1,54; 1,62; 1,69; 1,78; 1,87; 1,96; 2,05; 2,15; 2,26; 2,37; 2,49; 2,61; 2,74; 2,87; 3,01; 3,16; 3,32; 3,48; 3,65; 3,83; 4,02; 4,22; 4,42; 4,64; 4,87; 5,11; 5,36; 5,62; 5,90; 6,19; 6,49; 6,81; 7,15; 7,50; 7,87; 8,25; 8,66; 9,09; 9,53.
Значения E96 (допуск 1%):
1,00; 1,02; 1,05; 1,07; 1,10; 1,13; 1,15; 1,18; 1,21; 1,24; 1,27; 1,30; 1,33; 1,37; 1,40; 1,43; 1,47; 1,50; 1,54; 1,58; 1,62; 1,65; 1,69; 1,74; 1,78; 1,82; 1,87; 1,91; 1,96; 2,00; 2,05; 2,10; 2,15; 2,21; 2,26; 2,32; 2,37; 2,43; 2,49; 2,55; 2,61; 2,67; 2,74; 2,80; 2,87; 2,94; 3,01; 3,09; 3,16; 3,24; 3,32; 3,40; 3,48; 3,57; 3,65; 3,74; 3,83; 3,92; 4,02; 4,12; 4,22; 4,32; 4,42; 4,53; 4,64; 4,75; 4,87; 4,99; 5,11; 5,23; 5,36; 5,49; 5,62; 5,76; 5,90; 6,04; 6,19; 6,34; 6,49; 6,65; 6,81; 6,98; 7,15; 7,32; 7,50; 7,68; 7,87; 8,06; 8,25; 8,45; 8,66; 8,87; 9,09; 9,31; 9,53; 9,76.
Значения E192 (допуск 0.5% и точнее):
1,00; 1,01; 1,02; 1,04; 1,05; 1,06; 1,07; 1,09; 1,10; 1,11; 1,13; 1,14; 1,15; 1,17; 1,18; 1,20; 1,21; 1,23; 1,24; 1,26; 1,27; 1,29; 1,30; 1,32; 1,33; 1,35; 1,37; 1,38; 1,40; 1,42; 1,43; 1,45; 1,47; 1,49; 1,50; 1,52; 1,54; 1,56; 1,58; 1,60; 1,62; 1,64; 1,65; 1,67; 1,69; 1,72; 1,74; 1,76; 1,78; 1,80; 1,82; 1,84; 1,87; 1,89; 1,91; 1,93; 1,96; 1,98; 2,00; 2,03; 2,05; 2,08; 2,10; 2,13; 2,15; 2,18; 2,21; 2,23; 2,26; 2,29; 2,32; 2,34; 2,37; 2,40; 2,43; 2,46; 2,49; 2,52; 2,55; 2,58; 2,61; 2,64; 2,67; 2,71; 2,74; 2,77; 2,80; 2,84; 2,87; 2,91; 2,94; 2,98; 3,01; 3,05; 3,09; 3,12; 3,16; 3,20; 3,24; 3,28; 3,32; 3,36; 3,40; 3,44; 3,48; 3,52; 3,57; 3,61; 3,65; 3,70; 3,74; 3,79; 3,83; 3,88; 3,92; 3,97; 4,02; 4,07; 4,12; 4,17; 4,22; 4,27; 4,32; 4,37; 4,42; 4,48; 4,53; 4,59; 4,64; 4,70; 4,75; 4,81; 4,87; 4,93; 4,99; 5,05; 5,11; 5,17; 5,23; 5,30; 5,36; 5,42; 5,49; 5,56; 5,62; 5,69; 5,76; 5,83; 5,90; 5,97; 6,04; 6,12; 6,19; 6,26; 6,34; 6,42; 6,49; 6,57; 6,65; 6,73; 6,81; 6,90; 6,98; 7,06; 7,15; 7,23; 7,32; 7,41; 7,50; 7,59; 7,68; 7,77; 7,87; 7,96; 8,06; 8,16; 8,25; 8,35; 8,45; 8,56; 8,66; 8,76; 8,87; 8,98; 9,09; 9,20; 9,31; 9,42; 9,53; 9,65; 9,76; 9,88.
Цветовая маркировка резисторов
Маркировка резисторов
Большие резисторы, такие как показаны на этом рисунке, обычно маркируются цифрами и буквами и понять такую маркировку несложно. Однако, величину сопротивления непросто напечатать на маленьких резисторах (и других электронных компонентах), особенно цилиндрической формы, даже при использовании современных технологий нанесения маркировки. Поэтому в последние 100 лет для маркировки радиодеталей использовалась цветовая кодировка. Такая кодировка используется не только для резисторов, но также для конденсаторов, диодов, катушек индуктивности и других элементов.
Цветовая маркировка резисторов
Для маркировки резисторов используется до шести цветных полосок. Чаще используется код из четырех полосок, в котором первая и вторая полоски представляют первую и вторую значащую цифру, третья полоска кодирует множитель, а четвертая — допуск. Между третьей и четвертой полоской обычно имеется плохо различимый увеличенный зазор, который позволяет определить направление чтения кода — компоненты ведь симметричные! 20-процентные резисторы обычно маркируются только тремя полосками — там не указывается допуск. Их полоски обозначают цифру, цифру и множитель.
Для 2-процентных или более точных резисторов используют пять или более полосок, представляющих величину сопротивления. Последняя полоска в маркировке из шести полосок представляет температурный коэффициент сопротивления в частях на миллион на кельвин (ppm/K). На рисунке в верхней части страницы показан принцип цветовой маркировки.
Полоски считываются слева направо. Они обычно группируются ближе к левому концу элемента. Если между последней полоской и остальными полосками имеется зазор, он обычно показывает, что эта сторона элемента — правая. Также если имеется золотая или серебряная полоска, они всегда находятся на правой стороне. Когда значение по полоскам определено, сравните его с таблицей предпочтительных величин. Если значения там нет — попробуйте прочитать маркировку с другого конца. Обратите внимание: в этом калькуляторе цветовая кодировка соответствует международному стандарту IEC 60062:2016..
Нажмите на приведенные ниже примеры, чтобы посмотреть цветовую кодировку резисторов:
10 кОм ±20%, 12 Ом ±20%, 15 МОм ±1%, 18 МОм ±2%, 22 кОм ±10%, 27 Ом ±5%, 33 кОм ±5%, 39 МОм ±0,5%, 0,47 Ом ±0,25%, 0,56 Ом ±0,1%, 68 Ом ±0,05%, 0,82 Ом ±20%
Цифровая маркировка
На поверхности относительно больших резисторов, предназначенных для поверхностного монтажа (англ. SMT — surface-mount technology или SMD — surface-mount device), а также на относительно больших резисторах с выводами для монтажа в отверстия для маркировки печатают цифры. В связи с ограниченным местом, эти цифры часто бывает трудно прочитать. Маркировка используется, в основном, при ремонте, так как в процессе производства резисторы и другие электронные элементы подаются в автоматы для монтажа на лентах, которые хорошо промаркированы. Многие резисторы вообще не имеют маркировки и после того, как автомат установил их на плату, единственным способом узнать их сопротивление является его измерение.
Резисторы 39 × 10⁰ = 39 Ом 0,1 Вт для поверхностного монтажа в корпусах 1608 (1,6 × 0,8 мм)
Для маркировки используется несколько систем: три или четыре цифры, две цифры и буква, три цифры и буква, код стандарта RKM, в котором буква, обозначающая единицу измерения, ставится на место десятичного разделителя. Если на элементе есть только три цифры, они представляют две значащие цифры номинала и множитель. Например, 103 на резисторе для поверхностного монтажа означает 10 × 10³ = 10 кОм.
Система из четырех цифр используется для маркировки резисторов высокой точности, например, для резисторов рядов E96 и E192. Пример кодировки: 2743 = 274 × 10³ = 274 кОм.
Для резисторов меньшего размера используется другая система. Например, для серии E96 используются две цифры и буква. Такая система позволяет сэкономить один знак по сравнению с системой из четырех цифр. Это связано с тем, что ряд E96 содержит менее 100 значений, которые могут быть представлены двумя цифрами, если их последовательно пронумеровать. То есть 01 — 100, 02 — 102, 03 — 105 и так далее. Буквой кодируют множитель. Отметим, что изготовители часто используют собственные, нестандартные системы маркировки. Поэтому лучшим способом определения сопротивления всегда является его измерение мультиметром.
В кодировке RKM буква, означающая единицу измерения сопротивления, помещается на место десятичного разделителя, так как запятая или точка могут не пропечататься или просто исчезнуть на элементах или на копиях документов. Кроме того, данный метод позволяет использовать меньше символов. Например, R22 или E22 означает 0,22 Ом, 2К7 означает 2,7 кОм и 1М5 означает 1,5 МОм.
Измерение сопротивления резистора МЛТ 3,3 МОм 0,5 Вт с помощью осциллографа-мультиметра
Измерение сопротивления
Сопротивление можно измерить с помощью аналогового (со стрелкой) или цифрового омметра или мультиметра с функцией измерения сопротивления. Для измерения сопротивления присоедините резистор к щупам и считайте значение. Иногда можно приблизительно измерить сопротивление, не извлекая резистор из схемы. Однако перед таким измерением необходимо отключить питание и разрядить все конденсаторы.
Мультиметр используется не только для измерения сопротивления резисторов, но и для измерения контактного сопротивления различных переключающих элементов, например реле и выключателей. С помощью мультиметра можно, например, определить, что пора заменить кнопку компьютерной мышки. Для этого нужно аналоговым или цифровым мультиметром с аналоговой шкалой измерить контактное сопротивление. Аналоговая шкала полезна для диагностики или настройки, так как она выполняет роль стрелки и показывает мгновенные изменения сопротивления, которые на цифровом дисплее с мигающими сегментами сложно понять. Таким мультиметром можно легко обнаружить плохие контакты, например, повышенный дребезг контактов реле, подвергающегося вибрационным нагрузкам и требующего замены.
В заключение еще несколько примеров:
Резистор 2,7 кОм ±5%: красный, фиолетовый, красный, золотой
Резистор 100 кОм ±5%: коричневый, черный, желтый, золотой
Резистор 220 кОм ±5%: красный, красный, желтый, золотой
Резистор 330 кОм ±5%: оранжевый, оранжевый, желтый, золотой
Резистор 390 кОм ±5%: оранжевый, белый, желтый, золотой
Резистор 430 кОм ±5%: желтый, оранжевый, желтый, золотой
Резистор 470 кОм ±5%: желтый, фиолетовый, желтый, золотой
Резистор 510 кОм ±5%: зеленый, коричневый, желтый, золотой
Резистор 560 кОм ±5%: зеленый, синий, желтый, золотой
Резистор 750 кОм ±5%: фиолетовый, зеленый, желтый, золотой
Резистор 910 кОм ±5%: белый, коричневый, желтый, золотой
Цифровая маркировка SMD резисторов — примеры и онлайн калькулятор
Smd-резистор: таблица типоразмеров и мощностей. Определяем параметры резистора
по коду – примеры и онлайн калькулятор.
На предыдущей странице мы рассмотрели методы определения параметров стандартных выводных резисторов
с цветовой маркировкой.
SMD резисторы – это те же обычные постоянные резисторы, только предназначенные для сугубо поверхностного монтажа на
печатную плату.
SMD резисторы могут быть различной формы, но в целом, они значительно меньше, чем их традиционные выводные аналоги.
Из-за малых размеров таких резисторов на них затруднительно нанести традиционные цветовые полосы, поэтому был разработан цифровой способ
маркировки, которая наносится на корпуса SMD элементов и состоит из трёх или четырёх цифр, либо из двух цифр и буквы (маркировка EIA-96).
При трёхзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра определяет
множитель. Множителем является число 10 возведённое в степень третьей цифры.
В качестве примера приведём простые расчёты:
♦ Маркировка – 240: тогда
R = 22 × 100, что равняется 22 Ом;
♦ Маркировка – 273: тогда
R = 27 × 103, что равняется 27000 Ом или 27 кОм.
Для номиналов сопротивлений ниже 10 Ом в маркировку вводится буква R, которая указывает положение десятичной точки в значении сопротивления
резистора. Множитель в этом случае отсутствует. Поясним примерами:
♦ Маркировка – 5R6: тогда
R = 5.6 Ом;
♦ Маркировка – R12: тогда
R = 0.12 Ом.
Как правило, допуск погрешности трёхзначных резисторов составляет 5%.
Для SMD резисторов с допуском погрешности 1% используется четырёхзначная цифровая маркировка. Здесь всё происходит по
аналогии с трёхзначной маркировкой, только численную величину сопротивления в Омах обозначают первые 3 цифры, а четвёртая –
это степень множителя, где множителем является число 10 возведённое в степень четвёртой цифры.
Для номиналов сопротивлений ниже 100 Ом в маркировку вводится буква R, которая указывает положение десятичной точки в значении сопротивления
резистора. Множитель в этом случае также отсутствует. И опять немного примеров:
♦ Маркировка – 3301: тогда
R = 330 × 101, что равняется 3300 Ом или 3.3 кОм;
♦ Маркировка – 5R60: тогда
R = 5.6 Ом.
Для SMD резисторов с допуском погрешности по сопротивлению в 1% также используется более компактная трёхзначная
маркировка, соответствующая стандарту EIA-96.
Здесь первые две цифры представляют собой код, который даёт трёхзначное число сопротивления, а третий знак – это буква,
которая определяет множитель (Рис.1).
Рис.1 Таблица кодировки SMD резисторов стандарта EIA-96
Приведём ещё пару примеров:
♦ Маркировка – 01Y: тогда
R = 100 × 0.01, что равняется 1 Ом;
♦ Маркировка – 29В: тогда
R = 196 × 10, что равняется 1.96 кОм.
А теперь сдобрим пройденный материал калькулятором.
Онлайн калькулятор определения параметров SMD резисторов по цифровой маркировке
Мощность SMD чип-резисторов можно определить исходя из их габаритных размеров и справочным данным, приведённым производителем.
Пример таблицы такого соответствия приведён на Рис.2.
Рис.2 Таблица соответствия габаритных размеров SMD резисторов их мощности
Расчет резистора для светодиода, калькулятор расчёта сопротивления
Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.
Содержание
- 1. Онлайн калькулятор
- 2. Основные параметры
- 3. Особенности дешёвых ЛЕД
Онлайн калькулятор
Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.
Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.
Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла. Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.
Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.
Основные параметры
Отличие характеристик кристаллов для дешевых ЛЕД
Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми. Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно. Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло. Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.
Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от 10W до 100W снижение растёт с 12В до 36В.
Этот параметр должен быть указан в технических характеристиках LED чипа и зависит от назначения:
- цвета синий, красный, зелёный, желтый;
- трёхцветный RGB;
- четырёхцветный RGBW;
- двухцветный, теплый и холодный белый.
Особенности дешёвых ЛЕД
Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Всё самое плохое обычно делается под брендом Epistar.
Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм. В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.
Китайские светодиодные лампы кукурузы
Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность.
Автомобильные лампы на самых слабых лед 0,1W
Чтобы сэкономить денежку, мои светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло. Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.
Правильный расчет резистора для светодиода (онлайн калькулятор)
Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.
Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.
Важно! Резистор ограничивает, но не стабилизирует ток.
Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.
Теория
Математический расчет
Ниже представлена принципиальная электрическая схема в самом простом варианте.
В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация
В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).
Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.
На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.
Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:
ULED является паспортной величиной для каждого отдельного типа светодиодов.
Графический расчет
Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.
Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.
Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:
Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:
В каких случаях допускается подключение светодиода через резистор?
Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.
Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.
Примеры расчетов сопротивления и мощности резистора
Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.
Cree XM–L T6
В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.
Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.
Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.
Мощность, рассеиваемая резистором, составит:
Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.
Вычислим КПД собранного светильника:
Пример с LED SMD 5050
По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.
Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.
Ближайшее стандартное значение – 30 Ом.
Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.
У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.
Онлайн-калькулятор
Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.
Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.
Маркировка smd резисторов калькулятор. Маркировка SMD резисторов
Маркировка резисторов
Простой калькулятор расчёта номинала резистора по цветам.
Кликая мышкой по цветам в таблице, раcкрашиваем резистор полосками.
В итоге получаем номинал и допуск нужного нам резистора.
Первая полоса, от которой ведётся отсчёт, обычно более широкая или находится ближе к выводу резистора.
Маркировка резисторов SMD
Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов — двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы.
Трёхсимвольная маркировка EIA96
Кодировка планарных элементов (SMD) в стандарте EIA-96
предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.
Первые две цифры — код номинала от 01
до 96
соответствует числу номинала от 100
до 976
согласно таблице.
Третий символ — буква — код множителя. Каждая из букв X
, Y
, Z
, A
, B
, C
, D
, E
, F
, H
, R
, S
соответствует множителю согласно таблице.
Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24
и E48
значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96
, E24
, E48
.
Трёхсимвольная маркировка E24. Допуск 5%
Маркировка из трёх цифр. Первые две цифры — число номинала.
Третья цифра — десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100, множитель 100.
3=lg1000, множитель 1000.
В данной статье используйте окно калькулятора выше, что и для EIA-96.
Четырёхсимвольная маркировка E48. Допуск 2%
Маркировка состоит из четырёх цифр. Первые три цифры — число номинала.
Четвёртая цифра — десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100; Множитель 100.
3=lg1000, множитель 1000.
И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48
), либо вводить 4 цифры в общее верхнее окно.
Введите код SMD резистора E48
.
Впишите код стандарта EIA-96
, либо 3 цифры E24
, либо 4 цифры E48
Сопротивление:
Таблица EIA-96
|
Цветовая маркировка резисторов
,калькулятор резистора
,калькулятор smd резисторов,калькулятор резистора по цыетовым полоскам.
Опубліковано
17.05.2011
SMD-резисторы
SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска.
Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для определения номинала резистора в Омах. При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513
означает, что резистор имеет номинал 51×10 3 Ом = 51 КОм.
Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 7501
означает, что резистор имеет номинал 750×10 1 Ом = 7.5 КОм.
Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10C
означает, что резистор имеет номинал 124×10 2 Ом = 12.4 КОм.
Код | Значение | Код | Значение | Код | Значение | Код | Значение |
01 | 100 | 13 | 133 | 25 | 178 | 37 | 237 |
02 | 102 | 14 | 137 | 26 | 182 | 38 | 243 |
03 | 105 | 15 | 140 | 27 | 187 | 39 | 249 |
04 | 107 | 16 | 143 | 28 | 191 | 40 | 255 |
05 | 110 | 17 | 147 | 29 | 196 | 41 | 261 |
06 | 113 | 18 | 150 | 30 | 200 | 42 | 267 |
07 | 115 | 19 | 154 | 31 | 205 | 43 | 274 |
08 | 118 | 20 | 158 | 32 | 210 | 44 | 280 |
09 | 121 | 21 | 162 | 33 | 215 | 45 | 287 |
10 | 124 | 22 | 165 | 34 | 221 | 46 | 294 |
11 | 127 | 23 | 169 | 35 | 226 | 47 | 301 |
12 | 130 | 24 | 174 | 36 | 232 | 48 | 309 |
S | 10 -2 | R | 10 -1 | A | 10 0 | B | 10 +1 |
Код | Значение | Код | Значение | Код | Значение | Код | Значение |
49 | 316 | 61 | 422 | 73 | 562 | 85 | 750 |
50 | 324 | 62 | 432 | 74 | 576 | 86 | 768 |
51 | 332 | 63 | 442 | 75 | 590 | 87 | 787 |
52 | 340 | 64 | 453 | 76 | 604 | 88 | 806 |
53 | 348 | 65 | 464 | 77 | 619 | 89 | 825 |
54 | 357 | 66 | 475 | 78 | 634 | 90 | 845 |
55 | 365 | 67 | 487 | 79 | 649 | 91 | 866 |
56 | 374 | 68 | 499 | 80 | 665 | 92 | 887 |
57 | 383 | 69 | 511 | 81 | 681 | 93 | 909 |
58 | 392 | 70 | 523 | 82 | 698 | 94 | 931 |
59 | 402 | 71 | 536 | 83 | 715 | 95 | 953 |
60 | 412 | 72 | 549 | 84 | 732 | 96 | 976 |
C | 10 +2 | D | 10 +3 | E | 10 +4 | F | 10 +5 |
Перемычки и резисторы с нулевым сопротивлением
Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и
резисторы с “нулевым” сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для
поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических
корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировка обычно отсутствует либо наносится код “000” (возможно “0”).
Для начала, нужно отметить, маркировка на чип резисторах 0402-ого корпуса просто отсутствует, маркировка smd резисторов, имеющих другие типоразмеры, отличные от 0402-ого производиться так, как описывается далее.
Если SMD резисторы обладают допуском сопротивления 2%, 5% либо 10%, то они маркируются тремя цифрами: первая и вторая цифры – это обозначение мантиссу, цифра номер три является степенью под десятичное основание, следовательно — получим сопротивление резистора.
Например, резистор обладает кодом 452. Сочетание первых двух цифр «45» является мантиссой, а 2 — степенью, в результате получим 45 * 10² = 4,5 кОм
Бывает, что кроме цифровой маркировки на резисторах наносят латинскую букву R – которая, как бы, дополнительный множитель и служит, чтобы обозначать десятичную точку.
Маркировка SMD резисторов, типоразмеры которых более 0805, и обладающих точностью 1% производиться при помощи четырехзначного кода: комбинация первых трех цифр является обозначением мантиссу, а четвертый символ является степенью под десятичное основание. В результате, как и в описанном ранее варианте, получаем сопротивление резистора. Данный код тоже может содержать букву R, чтобы обозначить десятичную точку.
К примеру, резистор имеет код 4501. Сочетание первых трех цифр «450» — это обозначение мантиссу, а «1» является степенью, в результате получим 450 * 10 = 4,5 кОм.
Маркировка SMD резисторов, имеющих допуск в 1% и типоразмер 0603 производиться с использованием таблицы, которая располагается далее, при помощи двух цифр и буквы. Комбинация цифр является кодом, который помогает выбрать в таблице мантиссу, а буквой обозначают значение множителя, имеющего десятичное основание. В результате получим сопротивление.
К примеру, резистор обладает кодом 14R – комбинация первых двух цифр 14 – является кодом для таблицы, из которой видно, что требуемое число — это 137, а R – это десятка в первой степени, в результате получим 137 * 10 = 13,7 Ом
Цветовая маркировка резисторов
Резисторы и конденсаторы в SMD исполнении маркируются трех буквенным кодом, редко — четырех буквенным.
В коде первая и вторая цифры указывают на первое и второе число, а третья цифра — множитель. Цифра в множителе соответствует степени множителя.
SMD резисторы маркируются в Ом-ах, а конденсаторы в пикоФарадах.
К примеру.
резистор с обозначением 101 — первая цифра — 1, вторая — 0, множитель — х10 1 . Получаем 100 Ом.
Резистор с обозначением 473 — первая цифра — 4, вторая — 7, множитель — х10
3 . Получаем 47000 Ом или 47 кОм.
Резистор с обозначением 225 — первая цифра — 2, вторая — 2, множитель — х10
5 . Получаем 2200000 Ом или 2.2 мОм.
Некоторые производители используют буквы K и M для обозначения множителя.
При такой маркировке резисторы могут маркироваться более привычным способом, к примеру.
Маркировка резистора — 47K, указывает на сопротивление в 47 кОм
Маркировка 3K3 — указывает на сопротивление 3,3 кОм
Маркировка М27 — Указывает на сопротивление 0,27 мОм или 270 кОм.
Сопротивления резисторов менее 100 Ом маркируются при помощи буквы R или E.
К примеру.
Резистор сопротивлением 27 Ом будет маркироваться как 27R или R27, редко E27.
Так же есть резисторы с нулевым сопротивлением или перемычки, они маркируются цифрой — 0
Типоразмер SMD резисторов и конденсаторов обозначается 4-мя цифрами (см. таблицу). Первая пара цифр обозначает длинну элемента, а вторая пара — ширину. В маркировке принято обозначать элементы в дюймах.
Расшифровка маркировки конденсаторов не отличается от резисторов, за исключением того, что результат мы получаем в пФ.
На практике SMD конденсаторы часто встречаются вообще без маркировки, за исключением электролитических SMD конденсаторов.
Devices) в переводе с английского означает «прибор, монтируемый на поверхность». SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на устройств. В наше время электроника развивается огромными темпами, одно из направлений — это уменьшение габаритных размеров и веса приборов. SMD-компоненты — благодаря своим размерам, дешевизне, высокому качеству — получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами.
На фото ниже представлены SMD-резисторы, размещенные на печатной плате. Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог.
В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают.
Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать но если у вас ее нет, можно обойтись и паяльником. При пайке главное — не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой.
SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт — 6,35*3,2*0,55 мм.
Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами:
Первые две цифры указывают значение в Ом, а последняя — количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм.
Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя — количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм.
Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм.
SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор. SMD резисторы маркировка Резистор 4702 какое сопротивление
Резисторы и конденсаторы в SMD исполнении маркируются трех буквенным кодом, редко — четырех буквенным.
В коде первая и вторая цифры указывают на первое и второе число, а третья цифра — множитель. Цифра в множителе соответствует степени множителя.
SMD резисторы маркируются в Ом-ах.
К примеру.
Резистор с маркировкой 560 — первая цифра — 5, вторая — 6, множитель — 0 (т.е. без множителя). Получаем 56 Ом.
Резистор с обозначением 101 — первая цифра — 1, вторая — 0, множитель — х10 1 . Получаем 100 Ом.
Резистор с обозначением 473 — первая цифра — 4, вторая — 7, множитель — х10
3 . Получаем 47000 Ом или 47 кОм.
Резистор с обозначением 225 — первая цифра — 2, вторая — 2, множитель — х10
5 . Получаем 2200000 Ом или 2.2 мОм.
При 4х буквенном коде, маркировка будет такой же, но впереди три цифры номинала, а последняя множитель.
Резистор с маркировкой 1233 — первая цифра — 1, вторая — 2, третья — 3, множитель — х10
3 . Получаем 123000 Ом или 123 кОм.
Некоторые производители используют буквы K и M для обозначения множителя.
При такой маркировке резисторы могут маркироваться более привычным способом, к примеру.
Маркировка резистора — 47K, указывает на сопротивление в 47 кОм
Маркировка 3K3 — указывает на сопротивление 3,3 кОм
Маркировка М27 — Указывает на сопротивление 0,27 мОм или 270 кОм.
Сопротивления резисторов менее 100 Ом маркируются при помощи буквы R или E.
К примеру.
Резистор сопротивлением 27 Ом будет маркироваться как 27R или R27, редко E27.
Так же есть резисторы с нулевым сопротивлением или перемычки, они маркируются цифрой — 0
Типоразмер SMD резисторов и конденсаторов обозначается 4-мя цифрами (см. таблицу). Первая пара цифр обозначает длинну элемента, а вторая пара — ширину. В маркировке принято обозначать элементы в дюймах.
Расшифровка маркировки конденсаторов не отличается от резисторов, за исключением того, что результат мы получаем в пФ.
На практике SMD конденсаторы часто встречаются вообще без маркировки, за исключением электролитических SMD конденсаторов.
Опубліковано
17.05.2011
SMD-резисторы
SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска.
Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для определения номинала резистора в Омах. При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513
означает, что резистор имеет номинал 51×10 3 Ом = 51 КОм.
Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 7501
означает, что резистор имеет номинал 750×10 1 Ом = 7.5 КОм.
Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10C
означает, что резистор имеет номинал 124×10 2 Ом = 12.4 КОм.
Код | Значение | Код | Значение | Код | Значение | Код | Значение |
01 | 100 | 13 | 133 | 25 | 178 | 37 | 237 |
02 | 102 | 14 | 137 | 26 | 182 | 38 | 243 |
03 | 105 | 15 | 140 | 27 | 187 | 39 | 249 |
04 | 107 | 16 | 143 | 28 | 191 | 40 | 255 |
05 | 110 | 17 | 147 | 29 | 196 | 41 | 261 |
06 | 113 | 18 | 150 | 30 | 200 | 42 | 267 |
07 | 115 | 19 | 154 | 31 | 205 | 43 | 274 |
08 | 118 | 20 | 158 | 32 | 210 | 44 | 280 |
09 | 121 | 21 | 162 | 33 | 215 | 45 | 287 |
10 | 124 | 22 | 165 | 34 | 221 | 46 | 294 |
11 | 127 | 23 | 169 | 35 | 226 | 47 | 301 |
12 | 130 | 24 | 174 | 36 | 232 | 48 | 309 |
S | 10 -2 | R | 10 -1 | A | 10 0 | B | 10 +1 |
Код | Значение | Код | Значение | Код | Значение | Код | Значение |
49 | 316 | 61 | 422 | 73 | 562 | 85 | 750 |
50 | 324 | 62 | 432 | 74 | 576 | 86 | 768 |
51 | 332 | 63 | 442 | 75 | 590 | 87 | 787 |
52 | 340 | 64 | 453 | 76 | 604 | 88 | 806 |
53 | 348 | 65 | 464 | 77 | 619 | 89 | 825 |
54 | 357 | 66 | 475 | 78 | 634 | 90 | 845 |
55 | 365 | 67 | 487 | 79 | 649 | 91 | 866 |
56 | 374 | 68 | 499 | 80 | 665 | 92 | 887 |
57 | 383 | 69 | 511 | 81 | 681 | 93 | 909 |
58 | 392 | 70 | 523 | 82 | 698 | 94 | 931 |
59 | 402 | 71 | 536 | 83 | 715 | 95 | 953 |
60 | 412 | 72 | 549 | 84 | 732 | 96 | 976 |
C | 10 +2 | D | 10 +3 | E | 10 +4 | F | 10 +5 |
Перемычки и резисторы с нулевым сопротивлением
Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и
резисторы с “нулевым” сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для
поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических
корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировка обычно отсутствует либо наносится код “000” (возможно “0”).
Для резисторов с точностью 20 % используют маркировку с тремя полосками, для резисторов с точностью 10 % и 5 % маркировку с четырьмя полосками, для более точных резисторов с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая — десятичный множитель, пятая — точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (% отказов на 1000 часов работы)
Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. В этом случае первые две полосы задают первые знаки номинала, третья — множитель, четвёртая — точность, а пятая — температурный коэффициент.
Маркировка в виде 4 колец
Маркировка в виде 5 колец
Калькулятор номиналов SMD-резисторов
Кодирование 3-я цифрами
Кодирование 4-я цифрами
- Похожие статьи
Войти с помощью:
Случайные статьи
05.10.2014
Данный предусилитель прост и имеет хорошие параметры. Эта схема основана на TCA5550, содержащий двойной усилитель и выходы для регулировки громкости и выравнивания ВЧ, НЧ, громкости, баланса. Схема потребляет очень малый ток. Регуляторы необходимо как можно ближе расположить к микросхеме, чтобы уменьшить помехи, наводки и шум. Элементная база R1-2-3-4=100 Kohms C3-4=100nF …
16.11.2014
На рисунке показана схема простого 2-х ваттного усилителя (стерео). Схема проста в сборке и имеет низкую стоимость. Напряжение питания 12 В. Сопротивление нагрузки 8 Ом. Схема усилителя Рисунок печатной платы (стерео)
20.09.2014
Его смысл pазличен для pазных моделей винчестеpов. В отличие от высокоуpовневого фоpматиpования — создания pазделов и файловой стpуктуpы, низкоуpовневое фоpматиpование означает базовую pазметку повеpхностей дисков. Для винчестеpов pанних моделей, котоpые поставлялись с чистыми повеpхностями, такое фоpматиpование создает только инфоpмационные сектоpы и может быть выполнено контpоллеpом винчестеpа под упpавлением соответствующей пpогpаммы. …
SMD резисторы. Маркировка SMD резисторов, размеры, онлайн калькулятор
В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).
SMT технология (от англ. Surface Mount Technology) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.
SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.
Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.
Типоразмеры SMD резисторов
В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.
Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.
Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.
Размеры SMD резисторов и их мощность
Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.
Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.
В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.
Маркировка с 3 и 4 цифрами
В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.
Еще несколько примеров определения сопротивлений в рамках данной системы:
- 450 = 45 х 100 равно 45 Ом
- 273 = 27 х 103 равно 27000 Ом (27 кОм)
- 7992 = 799 х 102 равно 79900 Ом (79,9 кОм)
- 1733 = 173 х 103 равно 173000 Ом (173 кОм)
Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.
SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.
Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)
Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:
- 01А = 100 Ом ±1%
- 38С = 24300 Ом ±1%
- 92Z = 0.887 Ом ±1%
Онлайн калькулятор SMD резисторов
Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.
Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).
Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.
Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.
www.joyta.ru
SMD-резисторы: описание, маркировка
SMD (Surface Mounted Devices) в переводе с английского означает «прибор, монтируемый на поверхность». SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на печатных платах устройств. В наше время электроника развивается огромными темпами, одно из направлений — это уменьшение габаритных размеров и веса приборов. SMD-компоненты — благодаря своим размерам, дешевизне, высокому качеству — получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами.
На фото ниже представлены SMD-резисторы, размещенные на печатной плате.
Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог.
В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к паяльной пасте, затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают.
Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать паяльную станцию, но если у вас ее нет, можно обойтись и паяльником. При пайке главное — не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой.
SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются габаритные размеры. Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт — 6,35*3,2*0,55 мм.
Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами:
Первые две цифры указывают значение номинала резистора в Ом, а последняя — количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм.
Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя – количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм.
Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм.
fb.ru
Таблица маркировки smd резисторов
Сопротивление smd резисторов может измеряться в ом (Ом), килоом (кОм), мегаом (МОм) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены.
Резисторы smd – это те же постоянные резисторы, только предназначенные для поверхностного монтажа на печатную плату. SMD резисторы значительно меньше, чем их аналогичные металлопленочные или металлооксидные резисторы. По стандарту они бывают квадратной, прямоугольной и круглой формы. Имеют очень низкий профиль по высоте. Вместо проволочных выводов обычных постоянных резисторов, которые выводами вставляются в отверстия печатной платы, у smd резисторов имеются на концах небольшие контакты, которые припаяны к поверхности корпуса smd резистора. Это избавляет от необходимости сверлить отверстия в печатной плате, и тем самым позволяет более эффективно и насыщенно использовать всю ее поверхность.
Таблица маркировки smd резисторов постоянного сопротивления
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 МОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 МОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 МОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 МОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 МОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 МОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 МОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 МОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 МОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 МОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 МОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 МОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 МОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 МОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 МОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 МОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 МОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 МОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 МОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 МОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 МОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 МОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 МОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 МОм |
migsat.ru
Как выбрать резистор
Продолжая тему грамотного выбора пассивных компонентов, рассмотрим различные типы резисторов, их достоинства и недостатки, особенности применения, а также наиболее популярные для них приложения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий резисторов, которые присутствуют в каталоге компании Терраэлектроника.
Рис. 1. Резисторы
Резисторы (Рис.1) представляют собой двухвыводные компоненты, применяемые для ограничения тока, деления напряжения и формирования временных характеристик цепей. Они используются совместно с такими активными компонентами, как операционные усилители, микроконтроллеры или интегральные схемы, и выполняют различные функции, например, смещение, фильтрацию и подтяжку линий ввода-вывода. Переменные резисторы могут применяться для изменения параметров схемы. Токочувствительные резисторы используются для измерений токов в электрических цепях.
Типы резисторов
Существует несколько различных типов резисторов, отличающихся по номинальной мощности, размерам, эксплуатационным качествам и стоимости. Наиболее распространенные типы — чип-резисторы (SMD-резисторы), выводные резисторы для монтажа в отверстия, проволочные резисторы, шунты (токочувствительные резисторы) для измерения тока, термисторы и потенциометры. Ниже, для каждого типа резисторов представлены основные характеристики, наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.
Рис. 2. Чип-резисторы
Чип-резисторы (Рис. 2) предназначены для поверхностного монтажа. Они отличаются от выводных резисторов меньшими размерами, что делает их оптимальными для применения на печатных платах. Наиболее распространенными задачами smd-резисторов являются подтяжка портов ввода-вывода, деление напряжения, ограничение тока. Резисторы также применяются в составе высокочастотных/ низкочастотных/ полосовых фильтров. Резисторы с нулевым сопротивлением могут быть использованы в качестве джамперов для коммутации различных цепей.
Существует два типа SMD-резисторов:
- Тонкопленочные резисторы обычно используются в различных прецизионных приложениях: в аудиотехнике, медицинском или тестовом оборудовании. Они отличаются минимальным разбросом номиналов (0,1… 2%), низким температурным коэффициентом (5 ppm/C) и меньшим уровнем шума по сравнению с толстопленочными резисторами. Однако стоимость их выше.
- Толстопленочные резисторы являются наиболее распространенным типом резисторов и используются для широкого круга приложений. Они характеризуются большей погрешностью сопротивления (обычно 1 … 5%), повышенным температурным коэффициентом (50 ppm/C) и более высоким уровнем шума по сравнению с тонкопленочными резисторами. Если к резистору не предъявляется каких-либо особых требований, то обычно предпочтительным выбором становится именно толстопленочный резистор.
Корпусные исполнения: наиболее распространенными типоразмерами smd-резисторов являются 0201, 0402, 0603, 0805 и 1206. Цифры обозначают габаритные размеры в дюймовой системе, например, корпус 0402 имеет габариты 0,04х0,02″, размеры корпуса 0603 составляют 0,06х0,03″ и так далее.
- 0402 — серия RC0402FR производства компании Yageo с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
- 0603 — серия RC0603FR от Yageo с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм;
- 0805 — серия RC0805FR от Yageo с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 Мом;
- 1206 — серия RC1206FR от Yageo с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 1 Ом … 10 МОм.
- 0402 — серия CR0402 производства компании Bourns с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- 0603 — серия CR0603 от Bourns с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- 0805 — серия CR0805 от Bourns с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- 1206 — серия CR1206 от Bourns с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений 0,82 Ом…10 МОм.
- 0402 — серия CRCW0402 производства Vishay с номинальной мощностью 0,063 Вт (1/16 Вт) и диапазоном доступных сопротивлений 1 Ом …10 МОм;
- 0603 — серия CRCW0603 от Vishay с номинальной мощностью 0,1 Вт (1/10 Вт) и диапазоном доступных сопротивлений 1… 15 МОм;
- 0805 — серия CRCW0805 от Vishay с номинальной мощностью 0,125 Вт (1/8 Вт) и диапазоном доступных сопротивлений 1 Ом … 50 МОм;
- 1206 — серия CRCW1206 от Vishay с номинальной мощностью 0,25 Вт (1/4 Вт) и диапазоном доступных сопротивлений от 1 Ом…100 МОм.
Рис. 3. Выводные резисторы для монтажа в отверстия
Резисторы с аксиальными выводами для монтажа в отверстия (Рис. 3) весьма популярны и широко используются, особенно — при создании прототипов, поскольку их легко заменять при работе с макетными платами. Как и чип-резисторы, выводные резисторы применяются для подтяжки, деления напряжения, ограничения тока и фильтрации. Существуют различные типы выводных резисторов. Наиболее популярны углеродистые пленочные и металлопленочные резисторы.
- Углеродистые пленочные резисторы имеют значительный разброс сопротивлений (2…10%). Наиболее распространенными рядами сопротивлений для них являются E12 (± 10%), E24 (± 5%) и E48 (± 2%). В большинстве приложений углеродистые пленочные резисторы были вытеснены металлопленочными. Температурный коэффициент сопротивления углеродистых пленочных резисторов (TКC) обычно имеет отрицательную величину — около -500 ppm/C, однако конкретное значение зависит от сопротивления и размера.
- Металлопленочные резисторы имеют меньший разброс сопротивлений (0,1…2%) и более высокую стабильность. Наиболее распространенными рядами сопротивлений для них являются E48 (± 2%), E96 (± 1%) и E192 (± 0,5%, ± 0,25% и ± 0,1%). Поскольку характеристики металлопленочных резисторов лучше, чем у углеродистых, то именно они используются в большинстве приложений. Температурный коэффициент металлопленочных резисторов (TC) составляет около ± 100 ppm/C, однако некоторые модели характеризуются только положительным или только отрицательным TC.
- Углеродные композитные резисторы широко использовались в электронных устройствах пятьдесят лет назад, но из-за большого разброса номиналов и невысокой стабильности они были заменены углеродистыми пленочными и металлопленочными резисторами. Тем не менее, композитные резисторы обладают хорошими высокочастотными характеристиками и способны выдерживать воздействие мощных импульсов, поэтому их до сих пор применяют в сварочном оборудовании и высоковольтных источниках питания.
- Металл-оксидные резисторы стали первой альтернативой углеродным композитным резисторам, но в дальнейшем в большинстве приложений они были вытеснены металлопленочными. Тем не менее, поскольку металл-оксидные резисторы отличаются повышенной рабочей температурой и более высокой номинальной мощностью (> 1 Вт), их по-прежнему используют в ответственных устройствах, эксплуатирующихся в жестких условиях.
Ряды сопротивлений EIA (EIA Decade Resistor Values) определяют не только номиналы резисторов, но и допустимую погрешность. Например, ряд E12 (± 10%) включает следующие стандартные значения: 100, 120, 150, 180, 220, 270, 330, 390, 470, 560, 680 и 820 Ом.
Для кодирования параметров выводных резисторов применяется цветовая маркировка (таблица 1).
Таблица 1. Цветовая маркировка выводных резисторов
Значение | |||||||
Первая цифра | Вторая цифра | Третья цифра* | Множитель | Точность | Температурный коэффициент, ppm/C | ||
Коричневый | |||||||
Оранжевый | |||||||
Фиолетовый | |||||||
Серебряный | |||||||
* Только для резисторов с 5-позиционной маркировкой |
- углеродистые пленочные резисторы серии CFR-25JB производства Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 1 Ом…10 МОм;
- металлопленочные резисторы серии MFR-25FBF от Yageo с номинальной мощностью 0,25 Вт и диапазоном доступных сопротивлений 10 Ом…1 МОм.
Рис. 4. Проволочный резистор
Проволочные резисторы (Рис. 4) конструктивно представляют собой высокоомный провод, намотанный на изолирующий сердечник. Они отличаются очень высокой номинальной мощностью (до 1000 Вт) и способны работать при очень высоких температурах (до 300°C). Проволочные резисторы характеризуются отличной долговременной стабильностью – около 15…50 ppm/год, в то время как, например, у металлопленочных резисторов этот показатель составляет 200…600 ppm/год. Данный тип резисторов обладает самым малым уровнем шума.
Приложения: обычно используются в автоматических выключателях и в качестве предохранителей благодаря высокой мощности.
- серия KNP500 производства компании Yageo с номинальной мощностью 5 Вт и диапазоном доступных сопротивлений 0,1 Ом …2,2 кОм;
- серия HS-25 производства Ohmite с номинальной мощностью 25 Вт и диапазоном доступных сопротивлений 0,01 Ом … 5,6 кОм;
- серия HSC100 от TE с номинальной мощностью 100 Вт и диапазоном доступных сопротивлений 0,1 Ом … 50 кОм.
Рис. 5. Шунты
Токоизмерительные резисторы, также называемые шунтами (Рис. 5), используются для прямого преобразования тока в напряжение с целью дальнейшего измерения. Они представляют собой резисторы с малым сопротивлением и высокой номинальной мощностью, что позволяет им работать с большими токами.
Одним из приложений для токоизмерительных резисторов является ограничение тока с целью защиты микросхем драйверов шаговых двигателей.
Большинство современных шунтов имеет либо два, либо четыре вывода. В четырехвыводной версии, которая также называется схемой Кельвина, ток проходит через две клеммы, а напряжение измеряется на двух оставшихся выводах. Такая схема уменьшает влияние температурной погрешности и значительно повышает стабильность схемы измерения. Четырехвыводные резисторы используются для приложений, требующих высокой точности и температурной стабильности.
Двухвыводные исполнения
- серия MCS1632 производства Ohmite с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом;
- серия WSLP1206 от Vishay с номинальной мощностью 1 Вт и диапазоном доступных сопротивлений 0,005…0,05 Ом.
- Для монтажа в отверстия:
- серия 12F от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,25 Ом;
- серия LVR03R от Vishay с номинальной мощностью 3 Вт и диапазоном доступных сопротивлений 0,01…0,2 Ом.
Четырехвыводные исполнения (схема Кельвина)
- серия FC4L в корпусе 2512 от Ohmite с номинальной мощностью 2 Вт и диапазоном доступных сопротивлений 0,001…0,05 Ом.
Рис. 6. Термистор
Термисторы – это резисторы, сопротивление которых значительно изменяется при изменении температуры (Рис. 6).
Сопротивление NTC-термисторов плавно уменьшается при увеличении температуры. NTC являются готовыми датчиками температуры с диапазоном измерений -55… +200°C.
PTC-термисторы характеризуются скачкообразным изменением сопротивления при определенной температуре. Они применяются в качестве элементов защиты от перегрузки по току.
Ток удержания PTC (hold current) – это ток, при котором термистор гарантированно находится в проводящем состоянии.
Ток срабатывания PTC (trip current) – это ток, при котором термистор гарантированно переходит в непроводящее состояние.
- PTC-термисторы:
- 1812 — серия MF-MSMF производства компании Bourns для рабочих токов от 0,3…5,2 А;
- 1812 — серия 1812L от Littelfuse для рабочих токов 0,1…3,5 А.
- NTC-термисторы:
- серия B57236 от EPCOS с диапазоном сопротивлений 2,5…120 Ом;
- 0603 — серия ERT-J1 от Panasonic с диапазоном сопротивлений 0,022…150 кОм.
Рис. 7. Подстроечные резисторы
Потенциометры – это резисторы с изменяемым сопротивлением. Они используются в различных приложениях, например, для управления коэффициентом усиления в усилителе, для настройки параметров схемы и так далее.
Подстроечные резисторы (Рис. 7) представляют собой небольшие потенциометры, которые могут быть установлены на печатной плате и отрегулированы с помощью отвертки. Они выпускаются как для поверхностного монтажа SMD, так и для монтажа в отверстия, с верхним или боковым расположением регулировочного винта.
Потенциометры бывают однооборотными и многооборотными. Однооборотные потенциометры часто используются в усилителях. Многооборотные потенциометры могут иметь до 25 оборотов и применяются для более точного управления.
- Однооборотные потенциометры:
- SMD серия TC33X-2 производства Bourns с диапазоном сопротивлений 100 Ом…1 МОм;
- серия 3362P от Bourns с диапазоном сопротивлений 10 Ом…5 МОм;
- Многооборотные потенциометры:
- серия 3296W от Bourns с диапазоном сопротивлений 10 Ом…5 МОм;
- серия T93YA от Vishay с диапазоном сопротивлений 10 Ом…1 МОм.
Рис. 8. Резисторная сборка 4609X-101-222LF
Резисторная сборка (resistors network, resistors array) представляет собой комбинацию из нескольких резисторов, размещенных в одном корпусе. Существует большое количество разных типов этих изделий, но, к сожалению, четкая система их классификации, как в литературе, так и у производителей отсутствует.
Резисторы внутри корпуса сборки могут быть не соединены между собой (Isolated) т. е. каждый резистор имеет два вывода на корпусе сборки, или сконфигурированы в определенную схему (Bussed). Часто встречаются изделия, у которых соединены между собой вывод 1 каждого резистора с подключением к одному общему пину сборки, а каждый второй вывод резисторов имеет свой собственный вывод на корпусе изделия. Кроме того, можно встретить сборки с последовательным, последовательно- параллельным и другими видами соединений резисторов внутри корпуса. Сборки можно классифицировать по количеству входящих в них резисторов, по величине допуска, максимальному рабочему напряжению, мощности рассеивания, типоразмеру, по типу монтажа (SMD и выводной) и т.д. Эти компоненты очень удобно использовать в схемах АЦП и ЦАП, применять качестве делителей напряжения, использовать в компьютерной технике, потребительской электронике и т.д.
- серия 4600X от Bourns с рабочим напряжением до 100В
Рис. 9. Конфигурация резисторных сборок серии 4600X от Bourns
- серия CAY16 от Bourns в SMD корпусе типоразмера 1206 с изолированными резисторами
- серия 4114R-2 от Bourns — 14 выводных резисторов с одним общим выводом
Работа с Каталогом компании Терраэлектроника по поиску резисторов
Подобрать необходимый резистор в каталоге Терраэлектроники можно двумя способами:
- С использованием параметрического поиска. Для этого необходимо зайти в раздел резисторов каталога, выбрать соответствующий задаче тип резистора, а далее указать параметры в ряде фильтров поисковой системы. Фрагмент скриншота поиска прецизионного SMD резистора от Yageo с параметрами: типоразмер 0805, номинал 10 кОм, точность 0.1 %, мощность 0.125 мВт представлен на Рис. 10.
Рис. 10. Скриншот сервиса поиска резисторов
- Воспользоваться интеллектуальным поиском резисторов по параметрам. Для этого достаточно скопировать строку из спецификации “Резистор постоянный 10 кОм, 0.1%, 0.125 Вт, 0805″ или ввести «10kohm 0.1% 0.125W 0805» в строку поиска и получить тот же самый список подходящих по указанным параметрам компонентов.
Заключение
В данном руководстве были рассмотрены некоторые наиболее популярные типы резисторов. В дополнение к ним существует ряд других типов резисторов, среди которых MELF, металлофольговые резисторы, керамические резисторы, варисторы, фоторезисторы и др., которые имеют свои уникальные преимущества по уровню точности, эксплуатационным характеристикам или габаритным размерам. Однако, в большинстве электронных схем вы чаще всего увидите один из типов, рассмотренных выше.
Как выбрать конденсатор
Журнал: https://octopart.com/blog/archives/2016/04/how-to-select-a-resistor
www.terraelectronica.ru
Маркировка SMD резисторов — обозначения и расшифровка
Термин «SMD-резистор» появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип-резисторы, как их еще называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты, чем аналогичные проволочные резисторы. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.
На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств.
Внешний вид SMD-резисторов
Размеры и форма SMD-резисторов регламентируются нормативным документом JEDEC, где приводятся рекомендуемые типоразмеры. Обычно на корпусе нанесена маркировка SMD-резисторов, содержащая данные о габаритах резистора. К примеру, цифровой код 0804 предполагает длину, равную 0,08 дюймам, ширину – 0,04 дюйма.
Если перевести такую кодировку в систему СИ, то данный SMD-резистор будет обозначаться как 2010. Из этой маркировки видно, что длина составляет 2,0 мм, а ширина 1,0 мм (1 дюйм равен 2,54 мм).
Требуемая мощность рассеивания определяет размер чипа. Поскольку на SMD-резистор, имеющий очень маленький габарит, не представляется возможным разместить стандартную маркировку, которая имеется у обычных проволочных резистивных сопротивлений, разработана кодовая система обозначений. Для удобства производители условно разделили чип-резисторы по способу маркировки на три типа:
- маркировка из трех цифр;
- маркировка из четырех цифр;
- маркировка из двух цифр и буквы.
Последний вариант применяется для резисторов повышенной точности с допуском 1% (прецизионных). Очень маленький размер не позволяет размещать на них маркировку с длинными кодами. Для них разработан стандарт EIA-96
Для маркировки маленьких сопротивлений (менее 10 Ом) используется латинская буква «R» Например: 0R1 = 0,1 Ом и 0R05 = 0,05 Ом.
Маркировка SMD-резисторов
Существуют номиналы повышенной точности (так называемые прецизионные).
Маркировка прецизионных SMD-резисторов
Пример подбора нужного резистора: если указана цифра 232, то необходимо 23 умножить на 10 во второй степени. Получается сопротивление 2,3 кОм (23 x 102 = 2 300 Ом = 23 кОм). Аналогично рассчитываются чипы второго типа.
Калькулятор обозначений SMD-резисторов
Расшифровка обозначения чип-резисторов – специфичное занятие. Вычислить необходимую величину можно, пользуясь старыми проверенными способами, проделав несколько арифметических действий. Но прогресс не стоит на месте, и то же самое можно выполнить при помощи различных сайтов.
Калькулятор SMD-резисторов поможет подобрать нужный типоразмер, разобраться с кодами, а также избавит от изнурительных расчетов. Кроме того, есть специальная программа «Резистор». Кликнув пару раз мышкой, можно найти нужную информацию.
lampagid.ru
Сравнительные размеры чип резисторов
Резисторные сборкиПодстроечные резисторы для поверхностного монтажаТерморезисторыМаркировка SMD резисторов ряда E24 с отклонением номинала 5%
| Электронный каталог Корзина Devices) в переводе с английского означает «прибор, монтируемый на поверхность». SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на устройств. В наше время электроника развивается огромными темпами, одно из направлений — это уменьшение габаритных размеров и веса приборов. SMD-компоненты — благодаря своим размерам, дешевизне, высокому качеству — получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами. На фото ниже представлены SMD-резисторы, размещенные на печатной плате. Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог. В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают. Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать но если у вас ее нет, можно обойтись и паяльником. При пайке главное — не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой. SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт — 6,35*3,2*0,55 мм. Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами: Первые две цифры указывают значение в Ом, а последняя — количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм. Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя — количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм. Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм. Поделитесь статьей: |
Примеры резисторов SMD
(код EIA-96)
Примеры резисторов SMD (EIA-96)
В следующей таблице перечислены все обычно используемые резисторы SMD, отмеченные кодом EIA-96 от 1 Ом до 97,6 МОм. См. Также калькулятор резисторов SMD и краткое руководство по чтению резисторов SMD.
Код | Значение | Код | Значение | Код | Значение | Код | Значение | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01Y | 1 Ом | 01X | 10 Ом | 01A | 1 кОм | |||||||||||||||
02Y | 1.02 Ом | 02X | 10,2 Ом | 02A | 102 Ом | 02B | 1,02 кОм | |||||||||||||
03Y | 1,05 Ом | 03X | 10,5 Ом | 03A | 105 кОм | 03B | 1,05 кОм | |||||||||||||
04Y | 1,07 Ом | 04X | 10,7 Ом | 04A | 107 Ом | 04B | 1,07 кОм | |||||||||||||
05Y | 1,1 Ом | 05X | 11 Ом | 110A 900 | 05B | 1.1 кОм | ||||||||||||||
06Y | 1,13 Ом | 06X | 11,3 Ом | 06A | 113 Ом | 06B | 1,13 кОм | |||||||||||||
07Y | 1,15 Ом | 40 07X | 40 07X | 40 07X | 40 07X | 115 Ом | 07B | 1,15 кОм | ||||||||||||
08Y | 1,18 Ом | 08X | 11,8 Ом | 08A | 118 Ом | 08B | 1,18 кОм | 221 Ом | 09X | 12,1 Ом | 09A | 121 Ом | 09B | 1,21 кОм | ||||||
10Y | 1,24 Ом | 10X | 12,4B | 10A | 124 Ом | 10A | 124 Ом | 124 Ом | ||||||||||||
11Y | 1,27 Ом | 11X | 12,7 Ом | 11A | 127 Ом | 11B | 1,27 кОм | |||||||||||||
12Y | 1,3 Ом | 12X | 12X | 12Б | 1.3кОм | |||||||||||||||
13Y | 1,33 Ом | 13X | 13,3 Ом | 13A | 133 Ом | 13B | 1,33кОм | |||||||||||||
14Y | 1,37 Ом | 14X | 14X | 14X | 137 Ом | 14B | 1,37 кОм | |||||||||||||
15Y | 1,4 Ом | 15X | 14 Ом | 15A | 140 Ом | 15B | 1,4 кОм | |||||||||||||
1Y | ||||||||||||||||||||
16X | 14,3 Ом | 16A | 143 Ом | 16B | 1,43 кОм | |||||||||||||||
17Y | 1,47 Ом | 17X | 14,7 Ом | 17A | ||||||||||||||||
18Y | 1,5 Ом | 18X | 15 Ом | 18A | 150 Ом | 18B | 1,5 кОм | |||||||||||||
19Y | 1,54 Ом | 19X | 15.4 Ом | 19A | 154 Ом | 19B | 1,54 кОм | |||||||||||||
20Y | 1,58 Ом | 20X | 15,8 Ом | 20A | 158 158 Ом | 20B | 20B | 1,62 Ом | 21X | 16,2 Ом | 21A | 162 Ом | 21B | 1,62 кОм | ||||||
22Y | 1,65 Ом | 22X | 16,5 Ом | 22A | .65 кОм | |||||||||||||||
23Y | 1,69 Ом | 23X | 16,9 Ом | 23A | 169 Ом | 23B | 1,69 кОм | |||||||||||||
24Y | 1,74 Ом | 24X | 24X | 24X | 24X | 174 Ом | 24B | 1,74 кОм | ||||||||||||
25Y | 1,78 Ом | 25X | 17,8 Ом | 25A | 178 Ом | 25B | 1,78 кОм | 82 Ом | 26X | 18,2 Ом | 26A | 182 Ом | 26B | 1,82 кОм | ||||||
27Y | 1,87 Ом | 27X | 18,7 Ом | 27A | ||||||||||||||||
28Y | 1,91 Ом | 28X | 19,1 Ом | 28A | 191 Ом | 28B | 1,91 кОм | |||||||||||||
29Y | 1,96 Ом | 29X | 1,96 Ом | 29X | 6 Ом | 29A | 196 Ом | 29B | 1,96 кОм | |||||||||||
30Y | 2 Ом | 30X | 20 Ом | 30A | 200 Ом | 30B | 24 927 | 31X | 20,5 Ом | 31A | 205 Ом | 31B | 2,05 кОм | |||||||
32Y | 2,1 Ом | 32X | 21 Ом | 32A | 210B | .1 кОм | ||||||||||||||
33Y | 2,15 Ом | 33X | 21,5 Ом | 33A | 215 Ом | 33B | 2,15 кОм | |||||||||||||
34Y | 2,21 | 2,21 | 34627 | 221 Ом | 34B | 2,21 кОм | ||||||||||||||
35Y | 2,26 Ом | 35X | 22,6 Ом | 35A | 226 Ом | 35B | 2,26 кОм | 32 Ом | 36X | 23,2 Ом | 36A | 232 Ом | 36B | 2,32 кОм | ||||||
37Y | 2,37 Ом | 37X | 23,7 Ом | 37A | ||||||||||||||||
38Y | 2,43 Ом | 38X | 24,3 Ом | 38A | 243 Ом | 38B | 2,43 кОм | |||||||||||||
39Y | 2,49 24 Ом | 16 39X | 9 Ом | 39A | 249 Ом | 39B | 2,49 кОм | |||||||||||||
40Y | 2,55 Ом | 40X | 25,5 Ом | 40A | 255 Ом | 40B | 2,55 к 2,61 Ом | 41X | 26,1 Ом | 41A | 261 Ом | 41B | 2,61 кОм | |||||||
42Y | 2,67 Ом | 42X | 26,7 Ом | 42A7 | 42A7 | 42A7 | ||||||||||||||
43Y | 2,74 Ом | 43X | 27,4 Ом | 43A | 274 Ом | 43B | 2,74 кОм | |||||||||||||
44Y | 2,8 Ом | 44X27 | 44X27 | 44B | 2,8 кОм | |||||||||||||||
45Y | 2,87 Ом | 45X | 28,7 Ом | 45A | 287 Ом | 45B | 2,87 кОм | |||||||||||||
46Y | Ом | 46X | 29,4 Ом | 46A | 294 Ом | 46B | 2,94 кОм | |||||||||||||
47Y | 3,01 Ом | 47X | 30,1 Ом | 47A | ||||||||||||||||
48Y | 3,09 Ом | 48X | 30,9 Ом | 48A | 309 Ом | 48B | 3,09 кОм | |||||||||||||
49Y | 3,16 Ом | 31X | 6 Ом | 49A | 316 Ом | 49B | 3,16кОм | |||||||||||||
50Y | 3,24 Ом | 50X | 32,4 Ом | 50A | 32426 927 | 50B | 249 3,32 Ом | 51X | 33,2 Ом | 51A | 332 Ом | 51B | 3,32 кОм | |||||||
52Y | 3,4 Ом | 52X | 34 Ом | 52A | 34095 | |||||||||||||||
53Y | 3,48 Ом | 53X | 34,8 Ом | 53A | 348 Ом | 53B | 3,48 кОм | |||||||||||||
54Y | 3,57 Ом | 54X | 3,57 Ом | 357 Ом | 54B | 3,57 кОм | ||||||||||||||
55Y | 3,65 Ом | 55X | 36,5 Ом | 55A | 365 Ом | 55B | 3,65 кОм | 74 Ом | 56X | 37,4 Ом | 56A | 374 Ом | 56B | 3,74 кОм | ||||||
57Y | 3,83 Ом | 57X | 38,3 Ом | 57A | 38,3 | 57A | 38,3 | 57A | 38,3 | |||||||||||
58Y | 3,92 Ом | 58X | 39,2 Ом | 58A | 392 Ом | 58B | 3,92 кОм | |||||||||||||
59Y | 4,02 Ом | 40X | 2 Ом | 59A | 402 Ом | 59B | 4,02 кОм | |||||||||||||
60Y | 4,12 Ом | 60X | 41,2 Ом | 60A | 412,12 Ом | 60B | 61X | 42,2 Ом | 61A | 422 Ом | 61B | 4,22 кОм | ||||||||
62Y | 4,32 Ом | 62X | 43,2 Ом | 62A2 | .32 кОм | |||||||||||||||
63Y | 4,42 Ом | 63X | 44,2 Ом | 63A | 442 Ом | 63B | 4,42 кОм | |||||||||||||
64Y | 4,53 | X | 453 Ом | 64B | 4,53 кОм | |||||||||||||||
65Y | 4,64 Ом | 65X | 46,4 Ом | 65A | 464 Ом | 65B | 4,64 кОм | |||||||||||||
66X | 47,5 Ом | 66A | 475 Ом | 66B | 4,75 кОм | |||||||||||||||
67Y | 4,87 Ом | 67X | 48,7 Ом | 67A | ||||||||||||||||
68Y | 4,99 Ом | 68X | 49,9 Ом | 68A | 499 Ом | 68B | 4,99 кОм | |||||||||||||
69Y | 5,11 Ом | 69X | 69A | 511 Ом | 69B | 5,11 кОм | ||||||||||||||
70Y | 5,23 Ом | 70X | 52,3 Ом | 70A | 523 Ом | 70B | 900Y 5,36 Ом | 71X | 53,6 Ом | 71A | 536 Ом | 71B | 5,36 кОм | |||||||
72Y | 5,49 Ом | 72X | 54,9 Ом | 7216 | ||||||||||||||||
73Y | 5,62 Ом | 73X | 56,2 Ом | 73A | 562 Ом | 73B | 5,62 кОм | |||||||||||||
74Y | 5,76X | 5,76X | 576 Ом | 74B | 5,76 кОм | |||||||||||||||
75Y | 5,9 Ом | 75X | 59 Ом | 75A | 590 Ом | 75B | 5,9 кОм | 24 76Y27 | ||||||||||||
76X | 60,4 Ом | 76A | 604 Ом | 76B | 6,04 кОм | |||||||||||||||
77Y | 6,19 Ом | 77X | 61,9 Ом | 77A | 61,96 | 77A | 9140 | |||||||||||||
78Y | 6,34 Ом | 78X | 63,4 Ом | 78A | 634 Ом | 78B | 6,34 кОм | |||||||||||||
79Y | 6,49 Ом | 79X | 79A | 649 Ом | 79B | 6,49 кОм | ||||||||||||||
80Y | 6,65 Ом | 80X | 66,5 Ом | 80A | 665 Ом | 8014 | 80B | 80B | 81X | 68,1 Ом | 81A | 681 Ом | 81B | 6,81 кОм | ||||||
82Y | 6,98 Ом | 82X | 69,8 Ом | 82A8 900 .98 кОм | ||||||||||||||||
83Y | 7,15 Ом | 83X | 71,5 Ом | 83A | 715 Ом | 83B | 7,15 кОм | |||||||||||||
84Y | 7,32 Ом | 84X | 84X | 732 Ом | 84B | 7,32 кОм | ||||||||||||||
85Y | 7,5 Ом | 85X | 75 Ом | 85A | 750 Ом | 85B | 7,5 кОм | |||||||||||||
86Y68 Ом | 86X | 76,8 Ом | 86A | 768 Ом | 86B | 7,68 кОм | ||||||||||||||
87Y | 7,87 Ом | 87X | 78,7 Ом | 87A | 87A | 87A | ||||||||||||||
88Y | 8,06 Ом | 88X | 80,6 Ом | 88A | 806 Ом | 88B | 8,06 кОм | |||||||||||||
89Y | 8,25 Ом | 82X | 89X | 5 Ом | 89A | 825 Ом | 89B | 8,25 кОм | ||||||||||||
90Y | 8,45 Ом | 90X | 84,5 Ом | 90A | 845 Ом | 90B | 845Y048 | 90B | 8,66 Ом | 91X | 86,6 Ом | 91A | 866 Ом | 91B | 8,66 кОм | |||||
92Y | 8,87 Ом | 92X | 88,7 Ом | 76 | 9277 | 927 .87 кОм | ||||||||||||||
93Y | 9,09 Ом | 93X | 90,9 Ом | 93A | 909 Ом | 93B | 9,09 кОм | |||||||||||||
94Y | 9,31 Ом | 9127 91X 93,1 | 91 | 931 Ом | 94B | 9,31 кОм | ||||||||||||||
95Y | 9,53 Ом | 95X | 95,3 Ом | 95A | 953 Ом | 95B | 9,53 кОм | |||||||||||||
96X | 97,6 Ом | 96A | 976 Ом | 96B | 9,76 кОм |
Код | Значение | Код | Значение | Код | Значение | Код | Значение | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01C | 10 кОм | 01D | 100 кОм | ||||||||||||
02C | 10,2 кОм | 02D | 102 кОм | 02E | 1.02 МОм | 02F | 10,2 МОм | ||||||||
03C | 10,5 кОм | 03D | 105 кОм | 03E | 1,05 МОм | 03F | 10,5 МОм | ||||||||
107 кОм | 04E | 1,07 МОм | 04F | 10,7 МОм | |||||||||||
05C | 11 кОм | 05D | 110 кОм | 05E | 1,1 МОм | 24 05FM | 24 05FM | 11.3 кОм | 06D | 113 кОм | 06E | 1,13 МОм | 06F | 11,3 МОм | |
07C | 11,5 кОм | 07D | 115 кОм | 07E | |||||||||||
08C | 11,8 кОм | 08D | 118 кОм | 08E | 1,18 МОм | 08F | 11,8 МОм | ||||||||
09C | 12,1 кОм 927 927 927 919 | 12,1 кОм | 922 кОм | 09F | 12,1 МОм | ||||||||||
10C | 12,4 кОм | 10D | 124 кОм | 10E | 1,24 МОм | 10F | 12,4 МОм | ||||||||
127 кОм | 11E | 1,27 МОм | 11F | 12,7 МОм | |||||||||||
12C | 13 кОм | 12D | 130 кОм | 12E | 1,3 МОм | 13FM | 13.3 кОм | 13D | 133 кОм | 13E | 1,33 МОм | 13F | 13,3 МОм | ||
14C | 13,7 кОм | 14D | 137 кОм | 14E | 27 | 14E | 27 | ||||||||
15C | 14 кОм | 15D | 140 кОм | 15E | 1,4 МОм | 15F | 14 МОм | ||||||||
16C | 14,3 кОм | 9203 9204 | 14,3 кОм | 9203 9204 | 14,3 кОм | 16D2 | 43 МОм | 16F | 14,3 МОм | ||||||
17C | 14,7 кОм | 17D | 147 кОм | 17E | 1,47 МОм | 17F | 14,7 МОм | 4 | 4 | 14,7 МОм | 4 | 4 | 4 | 4 150 кОм | 18E | 1,5 МОм | 18F | 15 МОм |
19C | 15,4 кОм | 19D | 154 кОм | 19E | 1,54 МОм | 19F | |||||||||
20C | 15,8 кОм | 20D | 158 кОм | 20E | 1,58 МОм | 20F | 15,8 МОм | ||||||||
21C | 16,2 кОм2 | 21C | 16,2 кОм2 | 21F | 16,2 МОм | ||||||||||
22C | 16,5 кОм | 22D | 165 кОм | 22E | 1,65 МОм | 22F | 16,5 МОм | ||||||||
23D | 169 кОм | 23E | 1,69 МОм | 23F | 16,9 МОм | ||||||||||
24C | 17,4 кОм | 24D | 174 кОм | 24002 | 922 9002 | 24E 9002 | |||||||||
25C | 17,8 кОм | 25D | 178 кОм | 25E | 1,78 МОм | 25F | 17,8 МОм | ||||||||
26C | 18,2 кОм | 26C | 18,2 кОм | 26C | 26C .82 МОм | 26F | 18,2 МОм | ||||||||
27C | 18,7 кОм | 27D | 187 кОм | 27E | 1,87 МОм | 27F | 18,7 МОм 64 | 27 | 191 кОм | 28E | 1,91 МОм | 28F | 19,1 МОм | ||
29C | 19,6 кОм | 29D | 196 кОм | 29E | 1,96 МОм | 6 МОм | |||||||||
30C | 20 кОм | 30D | 200 кОм | 30E | 2 МОм | 30F | 20 МОм | ||||||||
31C | 20,5 кОм | 20 31D | 20 31D | 20,5 кОм | 20 31D | 05 | 31F | 20,5 МОм | |||||||
32C | 21 кОм | 32D | 210 кОм | 32E | 2,1 МОм | 32F | 21 МОм | ||||||||
33C | 5 кОм | 33D | 215 кОм | 33E | 2,15 МОм | 33F | 21,5 МОм | ||||||||
34C | 22,1 кОм | 34D | 221 кОм | 34E | 34E | ||||||||||
35C | 22,6 кОм | 35D | 226 кОм | 35E | 2,26 МОм | 35F | 22,6 МОм | ||||||||
36C | 23,2 кОм 14 | 927 .32 МОм | 36F | 23,2 МОм | |||||||||||
37C | 23,7 кОм | 37D | 237 кОм | 37E | 2,37 МОм | 37F | 23,7 МОм | 243 кОм | 38E | 2,43 МОм | 38F | 24,3 МОм | |||
39C | 24,9 кОм | 39D | 249 кОм | 39E | 2,49 МОм | 39E | 2,49 MF | ||||||||
40C | 25,5 кОм | 40D | 255 кОм | 40E | 2,55 МОм | 40F | 25,5 МОм | ||||||||
41C | 26,1 кОм | ||||||||||||||
41C | 26,1 кОм | 26,1 кОм | 41F | 26,1 МОм | |||||||||||
42C | 26,7 кОм | 42D | 267 кОм | 42E | 2,67 МОм | 42F | 26,7 МОм | ||||||||
43C | |||||||||||||||
45C | 28,7 кОм | 45D | 287 кОм | 45E | 2,87 МОм | 45F | 28,7 МОм | ||||||||
46C | 29,4 кОм | 46D | 46E94 МОм | 46F | 29,4 МОм | ||||||||||
47C | 30,1 кОм | 47D | 301 кОм | 47E | 3,01 МОм | 47F | 30,1 МОм | ||||||||
309 кОм | 48E | 3,09 МОм | 48F | 30,9 МОм | |||||||||||
49C | 31,6 кОм | 49D | 316 кОм | 49E | 3,16 МОм | 49E | 3,16 МОм | 6 МОм | |||||||
50C | 32,4 кОм | 50D | 324 кОм | 50E | 3,24 МОм | 50F | 32,4 МОм | ||||||||
51C | кОм | 51C | 33,28 кОм | 51F | 33,2 МОм | ||||||||||
52C | 34 кОм | 52D | 340 кОм | 52E | 3,4 МОм | 52F | 34 МОм | 53C8 кОм | 53D | 348 кОм | 53E | 3,48 МОм | 53F | 34,8 МОм | |
54C | 35,7 кОм | 54D | 357 кОм | 927 927 927 927 927 927 927 927 927 927 927 927 927 900 27 | |||||||||||
55C | 36,5 кОм | 55D | 365 кОм | 55E | 3,65 МОм | 55F | 36,5 МОм | ||||||||
56C | 37,4 кОм | 56D | 56F | 37,4 МОм | |||||||||||
57C | 38,3 кОм | 57D | 383 кОм | 57E | 3,83 МОм | 57F | 38,3 МОм | 392 кОм | 58E | 3,92 МОм | 58F | 39,2 МОм | |||
59C | 40,2 кОм | 59D | 402 кОм | 59E | 4,02 МОм | ||||||||||
60C | 41,2 кОм | 60D | 412 кОм | 60E | 4,12 МОм | 60F | 41,2 МОм | ||||||||
61C | 425860 927 | 61C | 425860 927 927 | 61C | 425860 927 927 928 4,22 МОм | 61F | 42,2 МОм | ||||||||
62C | 43,2 кОм | 62D | 432 кОм | 62E | 4,32 МОм | 62F | 43,2 МОм | кОм | 63D | 442 кОм | 63E | 4,42 МОм | 63F | 44,2 МОм | |
64C | 45,3 кОм | 64D | 453 кОм | 64M | 64M | 927 | 9292 | 927 | 0 | ||||||
65C | 46,4 кОм | 65D | 464 кОм | 65E | 4,64 МОм | 65F | 46,4 МОм | ||||||||
66C | 47,5 кОм | 47,5 кОм | .75 МОм | 66F | 47,5 МОм | ||||||||||
67C | 48,7 кОм | 67D | 487 кОм | 67E | 4,87 МОм | 67F | 48,7 МОм | 4 9297 9297 | 7 | 499 кОм | 68E | 4,99 МОм | 68F | 49,9 МОм | |
69C | 51,1 кОм | 69D | 511 кОм | 69E | 5,11 МОм | 1 МОм | |||||||||
70C | 52,3 кОм | 70D | 523 кОм | 70E | 5,23 МОм | 70F | 52,3 МОм | ||||||||
71C | 53,640 | ||||||||||||||
71C | 53,640 927 927 | 53,640 927 927 930 5,36 МОм | 71F | 53,6 МОм | |||||||||||
72C | 54,9 кОм | 72D | 549 кОм | 72E | 5,49 МОм | 72F | 54,9 МОм | 56C7.2 кОм | 73D | 562 кОм | 73E | 5,62 МОм | 73F | 56,2 МОм | |
74C | 57,6 кОм | 74D | 576 кОм | 7427 9E | 74,7 | 576 кОм | 7427 | ||||||||
75C | 59 кОм | 75D | 590 кОм | 75E | 5,9 МОм | 75F | 59 МОм | ||||||||
76C | 60,4 кОм | 6027 9 3127 9 3127 9 3127 | 76F | 60,4 МОм | |||||||||||
77C | 61,9 кОм | 77D | 619 кОм | 77E | 6,19 МОм | 77F | 61,9 МОм | ||||||||
61,9 МОм | |||||||||||||||
634 кОм | 78E | 6,34 МОм | 78F | 63,4 МОм | |||||||||||
79C | 64,9 кОм | 79D | 649 кОм | 79E | 6,49 МОм | 9 МОм | |||||||||
80C | 66,5 кОм | 80D | 665 кОм | 80E | 6,65 МОм | 80F | 66,5 МОм | ||||||||
81C | 68,1 кОм 812024 932 | 81F | 68,1 МОм | ||||||||||||
82C | 69,8 кОм | 82D | 698 кОм | 82E | 6,98 МОм | 82F | 69,8 МОм | 71,8 МОм5 кОм | 83D | 715 кОм | 83E | 7,15 МОм | 83F | 71,5 МОм | |
84C | 73,2 кОм | 84D | 732 кОм | 8427 932,2 | 9327 932,2 | 932 9E | |||||||||
85C | 75 кОм | 85D | 750 кОм | 85E | 7,5 МОм | 85F | 75 МОм | ||||||||
86C | 76,8 кОм | МОм | 86F | 76,8 МОм | |||||||||||
87C | 78,7 кОм | 87D | 787 кОм | 87E | 7,87 МОм | 87F | 78,7 МОм | 2 88C4 | 78,7 МОм | ||||||
806 кОм | 88E | 8,06 МОм | 88F | 80,6 МОм | |||||||||||
89C | 82,5 кОм | 89D | 825 кОм | 89E | 8,25 МОм | ||||||||||
90C | 84,5 кОм | 90D | 845 кОм | 90E | 8,45 МОм | 90F | 84,5 МОм | ||||||||
91C | 86,6 кОмD | 91C | 86,6 кОмD | 91C | 86,6 кОм | 91F | 86,6 МОм | ||||||||
92C | 88,7 кОм | 92D | 887 кОм | 92E | 8,87 МОм | 92F | 88,7 МОм | 88,7C7 9342 | 92F | 88,7C9 кОм | 93D | 909 кОм | 93E | 9,09 МОм | 93F | 90,9 МОм |
94C | 93,1 кОм | 94D | 931 кОм | 9E34 9E | 9346 9E9 | ||||||||||
95C | 95,3 ком .76 МОм | 96F | 97,6 МОм |
Подробнее: Примеры 3-значных и 4-значных микросхем резисторов.
Примеры резисторов с цветовой кодировкой для сквозных отверстий: E12 (10%), E24 (5%) и E48 (2%).
Калькулятор цветовой кодировки резистора
— 4- и 5-полосные резисторы
Электронный цветовой код был разработан, чтобы упростить распознавание номиналов резисторов и других компонентов.
Наш бесплатный калькулятор цветовой кодировки резисторов делает это еще проще.Этот универсальный инструмент не только позволяет пользователям определять номинал резистора на основе цветового кода, но также находить цветовые коды для 4- и 5-полосного резистора.
Как рассчитать код цвета
Начните с выбора типа резистора; либо 4-, либо 5-полосный резистор.
Затем вам будет предложено ввести сопротивление и единицы измерения (например, 10 Ом, 1 кОм, 5 МОм, 1ГОм).
Наконец, вы выберете соответствующий допуск из раскрывающегося списка.
После того, как вы ввели всю необходимую информацию, калькулятор отобразит правильный цветовой код.
Как рассчитать значение
Выберите правильный тип резистора.
Затем вы должны щелкнуть по цветным полосам на изображении резистора.
Когда вы увидите поле выбора цвета, щелкните соответствующие цветные полосы.
После того, как вы выполните все эти шаги, калькулятор отобразит сопротивление резисторов, единицы измерения и допуск.
Обратите внимание, что отображаемое значение всегда будет ближайшим предпочтительным значением резистора из серии «E».
Часто задаваемые вопросы
Подойдет ли этот калькулятор для 3-х полосных резисторов?
Да. Выберите тип 4-полосного резистора и не вводите ничего в поле, предназначенное для 4-й полосы.
Трехполосный резистор не имеет диапазона допуска, что означает, что они имеют значение допуска 20%.
Как я могу использовать этот калькулятор, чтобы найти номинал 6-полосного резистора?
Хотя этот калькулятор предназначен для возврата значений и цветовых кодов для 4–5-полосных резисторов, он также работает для 6-полосных резисторов.Все, что вам нужно сделать, это ввести первые пять цветов.
Дополнительная полоса используется для обозначения надежности или температурного коэффициента 6-полосного резистора.
Калькулятор SMD резисторов
Калькулятор резисторов SMD — это быстрый и простой способ определить номиналы резисторов SMD (устройство для поверхностного монтажа). Все, что вам нужно сделать, это ввести трехзначный код (стандартный допуск) или четырехзначный код (прецизионный поверхностный монтаж), который находится на резисторе, и калькулятор автоматически отобразит значение сопротивления.
Приложение для калькуляции кода резистора
SMD
SMD означает устройство для поверхностного монтажа. SMD — это любой электронный компонент, предназначенный для использования с SMT или технологией поверхностного монтажа. SMT был разработан для удовлетворения постоянного стремления производителей печатных плат использовать более мелкие компоненты и быть более быстрыми, эффективными и дешевыми. Это приложение обеспечивает очень простой и эффективный способ расчета кода резистора SMD.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ: —
1.Простой интерфейс.
2. Легкий вес.
3. Включен код резистора SMD E-96.
4. Подчеркнутый код резистора SMD включен.
5. Поддерживает как 3, так и 4 цифры.
КАК УСТАНОВИТЬ:
Перейти в Play Store
Тип
Калькулятор кода резистора SMD
Затем
Поиск
Выберите: Калькулятор кода резистора SMD и установите его на свой мобильный телефон Android или щелкните здесь, чтобы установить это приложение.
Как рассчитать номинал резистора SMD:
Большинство резисторов для микросхем имеют трех- или четырехзначный код — числовой эквивалент знакомого цветового кода для компонентов со сквозным отверстием.Недавно на прецизионных SMD появилась новая система кодирования (EIA-96).
Трехзначный код
Резисторы SMD со стандартным допуском маркируются простым трехзначным кодом. Первые два числа будут указывать значащие цифры, а третье будет множителем, сообщающим вам степень десяти, к которой должны быть умножены две значащие цифры (или сколько нулей нужно добавить). Для сопротивлений менее 10 Ом множитель отсутствует, вместо него используется буква «R» для обозначения положения десятичной точки.
Примеры трехзначного кода:
220 = 22 x 100 (1) = 22 Ом (не 220 Ом!)
471 = 47 x 101 (10) = 470 Ом
102 = 10 x 102 (100) = 1000 Ом или 1 кОм
3R3 = 3.3Ω
4-значный код
4-значный код используется для маркировки прецизионных резисторов для поверхностного монтажа. Она похожа на предыдущую систему, единственное отличие состоит в количестве значащих цифр: первые три числа укажут нам значащие цифры, а четвертое будет множителем, показывающим степень десяти, на которую должны быть умножены три значащие цифры. (или сколько нулей добавить).Сопротивления менее 100 Ом обозначаются буквой «R», обозначающей положение десятичной точки.
Примеры 4-значного кода:
4700 = 470 x 100 (1) = 470 Ом (не 4700 Ом!)
2001 = 200 x 101 (10) = 2000 Ом или 2 кОм
1002 = 100 x 102 (100) = 10000 Ом или 10 кОм
15R0 = 15.0Ω
Для получения дополнительных сведений и установки этого приложения щелкните здесь.
Калькулятор цветового кода 4-полосного резистора
-Apogeeweb
Часто задаваемые вопросы
1.Как определить цветовой код 4-х полосного резистора?
При 4 полосах первая и вторая полосы представляют первую и вторую значащие цифры значения сопротивления, 3 полосы — это десятичный множитель. Затем идет небольшой промежуток, помогающий различать левую и правую часть компонента, и, наконец, четвертая полоса, указывающая на допуск резистора.
2. Как рассчитать цветовую кодировку резистора?
Например, резистор имеет следующую цветную маркировку; Желтый Фиолетовый Красный = 4 7 2 = 4 7 x 102 = 4700 Ом или 4 к7 Ом.Четвертая и пятая полосы используются для определения процентного отклонения резистора.
3. Какая 4-я полоса на резисторе?
Четвертая полоса (или пятая для 5-ти и 6-ти полосной) указывает значения допуска. Здесь добавлено два цвета (золотой и серебряный). 6-я полоса для резистора 6-полосного типа — это температурный коэффициент. Это показывает, насколько изменяется фактическое значение сопротивления резистора при изменении температуры.
4. Какого цвета резистор на 1 кОм?
Цветовой код резистора 1 кОм / 1 кОм
Значение: 1 кОм / 1000 Ом
Тип: 4 полосы Цветовой код
Цвет: коричневый, черный, красный, золотой
Множитель: красный, 100
Допуск: золотой браслет ± 5%
5.Какого цвета резистор 47к?
Цветовой код резистора 47 кОм / 47 кОм
Значение: 47 кОм / 47000 Ом
Тип: 4-полосная система цветового кода
Цветовой код: желтый, фиолетовый, оранжевый, золотой
Множитель: оранжевый, 1000
Допуск: золотой браслет ± 5%
6. Как прочитать цветовую кодировку 6-полосного резистора?
Если цвета на 6-полосном резисторе расположены в следующем порядке: зеленый, коричневый, фиолетовый, черный, золотой и оранжевый. Значения цветных полос будут такими: зеленый = 5, коричневый = 1, фиолетовый = 7, черный = 100, золотой = 5%, оранжевый = 15 частей на миллион.
7. Что означает третья цветная полоса — серебро?
Подобно 3-полосному резистору, первые две полосы всегда дают первые 2 цифры значения сопротивления. Третья полоса представляет собой множитель, а четвертая полоса представляет собой допуск. Для 4-полосного цветового кода резистора мы можем начать с определения диапазона допуска, поскольку он обычно бывает золотым или серебряным.
8. Какая цифра представлена синей полосой на резисторе?
Цвет Название Диапазон цифр Диапазон множителя
Оранжевый 3 1000
Желтый 4 10,000
Зеленый 5 100,000
Синий 6 1,000,000
9.Что значит пятая полоса на резисторе?
допуск
У резисторов
с высокой точностью есть дополнительная полоса для обозначения третьей значащей цифры. Таким образом, первые три полосы указывают значащие цифры, четвертая полоса — это коэффициент умножения, а пятая полоса представляет собой допуск.
10. Что представляет собой третья полоса на резисторе?
На трех- или четырехполосном резисторе третья полоса представляет умножитель. Этот множитель в основном сдвигает десятичный разряд, чтобы изменить ваше значение с мегаом на миллиом и в любом другом месте.Четвертая цветная полоса обозначает толерантность.
11. Как читать 4-полосный резистор?
12. Что такое код резистора SMD?
SMD резистор: технология поверхностного монтажа
Эти крошечные микросхемы помечены трех (3) или четырех (4) значными кодами, которые называются кодами резисторов SMD для обозначения их значений сопротивления. Ниже приведены некоторые роли, которые помогают узнать точное значение резистора SMD, увидев напечатанные коды символов на этих крошечных микросхемах.
13.Как запомнить цветовые коды?
Черный, Коричневый, Красный, Оранжевый, Желтый, Зеленый, Синий, Фиолетовый, Серый, Белый <=> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Лучший способ запоминания — BB Рой из Великобритании Вето женится. В качестве альтернативы, большинство цветов — это цвета традиционной радуги.
14. Что означает синий резистор?
Корпус резистора бежевого цвета часто указывает на то, что его допуск составляет 5%, в то время как корпус синего цвета часто указывает на допуск 1% или 2%.Резисторы с синим телом и темно-коричневый резистор содержат металлооксидные пленочные элементы, а резисторы с бежевым телом и зеленый резистор содержат углеродную пленку.
4-полосный резистор, цветовой код
Цветные полосы отображаются как: ЖЕЛТЫЙ, ФИОЛЕТОВЫЙ, ОРАНЖЕВЫЙ и ЗОЛОТО. Тогда сопротивление использования цветового круга будет:
.
Поскольку это 4-полосный резистор, колесо цветовой кодировки сопротивления может использоваться для определения значения сопротивления 5-полосного резистора, поэтому третье цифровое колесо в этом случае не используется.Затем на колесе цветового кода отображается:
.
Первая цветная полоса (желтая) дает первое цифровое значение 4. Вторая цветная полоса (пурпурная) дает второе цифровое значение 7. Это дает двузначное значение 47. Умножьте значение третьей полосы. В этом случае значение Orange равно 1000 или 1 кОм, поэтому значение сопротивления резистора составляет 47000 Ом (47 × 1000 = 47000) или 47 кОм. Последняя полоса частот дает значение допуска сопротивления, а Gold соответствует диапазону допуска ± 5%.
Затем используйте резистивный цветовой круг, который имеет следующие сопротивления:
Желтый Фиолетовый Оранжевый = 4 7 3 = 4 7 x 10 3 = 47000 Ом или 47 кОм ± 5%.
Код резистора
SMD — Калькулятор — Бесплатная загрузка и обзоры программного обеспечения
Приложение представляет собой простой в использовании калькулятор SMD-кода для расчета сопротивления резистора. Приложение поддерживает 3-значное, 4-значное кодирование и системы кодирования EIA-96.
Резистор
Резистор — это компонент, который используется в электрических цепях для ограничения протекания тока. Сопротивление резистора измеряется в Ом (). Когда ток (I) в один ампер проходит через резистор с падением напряжения (U) в один вольт, сопротивление резистора (R) соответствует одному Ом.Это соотношение представлено законом Ома: R = U I.
SMD-код
Коды на резисторах SMD определяют сопротивление резистора. Существует несколько систем кодирования, определяющих сопротивление резистора: 3-значное, 4-значное и EIA-96. Далее описывается значение каждой системы кодирования.
3 цифры
В системе кодирования 3 цифры первые два числа обозначают значащие цифры, а третья цифра указывает множитель.Множитель указывает, сколько нулей нужно добавить к двум значащим цифрам. Если сопротивление меньше 10 Ом, буква R используется для обозначения положения десятичной точки. Далее показано несколько примеров.
340 = 34
781 = 780
202 = 2000 или 2 K
5R5 = 5,5
4 цифры
4-значная система кодирования очень похожа на 3-значную систему кодирования. В 4-значной системе кодирования первые три цифры указывают значащие цифры, а четвертая цифра указывает множитель.Множитель указывает, сколько нулей нужно добавить к трем значащим цифрам. Если сопротивление меньше 100 Ом, буква R используется для обозначения положения десятичной точки. Далее показано несколько примеров.
9100 = 910
2204 = 2,2 M
0R10 = 0,1
EIA-96
Система кодирования EIA-96 состоит из трех символов. Первые два символа — это цифры, которые соответствуют 3 значащим цифрам сопротивления согласно справочной таблице.Третий символ — это буква, обозначающая коэффициент умножения сопротивления. Далее показано несколько примеров.
40A = 255
12E = 1,3 M
52F = 34 M
Калькулятор светодиодного резистора — Электротехника и электронные инструменты
Калькулятор сопротивления светодиода идеально подходит, когда у вас есть один светодиод и вам нужно знать, какой резистор вам следует использовать.
Обзор
Каждый светоизлучающий диод (LED) имеет ток, с которым они могут безопасно работать.Превышение этого максимального тока даже на короткое время приведет к повреждению светодиода. Таким образом, ограничение тока через светодиод с помощью последовательного резистора — обычная и простая практика. Обратите внимание, что этот метод не рекомендуется для сильноточных светодиодов, которым нужен более надежный стабилизатор тока переключения.
Этот калькулятор поможет вам определить номинал резистора, который нужно добавить последовательно со светодиодом для ограничения тока. Просто введите указанные значения и нажмите кнопку «Рассчитать». В качестве бонуса он также рассчитает мощность, потребляемую светодиодом.
Уравнение
$$ R = \ frac {V_ {s} -V_ {led} * X} {I_ {led}} $$
Где:
$$ V_ {s} $$ = Напряжение питания
$$ I_ {led} $$ = ток светодиода. Обычный рабочий диапазон обычных светодиодов 3 мм и 5 мм составляет 10-30 мА. Если доступ к таблице данных светодиода невозможен, можно предположить, что 20 мА.
$$ V_ {led} $$ = падение напряжения светодиода. Падение напряжения на светодиоде зависит от цвета, который он излучает. Вот аккуратная таблица каждого цвета и соответствующего им падения напряжения:
$$ X $$ = количество светодиодов в серии
Цвет | Падение напряжения (В) |
красный | 2 |
зеленый | 2.1 |
синий | 3,6 |
белый | 3,6 |
желтый | 2,1 |
оранжевый | 2,2 |
янтарь | 2,1 |
инфракрасный | 1,7 |
прочие | 2 |
Бонус: идентификация светодиодных клемм
Светодиод имеет положительный (анодный) вывод и отрицательный (катодный) вывод.Схематический символ светодиода аналогичен диоду (как показано выше), за исключением двух стрелок, направленных наружу. Анод (+) отмечен треугольником, а катод (-) отмечен линией.
Более длинный вывод светодиода почти всегда является положительным (анод), а более короткий — отрицательным (катодом). Кроме того, если вы посмотрите внутрь светодиода, то меньшая из металлических частей соединена с анодом, а большая — с катодом (см. Диаграмму выше).
Дополнительная литература
Учебник
— Схемы простых серий
Учебник — Построение простых резисторных схем
Учебник — Светодиоды
Политика конфиденциальности
Калькулятор SMD-кода резистора
Политика конфиденциальности
Android-дизайн.nl создала приложение-калькулятор SMD-кода резистора как приложение с поддержкой рекламы. Эта УСЛУГА предоставляется Android-design.nl бесплатно и предназначена для использования «как есть».
Эта страница используется для информирования посетителей о нашей политике в отношении сбора, использования и раскрытия Личной информации, если кто-либо решил использовать наш Сервис.
Если вы решите использовать наш Сервис, то вы соглашаетесь на сбор и использование информации в отношении этой политики. Личная информация, которую мы собираем, используется для предоставления и улучшения Сервиса.Мы не будем использовать или передавать вашу информацию кому-либо, кроме случаев, описанных в настоящей Политике конфиденциальности.
Термины, используемые в настоящей Политике конфиденциальности, имеют то же значение, что и в наших Положениях и условиях, которые доступны в калькуляторе кодов Resistor SMD, если иное не определено в настоящей Политике конфиденциальности.
Сбор и использование информации
Для удобства использования нашего Сервиса мы можем потребовать от вас предоставить нам определенную личную информацию. Информация, которую мы запрашиваем, будет храниться нами и использоваться, как описано в этой политике конфиденциальности.
Приложение использует сторонние сервисы, которые могут собирать информацию, используемую для вашей идентификации.
Ссылка на политику конфиденциальности сторонних поставщиков услуг, используемую приложением
Журнал данных
Мы хотим сообщить вам, что всякий раз, когда вы используете нашу Службу, в случае ошибки в приложении мы собираем данные и информацию (через сторонние продукты) на вашем телефоне, которые называются данными журнала. Эти данные журнала могут включать такую информацию, как IP-адрес вашего устройства, имя устройства, версия операционной системы, конфигурация приложения при использовании нашего Сервиса, время и дата использования вами Сервиса, а также другие статистические данные. .
Файлы cookie
Файлы cookie
— это файлы с небольшим объемом данных, которые обычно используются в качестве анонимных уникальных идентификаторов. Они отправляются в ваш браузер с веб-сайтов, которые вы посещаете, и хранятся во внутренней памяти вашего устройства.
Этот Сервис не использует эти «куки» явным образом. Однако приложение может использовать сторонний код и библиотеки, которые используют файлы cookie для сбора информации и улучшения своих услуг. У вас есть возможность принять или отклонить эти файлы cookie и узнать, когда файл cookie отправляется на ваше устройство.Если вы решите отказаться от наших файлов cookie, возможно, вы не сможете использовать некоторые части этого Сервиса.
Поставщики услуг
Мы можем нанимать сторонние компании и частных лиц по следующим причинам:
- Для облегчения нашего Сервиса;
- Для предоставления Сервиса от нашего имени;
- Для оказания услуг, связанных с Сервисом; или
- Чтобы помочь нам проанализировать, как используется наш Сервис.
Мы хотим проинформировать пользователей этого Сервиса о том, что эти третьи стороны имеют доступ к вашей Личной информации.Причина в том, чтобы выполнять поставленные перед ними задачи от нашего имени. Однако они обязаны не раскрывать и не использовать информацию для каких-либо других целей.
Безопасность
Мы ценим ваше доверие к предоставлению нам вашей личной информации, поэтому мы стремимся использовать коммерчески приемлемые средства ее защиты. Но помните, что ни один метод передачи через Интернет или метод электронного хранения не является на 100% безопасным и надежным, и мы не можем гарантировать его абсолютную безопасность.
Ссылки на другие сайты
Этот Сервис может содержать ссылки на другие сайты. Если вы нажмете на стороннюю ссылку, вы будете перенаправлены на этот сайт. Обратите внимание, что эти внешние сайты не управляются нами. Поэтому мы настоятельно рекомендуем вам ознакомиться с Политикой конфиденциальности этих веб-сайтов. Мы не контролируем и не несем ответственности за контент, политику конфиденциальности или действия любых сторонних сайтов или служб.
Конфиденциальность детей
Эти Услуги не предназначены для лиц младше 13 лет.Мы сознательно не собираем личную информацию от детей младше 13 лет. В случае, если мы обнаруживаем, что ребенок младше 13 лет предоставил нам личную информацию, мы немедленно удаляем ее с наших серверов. Если вы являетесь родителем или опекуном и знаете, что ваш ребенок предоставил нам личную информацию, свяжитесь с нами, чтобы мы могли предпринять необходимые действия.
Изменения в настоящей Политике конфиденциальности
Время от времени мы можем обновлять нашу Политику конфиденциальности.Таким образом, вам рекомендуется периодически просматривать эту страницу на предмет изменений. Мы сообщим вам о любых изменениях, разместив новую Политику конфиденциальности на этой странице. Эти изменения вступают в силу сразу после публикации на этой странице.
Свяжитесь с нами
Если у вас есть какие-либо вопросы или предложения относительно нашей Политики конфиденциальности, не стесняйтесь обращаться к нам.
Эта страница политики конфиденциальности была создана на сайте privacypolicytemplate.net и изменена / сгенерирована Генератором политики конфиденциальности приложений
.