Сервопривод что: что это такое, устройство, принцип работы, виды

что это такое, устройство, принцип работы, виды

Вряд ли сегодня кого-то можно удивить тем количеством электрических приборов, которые окружают человека в повседневной жизни. Многие из которых давно взяли на себя часть человеческого труда и обязанностей. Повсеместная автоматизация процессов охватила самые разнообразные отрасли, начиная автомобилестроением, и заканчивая устройствами в быту. Львиную долю нагрузки относительно автоматического управления параметрами работы  умных машин берет на себя сервопривод.

Что такое сервопривод?

Под сервоприводом следует понимать такое устройство, которое обеспечивает возможность управления рабочим органом посредством обратной связи. Само название произошло от латинского servus, что в переводе означает помощник. Изначально сервопривод использовался в качестве вспомогательного оборудования для различных станков, машин и механизмов. Однако с развитием технологий и постоянно растущей необходимостью повышать точность электронных устройств им начали отводить куда более значимую роль.

Устройство и принцип работы

Рис. 1. Устройство сервопривода

Устройство и принцип работы каждого сервопривода может кардинально отличаться от других моделей. Однако в качестве примера мы рассмотрим наиболее актуальные варианты.

Конструктивно он может состоять из:

  • Привода – устройства, приводящего в движение рабочий орган. Может выполняться посредством синхронного или асинхронного двигателя, пневмоцилиндра и т.д.
  • Передаточный механизм – система шестеренчатой кривошипной или другой передачи, редуктор.
  • Рабочий элемент – управляет перемещением в пространстве, непосредственно вал редуктора, передаточный механизм и т.д.
  • Датчик – сигнализирует о достигнутом положении и передает информацию по каналу обратной связи.
  • Блок питания – может применяться в случае прямого подключения сервопривода к сети, где требуется преобразование уровня и типа напряжения.
  • Блок управления – осуществляет подачу управляющих сигналов на сервомотор для передвижения или корректировки места положения. Для этого применяются микропроцессоры, микроконтроллеры и т.д. К примеру, очень популярна плата Arduino.

Принцип действия заключается в подаче управляющего импульса на асинхронный или синхронный двигатель, который начинает вращаться, пока рабочий орган не окажется в нужной позиции. Как только будет достигнуто установленное положение, на датчике обратной связи появится нужный сигнал, который, перейдя на блок управления, прекратит питание электромеханического устройства. Движение сервопривода прекратится до появления новых электрических сигналов.

Далее начнется новый цикл работы устройства, число команд и последовательность их выполнения определяется заложенной программой.

Сравнение с шаговым двигателем

Рис. 2. Сравнение с сервопривода с шаговым двигателем

Вполне вероятно вы могли слышать, что та же функция часто выполняется шаговыми двигателями, однако между этими двумя устройствами имеется существенное отличие. Шаговый привод действительно осуществляет точное  позиционирование объекта за счет четкого числа подаваемых на электрическую машину импульсов, они достаточно тихоходны и не создают лишнего шума. В остальном сервоприводы обладают рядом весомых преимуществ по сравнению с шаговыми электродвигателями:

  • Могут использовать для привода любой тип электрической машины – синхронный, асинхронный, электродвигатель постоянного тока и т.д.
  • Точность механического привода не зависит от износа деталей, появления люфтов, термических и механических изменений конструктивных элементов.
  • Диагностирование неисправностей происходит моментально за счет обратной связи.
  • Скорость вращения – любой обычный электродвигатель вращается быстрее шагового привода.
  • Экономичность – вращение вала у шаговой электрической машины осуществляется при максимально допустимом напряжении питания, чтобы обеспечить максимальный момент.

Но кроме перечисленных преимуществ есть ряд позиций, по которым сервопривод уступает шаговому двигателю:

  • Сложность системы управления и необходимость реализации ее работы – шаговый двигатель контролируется обычным счетчиком числа импульсов.
  • Необходимость контролировать как частоту вращения, так и принимать меры для принудительного затормаживания в нужной точке – это приводит к дополнительным затратам энергии, программных и механических ресурсов.
  • Обязательно используется дополнительный измерительный блок, контролирующий положение рабочего органа.
  • Сервопривод обладает значительно большей стоимостью, поэтому применение шагового двигателя обходится дешевле.

Назначение

Рис. 3. Область применения

Сервопривод используется в самых различных направлениях науки и техники, где электрический привод, помимо функции вращения каких-либо элементов, должен выполнить и точное позиционирование. На практике они повсеместно используются в ЧПУ станках, автоматических задвижках, электронных клапанах, заводских станках с программным управлением, робототехнике.

В бытовых системах сервомоторы устанавливаются в системах отопления для регулировки подачи теплоносителя, топлива, управления нагревательным элементом, контроля переключения между центральными и автономными системами энергетических ресурсов и т.д. В автомобилях их используют для отпирания, запирания багажника, электронных блокировок.

Разновидности

За счет многолетнего развития сервоприводов сегодня можно встретить самые различные виды устройства. Поэтому мы рассмотрим наиболее распространенные критерии разделения.

По типу привода:

  • асинхронные сервоприводы – получаются дешевле,
    чем с  синхронным электродвигателем,
    могут обеспечить точность даже при низких оборотах выходного вала;
  • синхронные – более дорогой вариант, но быстрее
    разгоняется, что повышает скорость выполнения операций;
  • линейные – не используют классических
    электрических моторов, но способны развивать большое ускорение.

По принципу действия выделяют:

  • электромеханический сервопривод – движение
    обеспечивается электрической машиной и шестеренчатым редуктором;
  • гидромеханический серводвигатель –
    движение осуществляется при помощи поршневого цилиндра, обладают значительно
    большей скоростью перемещения;

По материалу передаточного механизма:

  • полимерные – износоустойчивые и
    легкие, но плохо переносят большие механические нагрузки;
  • металлические – наиболее тяжелый
    вариант, относительно быстро изнашиваются, но могут выдерживать любые нагрузки;
  • карбоновые – имеют средние
    характеристики по прочности и износоустойчивости, в сравнении с двумя
    предыдущими, но имеют более высокую стоимость.

Рис. 4. По материалу шестерней

По типу вала двигателя:

  • с монолитным ротором – тяжелые сервоприводы, создают вибрацию при вращении;
  • с полым ротором – самые легкие модели, быстро реагируют на команды и набирают обороты, их легче контролировать;
  • с бесколлекторным ротором – не имеют подвижных контактов, которые создают дополнительное сопротивление вращению, наиболее дорогой вариант.

Рис. 5. По типу вала

Технические характеристики

При выборе конкретной модели сервопривода необходимо руководствоваться основными техническими параметрами, которые изготовитель указывает в паспорте устройства.

Наиболее значимыми характеристиками сервомотора являются:

  • Усилие на валу серводвигателя – определяет механический момент и способность перемещать определенный вес, создавать усилие при резке, фрезеровке и т.д.

Рис. 6. Усилие на валу

  • Скорость вращения – показывает, сколько поворотов вала может совершить устройство за единицу времени.
  • Величина питающего напряжения – чаще всего электроснабжение сервопривода выполняется постоянным током, хотя встречаются модели и с переменным током выходного напряжения. Подключение питания к сервоприводу осуществляется тремя проводами: питающим, управляющим и общим.
  • Угол вращения сервопривода – поворот выходного элемента, как правило, выпускается на 180° и 360°.
  • Скорость поворота – подразделяется на сервоприводы с постоянным вращением и с переменной частотой.

Способы управления

Рис. 7. Способ управления сервоприводом

По способу управления могут быть аналоговые или цифровые сервоприводы, первый из них подает сигналы с разной частотой, которая задается специальной микросхемой, контролирующей работу устройства. Цифровые сервоприводы, в свою очередь, отличаются наличием процессора, который принимает команды и реализует их в качестве различных режимов работы на приводе.

Их практическое отличие заключается в наличии мертвых зон у аналоговых способов,  цифровые лишены этого недостатка, к тому же они быстрее реагируют на изменения и обладают большей точностью. Однако цифровой способ управления имеет большую себестоимость и на свою работу он расходует больше электроэнергии.

На рисунке 8 приведен пример управления сервоприводом с помощью подаваемых импульсов:

Рис. 8. Схема управления сервоприводом

Как видите на рисунке, сигнал поступает к генератору опорных импульсов (ГОП), подключенному к потенциометру. Далее сигнал поступает на компаратор (К), сравнивающий величины на выходе схемы и поступающие от датчика на рабочем органе. После этого прибор управления мостом (УМ) открывает нужную пару транзисторов моста для вращения вала мотора (М) по часовой или против часовой стрелки, также может задавать усилие за счет полного или частичного открытия перехода.

Преимущества и недостатки

К преимуществам сервопривода следует отнести:

  • Универсальность
    устройства – может с легкостью устанавливаться в самые различные приборы, так
    как технические особенности редко влияют на конечный результат.
  • Может
    реализовать широкий спектр крутящего момента за счет использования редуктора и
    изменения передаточного числа.
  • Обладает
    большим ускорением, что значительно повышает продуктивность и сокращает сроки
    выполнения работы.
  • Точное
    выставление позиции благодаря проверке места положения на датчике.
  • Не боится
    перегрузок, что увеличивает срок службы, позволяет работать и в аварийных
    ситуациях.

К недостаткам следует отнести:

  • Относительно большую стоимость – наличие обратной связи, датчиков и прочего вспомогательного оборудования обуславливает повышение себестоимости сервопривода.
  • Износ передаточного механизма – в значительной мере ухудшает точность и эффективность, требует замены.
  • Более сложная настройка работы – требует изменения параметров программного обеспечения или полной замены сервопривода.

Принципы работы и виды сервоприводов


Отличительной особенностью сервопривода является возможность управления через отрицательную обратную связь с использованием заданных параметров. Все оборудование данного типа можно разделить на две группы – сервоприводы постоянного тока и трехфазные сервоприводы переменного тока.

Устройство сервоприводов постоянного тока


Как правило, сервоприводы постоянного тока используются в маломощных устройствах позиционирования. Классическая область их применения – робототехника.


Конструкция современных сервоприводов довольно проста, но при этом весьма эффективна, так как позволяет обеспечить максимально точное управление движением. Сервопривод состоит из:

  • двигателя постоянного тока
  • шестерни редуктора
  • выходного вала
  • потенциометра
  • платы управления, на которую подается управляющий сигнал


Двигатель и редуктор образуют привод. Редуктор используется для снижения скорости вращения двигателя, которую необходимо адаптировать для практического применения. К выходному валу редуктора крепится необходимая нагрузка. Это может быть качалка, вращающийся вал, тянущие или толкающие механизмы.


Для того, чтобы угол поворота превратить в электрический сигнал, необходим датчик. Его функции в сервоприводе постоянного тока с успехом выполняет потенциометр. Он выдает аналоговый сигнал (как правило, от 0 до 10 В) с дискретностью, ограниченной АЦП (аналогово-цифровым преобразователем), на который поступает этот сигнал.


Самой важной деталью сервопривода, пожалуй, является электронная плата сервоусилителя, которая принимает и анализирует управляющие импульсы, соотносит их с данными потенциометра, отвечает за запуск и выключение двигателя.

Принцип работы


Принцип действия устройств основан на использовании импульсного сигнала, который имеет три важные характеристики – частоту повторения, минимальную и максимальную продолжительность. Именно продолжительность импульса определяет угол поворота двигателя.


Импульсные сигналы, получаемые сервоприводом, имеют стандартную частоту, а вот их продолжительность в зависимости от модели может составлять от 0,8 до 2,2 мс. Параллельно с поступлением управляющего импульса активируется работа генератора опорного импульса, который связан с потенциометром. Тот, в свою очередь, механически сопряжен с выходным валом и отвечает за корректирование его положения.


Электронная схема анализирует импульсы с учетом длительности и на основе разностной величины определяет разницу между ожидаемым (заданным) положением вала и реальным (измеренным при помощи потенциометра). Затем производится корректировка путем подачи напряжения на питание двигателя.

Основные положения устройства


Если продолжительность опорного и управляющего импульсов совпадает, наступает так называемый нулевой момент. В это время двигатель сервопривода не работает, вал привода находится в исходном (неподвижном) положении.


При увеличении длительности управляющего импульса плата фиксирует разбежку показателей, двигатель получает напряжение и приходит в движение. В свою очередь, редуктор начинает воздействовать на выходной вал, который поворачивается таким образом, чтобы достигнуть увеличения продолжительности опорного импульса. Как только он сравняется с управляющим импульсом, двигатель прекратит свою работу.


При уменьшении длительности управляющего импульса происходит все то же самое, только с точностью до наоборот, так как двигатель начинает вращаться в обратную сторону. Как только импульсы сравнялись, двигатель останавливается.

Сервопривод переменного тока


В сервоприводах переменного тока используется синхронный двигатель с мощными постоянными магнитами. В таких двигателях частота вращения ротора совпадает с частотой вращения магнитного поля, наводимого в обмотке статора.


Принцип работы сервопривода на основе трехфазного синхронного электродвигателя состоит в следующем. На обмотки статора поступает трехфазное напряжение, которое создает внутри него вращающееся магнитное поле. Это поле взаимодействует с постоянными магнитами, расположенными в роторе. В результате ротор вращается с частотой магнитного поля.


На валу ротора закреплен энкодер с высокой разрешающей способностью. Сигнал от него поступает по отдельному кабелю на специальный вход сервоусилителя. В то же время на управляющий вход сервоусилителя подается сигнал управления. В результате сравнения этих двух сигналов выделяется сигнал рассогласования, величина которого прямо пропорциональна разнице между целевыми и актуальными показателями вращения двигателя. На основании данного сигнала формируется трехфазное напряжение с такими параметрами, которые обеспечивают максимально быстрое уменьшение рассогласования до нуля.

Режимы управления


Существуют три основных режима работы сервопривода переменного тока.


Режим управления положением. Главное в этом режиме – контроль за углом поворота вала ротора. Управление производится последовательностью импульсов, которые могут приходить, например, с контроллера. Этот режим используется для точного позиционирования различных узлов технологического оборудования.


Комбинация импульсов для управления положением может передавать информацию не только по положению, но также по скорости и направлению вращения двигателя. Для этого могут использоваться три типа сигналов: 1) квадратурные импульсы (со сдвигом фаз на 90 градусов), 2) импульсы вращения по или против часовой стрелки, действующие поочередно и 3) импульсы скорости и потенциал направления, подающиеся на два входа.


Как правило, во всех сервоусилителях входы управления именуются как PULSE, SIGN.


Режим управления скоростью. В данном случае управление производится аналоговым сигналом. Значения скорости также могут переключаться на фиксированные величины подачей сигналов на соответствующие дискретные входы. В случае использования разнополярного аналогового управляющего сигнала возможна смена направления вращения серводвигателя.


Режим управления скоростью схож с работой асинхронного двигателя, управляемого преобразователем частоты. Задаются такие параметры, как время разгона и замедления, максимальная и минимальная скорости и другие.


Режим управления моментом.


В этом режиме двигатель может вращаться либо стоять на месте, но при этом момент на валу будет заданным. Управление может производиться дискретным либо аналоговым двухполярным сигналом. Этот режим может использоваться для машин, где необходимо менять усилие прижима, давление и т. п.


Оценка текущего момента двигателя, необходимого для управления, производится за счет встроенного датчика тока.

Процесс рекуперации


Рекуперация происходит при изменении направления (знака) момента нагрузки по отношению к вращающему моменту серводвигателя. Если энергия рекуперации невелика, она накапливается на конденсаторах звена постоянного тока, повышая напряжение на них.


Если разница абсолютных значений моментов нагрузки и серводвигателя составляет значительную величину, напряжение на конденсаторах шины постоянного тока может превысить пороговый уровень. В этом случае энергия рекуперации сбрасывается в тормозной резистор.


Другие полезные материалы:
Выбор оптимального типоразмера электродвигателя
Сервопривод или шаговый двигатель?
Принципы программирования ПЛК

Сервоприводы. Виды и устройство. Характеристики и применение

Сервоприводы и механизмы оснащены датчиком, который отслеживает определенный параметр, например усилие, положение или скорость, а также управляющий блок в виде электронного устройства. Задачей этого устройства является поддержание необходимых параметров в автоматическом режиме во время функционирования устройства, в зависимости от вида поступающего сигнала от датчика в определенные периоды времени.

Виды сервоприводов

При необходимости создания управления несколькими группами сервоприводов используют контроллеры с ЧПУ, которые собраны на схемах программируемых логических контроллеров. Такие сервоприводы способны обеспечить крутящий момент 50 Н*м, мощностью до 15 киловатт.

Синхронные способны задать скорость вращения электродвигателя с большой точностью, так же как ускорение и угол поворота. Синхронные виды приводов могут быстро достигать номинальной скорости вращения.

Асинхронные способны точно выдерживать скорость даже на очень низких оборотах.

Сервоприводы принципиально разделяют на электромеханические и электрогидромеханические. Электромеханические приводы состоят из редуктора и электродвигателя. Но их быстродействие оказывается намного меньше. В электрогидромеханических приводах движение создается путем движения поршня в цилиндре, вследствие чего быстродействие оказывается на очень высоком уровне.

Устройство и работа

От обычного электродвигателя сервопривод отличается тем, что можно задать точное положение вала в градусах. Сервоприводы – это любые механические приводы, которые включают в себя датчик некоторого параметра и блок управления, который способен автоматически поддерживать требуемые параметры, соответствующие определенным внешним значениям.

1 — Шестерни редуктора
2 — Выходной вал
3 — Подшипник
4 — Нижняя втулка
5 — Потенциометр
6 — Плата управления
7 — Винт корпуса
8 — Электродвигатель постоянного тока
9 — Шестерня электродвигателя

Для преобразования электрической энергии в механическое движение, необходим электродвигатель. Приводом является редуктор с электродвигателем. Редуктор требуется для снижения скорости двигателя, так как скорость слишком большая для применения. Редуктор состоит из корпуса, в котором расположены валы с шестернями, способными преобразовывать и передавать крутящий момент.

Путем запуска и останова электродвигателя можно приводить в движение выходной вал редуктора, который связан с шестерней сервопривода. К валу можно присоединять устройство или механизм, которым требуется управлять. Кроме этого для контроля положения вала требуется наличие датчика обратной связи. Этот датчик может преобразовать угол поворота снова в сигнал электрического тока.

Такой датчик получил название энкодера. В качестве энкодера может применяться потенциометр. Если бегунок потенциометра поворачивать, то будет изменяться его сопротивление. Значение этого сопротивления прямо пропорционально зависит от угла поворота потенциометра. Таким образом, есть возможность добиться установки определенного положения механизма.

Кроме выше названного потенциометра, редуктора и электродвигателя, сервоприводы оснащены электронной платой, которая обрабатывает поступающий сигнал внешнего значения параметра от потенциометра, сравнивает, и в соответствии с результатом сравнения запускает или останавливает электродвигатель. Другими словами эта электронная начинка отвечает за поддержку отрицательной обратной связи.

Подключение сервопривода осуществляется тремя проводниками, два из которых подают питание напряжением электродвигателя, а по третьему проводнику поступает сигнал управления, с помощью которого выполняется установка положения вала двигателя.

Кроме электродвигателя, играть роль привода может и другой механизм, например пневматический цилиндр со штоком. В качестве датчика обратной связи применяют также датчики поворота угла, либо датчик Холла. Управляющий блок является сервоусилителем, частотным преобразователем, индивидуальным инвертором. Он может содержать также и датчик сигнала управления.

При необходимости создания плавного торможения или разгона для предотвращения чрезмерных динамических нагрузок двигателя, выполняют схемы более сложных микроконтроллеров управления, которые могут контролировать позицию рабочего элемента намного точнее. Подобным образом выполнено устройство привода установки позиции головок в компьютерных жестких дисках.

Характеристики сервоприводов
Основные параметры, которые характеризуют сервоприводы:
  • Усилие на валу. Этот параметр является крутящим моментом. Это наиболее важный параметр сервопривода. В паспортных данных чаще всего указывается несколько значений момента для разных величин напряжения.
  • Скорость поворота также является важной характеристикой. Она указывается в эквиваленте времени, необходимом для изменения позиции выходного вала привода на 60 градусов. Этот параметр также могут указывать для нескольких значений напряжения.
  • Тип сервоприводов бывает аналоговый или цифровой.
  • Питание. Основная часть сервоприводов функционирует на напряжении 4,8-7,2 вольта. Питание подается чаще всего по трем проводникам: белый – сигнал управления, красный – напряжение работы, черный – общий провод.
  • Угол поворота – это наибольший угол, на который выходной вал способен повернуться. Чаще всего этот параметр равен 180 или 360 градусов.
  • Постоянного вращения. При необходимости обычный сервопривод можно модернизировать для постоянного вращения.
  • Материал изготовления редуктора сервоприводов бывает различным: карбон, металл, пластик, либо комбинированный состав. Шестерни, выполненные из пластика, не выдерживают ударных нагрузок, однако обладают высокой износостойкостью. Карбоновые шестерни намного прочнее пластмассовых, но имеют высокую стоимость. Шестерни из металла способны выдержать значительные нагрузки, падения, но имеют низкую износостойкость. Выходной вал редуктора устанавливают по-разному на разных моделях: на втулках скольжения, либо на шариковых подшипниках.
Преимущества
  • Легкость и простота установки конструкции.
  • Безотказность и надежность, что важно для ответственных устройств.
  • Не создают шума при эксплуатации.
  • Точность и плавность передвижений достигается даже на малых скоростях. В зависимости от поставленной задачи разрешающая способность может настраиваться работником.
Недостатки
  • Сложность в настройке.
  • Повышенная стоимость.
Применение

Сервоприводы в настоящее время используются достаточно широко. Так, например, они применяются в различных точных приборах, промышленных роботах, автоматах по производству печатных плат, станках с программным управлением, различные клапаны и задвижки.

Наиболее популярными стали быстродействующие приводы в авиамодельном деле. Серводвигатели имеют достоинство в эффективности расхода электрической энергии, а также равномерного движения.

В начале появления серводвигателей использовались коллекторные трехполюсные моторы с обмотками на роторе, и с постоянными магнитами на статоре. Кроме этого, в конструкции двигателя был узел с коллектором и щетками. Далее, по мере технического прогресса число обмоток двигателя увеличилось до пяти, а момент вращения возрос, так же как и скорость разгона.

Следующим этапом развития серводвигателей было расположение обмоток снаружи магнитов. Этим снизили массу ротора, уменьшили время разгона. При этом стоимость двигателя увеличилась. В результате дальнейшего проектирования серводвигателей было решено отказаться от наличия коллектора в устройстве двигателя. Стали применяться двигатели с постоянными магнитами ротора. Мотор стал без щеток, эффективность его возросла вследствие увеличения крутящего момента, скорости и ускорения.

В последнее время наиболее популярными стали сервомоторы, работающие от программируемого контроллера (Ардуино). Вследствие этого открылись большие возможности для проектирования точных станков, роботостроения, авиастроения (квадрокоптеры).

Так как приводы с моторами без коллекторов обладают высокими функциональными характеристиками, точным управлением, повышенной эффективностью, они часто применяются в промышленном оборудовании, бытовой технике (мощные пылесосы с фильтрами), и даже в детских игрушках.

Сервопривод отопления

По сравнению с механической регулировкой системы отопления, электрические сервоприводы являются наиболее совершенными и прогрессивными техническими устройствами, обеспечивающими поддержание параметров отопления помещений.

1 — Блок питания
2 — Комнатные термостаты
3 — Коммутационный блок
4 — Серводвигатели
5 — Подающий коллектор
6 — Обход
7 — Водяной теплый пол
8 — Обратный коллектор
9 — Датчик температуры воды
10 — Циркулярный насос
11 — Шаровый клапан
12 — Регулировочный клапан
13 — Двухходовой термостатический клапан

Привод системы отопления функционирует совместно с термостатом, установленным на стену. Кран с электрическим приводом монтируется на трубе подачи теплоносителя, перед коллектором теплого водяного пола. Далее выполняется подключение питания 220 вольт и настройка терморегулятора рабочего режима.

Система управления оснащается двумя датчиками. Один из них расположен в полу, другой в помещении. Датчики передают сигналы на термостат, управляющий сервоприводом, который соединен с краном. Повысить точность регулировки можно путем установки дополнительного прибора снаружи помещения, так как условия климата непрерывно изменяются, и оказывают влияние на температуру в комнате.

Привод механически соединен с клапаном для его управления. Клапаны могут быть двух- и трехходовыми. Двухходовой клапан может изменять температуру воды в системе. Трехходовой клапан способен поддерживать температуру неизменной, однако изменяет потребление горячей воды, которая подается в контуры. В устройстве трехходового клапана имеется два входа для горячей воды (трубы подачи) и выход обратной воды, через который подается смешанная вода с заданной температурой.

Смешивание воды происходит с помощью клапана. При этом осуществляется регулировка подачи теплоносителя в коллекторы. При открывании одного входа, другой начинает закрываться, а расход воды на выходе не изменяется.

Сервоприводы багажника

В настоящее время современные автомобили чаще всего стали производит с функцией автоматического открывания багажника. Для такой цели применяют рассмотренную нами конструкцию сервопривода. Автопроизводители используют два метода для оснащения такой функцией автомобиля.

Конечно, пневмопривод багажника более надежен, однако его стоимость достаточно высока, поэтому в автомобилях такой привод не нашел применения.

Электрический привод выполняется с разными способами управления:
  • Рукояткой на крышке багажника.
  • Кнопкой на панели двери водителя.
  • С пульта сигнализации.

Открывать багажник вручную не всегда бывает удобным. Например, зимой замок имеет свойство замерзать. Сервопривод дополнительно выполняет функцию защиты автомобиля от чужого проникновения, так как совмещен с устройством замка.

Такие приводы багажника используются на некоторых импортных автомобилях, однако, можно установить такой механизм и на отечественных машинах, было бы желание.

Существуют приводы багажника с магнитными пластинами, однако они не нашли применения, так как их устройство достаточно сложное.

Наиболее приемлемыми по цене являются сервоприводы багажника, которые выполняют только открывание. Функция закрывания для них недоступна. Также можно выбрать конструкцию модели привода, имеющего инерционный механизм. Он играет роль блокировки при появлении препятствия при движении багажника.

Дорогостоящие модели сервоприводов включают в себя механизм подъема и опускания багажника, доводчика механизма запирания, датчиков и контроллера. Обычно их на автомобилях устанавливают на заводе, однако простые конструкции вполне можно монтировать самостоятельно.

Похожие темы:

Сервопривод что такое и принцип работы

Сервопривод — сервомотор является электродвигателем, который осуществляет работу, основанную на принципе обратной связи. От ротора двигателя вращение через редуктор передается к управляющему механизму, обратная связь осуществляется управляющим блоком, который связан с датчиком, контролирующим угол поворота.   
Сервомоторами пользуются в автомобилях, чтобы обеспечить линейное и угловое перемещение элементов, к точному положению которых предъявляются высокие требования. Принцип работы сервопривода основан на корректировки работы электродвигателя, чтобы исполнить управляющий сигнал.

Сервопривод что такое и принцип работы

Сервопривод — состав и назначение

Если управляющим сигналом задается угол, с которым поворачивается выходной вал мотора, он преобразуется в подаваемое напряжение. Для обратной связи используют датчик, измеряющий одну из выходных характеристик мотора. Показания, собираемые датчиком обрабатывается блоком управления, затем корректируется работа серводвигателя.

Конструкция сервопривода состоит из электромеханического узла, элементы которого располагаются внутри одного корпуса. Сервопривод включает редуктор, электродвигатель, блок управления и датчик.

Основные характеристики сервопривода это рабочее напряжение питания, крутящий момент, частота вращения, материалы и конструктивные, используемый в конкретной модели.

Сервопривод — конструктивные и рабочие особенности

На современных сервоприводах пользуются двумя типами электромоторов с полым ротором и сердечником. Моторы с сердечником располагают ротором с обмоткой, и магнитами постоянного тока размещенными вокруг. Особенность этих электромоторов заключается в возникновении вибраций при вращении маятника, что приводит к снижению точности угловых перемещений.

Моторы, имеющие полый ротор не обладают таким недостатком, но являются более дорогими из-за сложной технологии производства.

Редукторы сервоприводов нужны чтоб понижать частоту вращения и увеличивать крутящий момент выводного вала. Многие редукторы сервоприводов включают цилиндрическую зубчатую передачу, шестерни, изготовленные из полимерных материалов и металла. Для металлических редукторов характерна высокая стоимость, но при этом отличаются прочностью и долговечностью.

В зависимости от того какая требуется точность работы в сервоприводах могут использоваться пластиковые втулки или шарикоподшипники чтобы выставлять выходной вал по отношению к корпусу.

Сервопривод также различается типом используемого управляющего блока, которые бывают аналоговыми и цифровыми. Цифровыми блоками обеспечивается более точное позиционирование основного элемента сервопривода и большая скорость реакции.

Понравилась статья? Поделись с друзьями в соц.сетях!

Принцип работы сервопривода, что такое сервопривод


Автор admin На чтение 5 мин. Просмотров 114

Сервопривод – это привод, предназначенный для осуществления контроля (угол поворота вала, скорость вращения/движения и так далее) над различными объектами, находящимися в постоянном движении. Контроль производится в зависимости от заданных ему параметров извне.

  • Устройство
  • Виды
  • Параметры
  • Принцип работы сервопривода
  • Управление
  • Преимущества и недостатки
  • Подключение
  • Шаговый сервопривод

Рисунок 1. Сервопривод

Данный механизм получил достаточно широкое применение в различных промышленных сферах. Например, чаще всего его можно увидеть в конструкциях станков/машин для создания таких материалов/предметов и их обработки как:

  • Упаковки и бумага;
  • Листовой металл;
  • Обработка материалов;
  • Транспортное оборудование;
  • Стройматериалы.

Также они могут использоваться в управляющих элементах механических систем (заслонка/задвижка, багажник автомобиля и тому подобные механизмы). Сервопривод очень полезен, так как позволяет поддерживать необходимый вам параметр.

Устройство

Рисунок 2. Устройство сервопривода

Сервопривод включает в свой состав такие элементы как:

  • Приводной механизм – к примеру, это может быть электромотор. Благодаря ему становится возможным управление скоростью нужного диапазона в определённый временной момент;
  • Датчики – осуществляют контроль над необходимыми параметрами. Могут быть предназначены для отслеживания положения, усилия, поворота угла или скорости вращения объекта;
  • Блок управления – немало важный элемент, так как именно благодаря ему происходит поддержание требуемых параметров в автоматическом режиме;
  • Блок питания – питает данный механизм.

Интересно, что самый простой управляющий блок чаще всего создаётся с использованием схемы сравнений значений на датчике и необходимых значений при подаче напряжения определённой полярности на привод.

Виды

Сервоприводы могут быть произведены в самых различных комплектациях. Эти устройства разделяют по принципу движения:

Вращательное

Представлено двумя вариациями: синхронной и асинхронной. Синхронный вариант помогает задать высокоточные параметры скорости вращения, углов поворота и ускорения. По сравнению с асинхронным скорость набирают быстрее, поэтому и стоят больше;

Асинхронный привод отличается способностью поддержания с большой точностью необходимой скорости даже в условиях низких оборотов.

Линейное

Также делится на два варианта: плоские и круглые. Двигатели данного типа развивают достаточно высокое ускорение (70 метров в секунду).

Ещё их выделяют по способу действия:

  • Электромеханические механизмы – формирование движений происходит за счёт электродвигателя с редуктором;
  • Электрогидромеханические – у них любое движение создаётся с участием системы поршня-цилиндра. В сравнении с электромеханическим приводом они обладают отличительно высоким быстродействием.

Параметры

Абсолютно любой сервопривод классифицируется по следующим параметрам:

Поворотная скорость представляет собой конкретный временной промежуток, необходимый для изменения позиции вала и зависима от определённого напряжения.

Поворотный угол выходного вала. Обычно этот параметр равен 180, 360.

Крутящий момент является самым важным параметром работы механизма и регулируется в зависимости от напряжения.

Управление сервопривода зависит от его типа – цифровой он или аналоговый.

Питание. Чаще всего в моделях используют напряжение, варьирующееся от 4.8 до 7.2 вольт.

Материал. Для изготовления редуктора могут использовать различные материалы. Для шестерней используют металл, карбон, пластик. Металл отличается большой устойчивостью в условиях динамических нагрузок, но не долговечен. Пластик долговечен, но не устойчив в динамических нагрузках.

Размер. По этому параметру приводы делят на микро-, стандартные и большие (существуют и другие размеры, но эти самые распространенные).

Принцип работы сервопривода

Рисунок 3. Принцип работы сервопривода

Движение редукторного выходного вала, который связан сервоприводом с шестернями, происходит за счёт работы электродвигателя. Для регулирования оборотов предназначен редуктор. Для управления необходимыми механизмами вал соединяется непосредственно с ними.

Его положение контролирует специальный датчик (на них основано всё устройство), который преобразует угол поворота в электро-сигналы. Такой датчик носит название энкодера. Во время поворота бегунка сопротивление энкодера изменяется. Это изменение пропорционально зависимо от угла поворота датчика. Благодаря этому принципу работы механизм можно зафиксировать в нужной позиции.

Для поддержания отрицательной обратной связи используется электронная плата, которая обрабатывает сигналы, приходящие от энкодера. Она сравнивает параметры и определяет запускать или остановить электродвигатель.

Управление

Для того чтобы серводвигатель мог функционировать в нём используют специальную систему, основанную на G-кодах. Упомянутые коды представлены набором управляющих команд, которые заложены в программе.

Например, в системе ЧПУ сервопривод контактирует с инверторами, способными изменять напряжение, которое соответствует входному, в обмотке электромотора.

Вся система серводвигателя управляется/контролируется блоком управления, из которого поступают различные команды, например, передвижения по оси Х или У. После подачи команды в инверторе создаётся определённое напряжение, питающее привод. Затем серводвигатель начинает своё круговое движение, связанное с главным исполнительным элементом механизма и энкодером.

Энкодер создаёт множество импульсов, которые подсчитываются блоком, осуществляемыми управление устройством. Для каждой позиции исполнительного элемента в программе установлено определённое количество импульсов. Так под их влиянием либо подаётся напряжение на моторчик, либо прекращается.

Преимущества и недостатки

Приятной особенностью сервоприводов является их достаточно малый размер и вес, что позволяет устанавливать их в различные конструкции с лёгкостью. Также они отличаются своей почти полностью бесшумной работой, что очень важно при использовании данных устройств на определённых участках. Любой сервопривод можно настроить персонально под свои конкретные задачи.

Благодаря сервоприводу можно осуществлять управление с отличительной большой точностью и стабильностью.

Из недостатков выделяется только сложность в их настройке и стоимости.

Подключение

Рисунок 4. Подключение сервопривода к системе Arduino

Подключение сервопривода осуществляется за счёт проводников в количестве трёх штук. Два проводника используются для подачи питания на электромотор, а оставшийся необходим для передачи сигналов от блока управления, которые приводят вал в нужную позицию.

Стоит отметить, что для того чтобы снизить вероятность огромных динамических нагрузок, которым может подвергаться электромотор, необходимо осуществлять как плавный разгон мотора, так и его торможение. Для этой цели создаются и используются более высокие по сложности микроконтроллеры, которые обеспечивают высокую точность в контроле и управлении положением рабочей детали.

Шаговый сервопривод

Сервопривод. Что это и как работает

Сервопривод – это механизм с небольшим мотором и специальным датчиком, по которому отслеживаются определенные значения, блока управления.

Задача устройства – вспомогательная. При помощи него работают второстепенные узлы и агрегаты, например, автомобиля.

Принцип действия

Работа устройства происходит по принципу обратного связи с сигналами, которые идут от систем машины. В тот или иной момент сервопривод Honeywell M7284Q1082 получает входящие параметры регулирующего значения и, в зависимости от сигнала, мотор включается, устанавливается направление его движения.

Сервопривод — вспомогательный привод, к примеру, мотор, открывающий люк или ворота привод стеклоочистителей, стеклоподъемник. Устройство комплектуется датчиками для считывания тех или иных параметров и может работать автономно.

Рано или поздно владельцы автомобилей, как правило, европейских, сталкиваются с необходимостью замены серводвигателя. Находится сервопривод в раздаточной коробке. Причин может быть несколько: износ Холла, неисправности вала или же просто закончился ресурс движка. Наш совет – не тяните с замной.

Конструкция устройства

Механизм данного типа, как правило, достаточно прост и имеет следующие составляющие:

1. Привод — мотор с редуктором. Уменьшает или оптимизирует скорость движения.

2. Датчик обратной связи.

3. Блок. От него идет питание к сервоприводу.

4. Вход или конвертер.

Сервоприводы для ворот

Автоматика для ворот делится на 2 группы:

1. Промышленного предназначения. Такие сервоприводы обеспечивают работу массивных и габаритных ворот.

1. Для частного использования. Приводы помогают открываться и закрываться самым обычным городским воротам.

В зависимости от типа и назначения секционных ворот, привод может быть укомплектован теми или иными элементами. Специалисты могут предложить электроприводы различной мощности, скорости работы, энергоэффективности, пыле- и влагозащищенности,. Чем выше ресурс устройства – тем большее его цена.

Кроме стандартных функций, имеющихся у автоматических сервоприводов, по желанию заказчика автоматические ворота могут быть дополнены множеством аксессуаров, которые облегчат их эксплуатацию и сделают работу максимально комфортной.

Новый взгляд на сервопривод и шаговый двигатель


Серводопровод или шаговый двигатель



Мы разберемся в нашей статье, что выбрать сервопривод или шаговый двигатель, что они собой представляют, для чего предназначаются, а также ответим на вопрос, сервопривод или шаговый двигатель разница.



Что представляет собой шаговой двигатель



Такие механизмы отлично подходят для превращения электрической энергии в точные механические перемещения. Любой импульс, который поступает на драйвер мотора, позволяет осуществлять движения ротора, что полностью соответствует заданным настройкам. Можно навести простой пример, если на полношаговый привод будет послано 100 импульсов, при том, что шаг двигателя составляет 1.8 градусов, это позволит получить поворот на 1800.



Разница между сервоприводом и шаговым двигателем в том, что каждый из них имеет как свои преимущества, так и недостатки. Сильная сторона последнего заключается в том, что он может выполнять свои функции даже без обратной связи, ему не требуется коррекция положения, при которой используются энкодеры или другие аналогичные датчики. Это связано с тем, что вал по архитектуре шагового двигателя перемещается только при получении импульсов. Такая возможность доступна только тогда, когда шаговые двигатели не перегружены, а также не впадают в резонанс. Но вот в реальной жизни очень редко бывает, что эти два фактора отсутствуют.



Чтобы получить уверенность, что такой двигатель не будет пропускать шаги, производители решают эту проблему очень просто, когда происходит выбор мощности, они делают серьезный запас мощности. Другими словами, отличие сервопривода от шагового двигателя заключается в том, что последний устанавливается на станок с большой мощностью, которой намного больше, чем это требуется.



Появление резонанса возможно на тех же самых частотах вращения, которые в данном приложении используются как основные, поэтому избежать это явление становится очень сложным.



Но существует и возможность избежать последствия непродолжительных перегрузок в его работе, а также не допустить пропуска шагов. В данном случае можно использовать энкодер, который такой же, как и установлен на вал вентильного серводвигателя. В этом также ответ, чем отличается сервопривод от шагового двигателя.



Энкодер – это информация о том, в каком положении находится ротор контроллеру. Он сравнивает его с заданной координатор, в результате чего полученное рассогласование используется, чтобы выполнить шаги так, чтобы разница компенсировалась. Но такой способ малоэффективен, если необходимо ликвидировать проблемы, связанные с резонансом. Тем не менее, все же есть возможность устранить последствия. Для этого требуется провести комбинирование по положению, другими словами, компенсировать количество импульсов, а также одновременно управлять ориентацией поля статора. При этом нужно придерживаться такого же принципа, как векторное управление электродвигателями с тремя фазами.



Сравнение сервопривода и шагового двигателя – вопрос достаточно сложный. Это связано с тем, что энкодер шагового двигателя предоставляет информацию о том, в каком положении вала можно сориентировать магнитное поле статора так, что потокозацепление будет иметь максимальную эффективность. К тому же такая схема не нуждается в преобразованиях Кларка, что, как правило, применяется для того, чтобы спроектировать трехфазную систему токов и получить две фазы. Это требуется потому, что биполярные моторы разработаны с двумя обмотками. Такой способ управления характеризуется тем, что ток в обмотках изменяется синусоидально, на этот процесс не влияет то, что используется – шаг или микрошаг.



Также если сравнивать шаговый двигатель и сервопривод, то преимущество первого также в том, что он практически не ощущает резких перемен напряжения. Благодаря наличию векторного типа управления, есть возможность очень быстро регулировать момент приводы. Тем не менее, такая возможность также доступна и сервоприводам. Это касается только типа PMSM.



Немного о сервоприводах



Здесь мы не только охарактеризуем, но и проведем сравнение сервопривод и шаговый двигатель. Когда прочитаете информацию, сможете сделать вывод, что лучше шаговый двигатель или сервопривод.



Наверняка Вы знаете, что сервопривод используется уже достаточно давно. Также у нас можно купить сервопривод высокого качества и по доступной стоимости.



Существует такие, которые используют по позиции обратную связь. Они имеют возможность считать количество шагов, а также добавлять в процессе или вычитать шаги, чтобы не допустить ошибку. Но они не могут вносить коррективы в угол поворота вала, когда делается шаг. Это принципиальная разница, если делать сравнение сервопривода и шагового двигателя.



Компенсировать ошибки может синусоидальная коммутация, если работает совместно с управлением ориентацией. Она устраняет ошибки, которые возникают по причине неправильной геометрии деталей или при серьезной нагрузке.



Векторное управление гарантирует, что статорное поле всегда будет перпендикулярным роторному полю, а также то, что насыщенность поля будет полностью соответствовать нужному моменту. Это улучшает динамику, а в дальнейшем и делает более эффективной работу, уменьшает флуктуацию крутящего момента. Благодаря такому управлению есть возможность составить конкуренцию шаговым двигателям с вентильным сервоприводом, если речь идет о скоростях, не превышающих 2 тыс. оборотов/мин.



Мы привели аргументы, если сравнивать шаговый двигатель или сервопривод, что лучше – определять Вам. Каждый человек выбирает, что ему подойдет лучше – сервопривод или шаговый двигатель. Мы же рассказали об основных моментах того и другого типа, навели некоторые примеры и особенности.



Вы можете у нас купить серводвигатель по выгодной стоимости. Мы гарантируем качество товара. Наши сотрудники с удовольствием ответят на интересующие вопросы, предоставят дополнительную информацию.

Часто задаваемые вопросы о сервоприводах

Что такое сервопривод?

Как управлять сервоприводом?

В отличие от щеточных двигателей постоянного тока, сервоприводы не могут работать, просто подавая напряжение. Помимо подачи напряжения питания (на красный провод) для двигателя, по сигнальному проводу (обычно желтому или белому) должен быть послан специальный сигнал, называемый ШИМ-сигналом. Этот сигнал может поступать из различных источников, таких как сервоконтроллеры, RC-приемники или Arduinos.

Сервоприводы

управляются посылкой им импульсов переменной ширины. Контрольный провод используется для отправки этого импульса. Параметры этого импульса таковы, что он имеет минимальный импульс, максимальный импульс и частоту повторения. Учитывая ограничения вращения сервопривода, нейтраль определяется как положение, в котором сервопривод имеет точно такое же количество потенциального вращения в направлении по часовой стрелке, как и в направлении против часовой стрелки. Важно отметить, что разные сервоприводы будут иметь разные ограничения на их вращение, но все они имеют нейтральное положение, и это положение всегда около 1.5 миллисекунд (мс).

Угол определяется длительностью импульса, подаваемого на провод управления. Это называется широтно-импульсной модуляцией. Сервопривод ожидает увидеть импульс каждые 20 мс. Длина импульса определяет, как далеко вращается двигатель. Например, импульс 1,5 мс заставит двигатель повернуться в положение 90 градусов (нейтральное положение).

Когда этим сервомашинам будет дана команда двигаться, они переместятся в положение и будут удерживать это положение. Если внешняя сила толкает сервопривод, когда сервопривод удерживает позицию, сервопривод будет сопротивляться выходу из этого положения.Максимальное количество силы, которое может оказать сервопривод, — это номинальный крутящий момент сервопривода. Однако сервоприводы не будут оставаться на своем месте вечно; импульс положения должен быть повторен, чтобы сервопривод оставался на месте.

Когда на сервопривод подается импульс длительностью менее 1,5 мс, сервопривод поворачивается в положение и удерживает выходной вал на некоторое количество градусов против часовой стрелки от нейтральной точки. Когда импульс шире 1,5 мс, происходит обратное. Минимальная ширина и максимальная ширина импульса, который заставит сервопривод повернуться в допустимое положение, являются функциями каждого сервопривода.Разные марки и даже разные сервоприводы одной марки будут иметь разные максимумы и минимумы. Обычно минимальный импульс имеет ширину около 1 мс, а максимальный — 2 мс.

Еще один параметр, который меняется от сервопривода к сервоприводу, — это скорость поворота. Это время, которое требуется сервоприводу, чтобы перейти из одного положения в другое. Наихудшее время поворота — это когда сервопривод удерживает минимальное вращение, и ему дана команда перейти на максимальное вращение.На сервоприводах с очень высоким крутящим моментом это может занять несколько секунд.

Цель этой информации — дать обзор того, как работают сервоприводы и как с ними взаимодействовать. Хотя мы предприняли шаги для обеспечения качества информации здесь, ServoCity не дает никаких гарантий относительно представленной информации. ServoCity не несет ответственности за любое использование или неправильное использование предоставленной информации. Если у вас есть вопросы по этой информации, пишите на [email protected]

Как мне управлять сервоприводом от Arduino?

Как мне управлять сервоприводом с Raspberry Pi?

Хотя Raspberry Pis может выводить сигнал ШИМ, они часто не могут поддерживать чистый сигнал из-за отсутствия специального таймера.Если вы управляете сервоприводами с Raspberry Pi, мы настоятельно рекомендуем приобрести сервопривод для вашего Raspberry Pi.

Как включить сервопривод?

Лучший способ запитать сервопривод — это использовать аккумулятор с напряжением в диапазоне напряжений, указанном в таблице спецификаций страниц сервопривода. Обязательно используйте исправную батарею, которая может обеспечивать более чем достаточный ток. Поскольку ток втягивается, а не проталкивается, наличие большего тока, чем необходимо, не повредит сервоприводу (это все равно, что иметь больше газа, чем вам нужно, чтобы получить место в машине).Питание серводвигателя подается по красному проводу. Может быть полезно перерезать красный провод (или использовать X-Acto, чтобы вытащить разъем из корпуса), чтобы вы могли подавать питание отдельно от сигнала. Это позволит вам питать ваш приемник от другой батареи, чем ваш сервопривод, если им нужны другие напряжения. Это также позволит вам запитать двигатель сервопривода напрямую от батареи, в то время как сигнал поступает от Arduino, поскольку выводы Arduino не могут обрабатывать ток, необходимый сервоприводу (обычно они достигают максимума 40 мА).

Как послать сигнал на большое расстояние?

Иногда при передаче сигнала на большое расстояние сигнал может ухудшаться из-за падения напряжения и электромагнитных помех (EMI). Усилитель сервосигнала может решить эти проблемы и упростить передачу сигнала на большое расстояние по проводу.

Как мне повернуть сервопривод на определенную величину (90 °, 180 °, непрерывно и т. Д.)?

При управлении с помощью системы радиоуправления большинство сервоприводов для хобби предлагают вращение на 90 ° (45 ° в любом направлении) прямо из коробки.Иногда это можно увеличить, если ваша радиосистема предлагает настройку конечной точки или ваш сервоконтроллер имеет перемычку на 180 °. Если вы используете цифровые сервоприводы Hitec, вы просто хотите приобрести ручной программатор, чтобы увеличить вращение. Если у вас есть аналоговый сервопривод Hitec или Futaba, который предлагает вращение только на 90 °, угол поворота иногда можно увеличить до 180 °, выполнив простую модификацию.

Примечание: Вы можете приобрести у нас сервоприводы Hitec, предварительно модифицированные на нашем собственном производственном предприятии, на отдельных страницах сервоприводов Hitec.Эта модификация аннулирует все гарантии ServoCity и Hitec.

Как заменить сервопривод?

Как измеряется скорость сервопривода?

Как измеряется крутящий момент сервопривода?

На что ссылается «направление» сервопривода?

Все сервоприводы будут вращаться по часовой стрелке и против часовой стрелки. Направление вращения сервопривода зависит от сигнала, который принимает сервопривод. Не все сервоприводы сразу после установки совпадают по направлению вращения.Если вы подключите сервопривод Hitec к приемнику радиоуправления или сервоконтроллеру и прикажете сервоприводу повернуться вправо (по часовой стрелке), он переместится вправо. Если вы затем подключите сервопривод Futaba к тому же ресиверу или сервоконтроллеру и скажете ему двигаться в том же направлении, что и сервопривод Hitec, он будет двигаться в противоположном направлении (против часовой стрелки). Это легко исправить с большинством систем радиоуправления, поскольку они имеют функцию серво реверсирования
на передатчике. Эта разница между производителями является причиной того, что каждый сервопривод будет иметь спецификацию, указывающую направление, в котором сервопривод будет двигаться с возрастающим сигналом ШИМ.

Что такое серво-сплайн?

Зубчатый выходной вал сервопривода обычно называют шлицем сервопривода. Для разбивки всех различных видов шлицевых сервоприводов на сервоприводы, которые мы продаем, ознакомьтесь с записью Servo Spline в нашем глоссарии.

Объяснение сервоприводов

— SparkFun Electronics

Стандартные сервоприводы для хобби

Стандартный хобби или сервопривод с замкнутым контуром будет иметь диапазон движения от 90 до 180 градусов.Некоторые из них будут немного больше или меньше указанного диапазона, поэтому проверьте спецификации двигателя, который вы хотите использовать, прежде чем внедрять его в свой проект. Стандартные сервоприводы обеспечивают обратную связь для контроллера, чтобы контролировать его положение на дуге перемещения по сигнальному проводу управления. Это позволяет вам перемещать сервопривод в точные места с правильной длиной импульса от вашего контроллера.

Непрерывное вращение

Сервоприводы с непрерывным вращением или «разомкнутым контуром» не работают как стандартные сервоприводы.Управляющий сигнал управляет только направлением и скоростью, но не положением. Они позволяют вам легко контролировать, насколько быстро движется приводной вал и в каком направлении он движется, но нет обратной связи для управления положением, поэтому они не рекомендуются для приложений, требующих перемещения между определенными точками на дуге вращения.

Размеры сервоприводов

Большинство сервоприводов для хобби классифицируются по размеру. У разных производителей могут быть небольшие различия в том, как они перечисляют свои размеры сервоприводов, но обычно их можно свести к трем типам: микро, стандартные и гигантские.Эти типы определяют как физический размер сервопривода, так и выходной крутящий момент, а также мощность, необходимую для создания этого крутящего момента.

У каждого типа есть свои преимущества и недостатки. Гигантский сервопривод будет способен генерировать намного больший крутящий момент, чем микро-сервопривод, но гигантский сервопривод потребует гораздо больше места и мощности для создания этой силы. Стандартный размер предлагает отличный вариант компромисса, где требования к мощности не слишком высокие, а выходной крутящий момент приемлем для большинства приложений.

Разбивка размеров для Hitec HS-85MG, Hitec HS-425BB и Hitec HS-805BB в миллиметрах

Принадлежности для сервоприводов

Сервопривод сам по себе не может сделать много, поэтому для получения максимальной отдачи от сервопривода необходимы аксессуары, подключенные к приводному валу. От удлинителей вала до комплектов захватов и наклонно-поворотных кронштейнов — есть все виды оборудования и компонентов, которые вы можете добавить в сервопривод, чтобы расширить и улучшить его функциональность.

При выборе сервопривода необходимо учитывать два важных фактора: размер шлицев или количество шлицев и размер сервопривода. Мы рассмотрели размеры сервоприводов в предыдущем разделе, поэтому здесь мы сосредоточимся на шлицах сервоприводов. Просто помните при выборе аксессуара для сервопривода, чтобы убедиться, что он будет работать с размером вашего сервопривода.

Размер шлицев сервопривода относится к размеру и количеству «зубцов» на выходном валу. Производители сервоприводов, такие как Hitec и Futaba, имеют несколько типов шлицев для различных классов сервоприводов.В зависимости от вашего сервопривода вы можете увидеть что-то вроде «C1 Spline» для стандартного сервопривода Hitec или, возможно, «3F Spline» для стандартного сервопривода Futaba. Как и размер сервопривода, просто убедитесь, что выбранные вами аксессуары вала соответствуют типу шлицев вашего сервопривода.

Что такое сервопривод: краткое руководство

Что такое сервопривод: краткое руководство

Стандартные технологии
Общество робототехники Сиэтла

Сервопривод — это небольшое устройство с выходным валом.Этот вал
можно позиционировать в определенных угловых положениях, отправив
серво кодированный сигнал. Пока кодированный сигнал существует на
входной линии сервопривод будет поддерживать угловое положение
вал. При изменении кодированного сигнала угловое положение
вал меняется. На практике сервоприводы используются в радиоуправляемых
самолетов для размещения управляющих поверхностей, таких как лифты и
рули. Они также используются в радиоуправляемых машинах, марионетках,
и, конечно же, роботы.

(Нажмите на картинку, чтобы увеличить
посмотреть)

Сервопривод Futaba S-148

Сервоприводы

чрезвычайно полезны в робототехнике. Моторы маленькие,
как вы можете видеть на картинке выше, есть встроенный элемент управления
схемы и чрезвычайно мощные для своего размера. Стандарт
сервопривод, такой как Futaba S-148, имеет крутящий момент 42 унции / дюйм, который
довольно сильный для своего размера. Он также потребляет мощность пропорционально
к механической нагрузке.Слегка нагруженный сервопривод, следовательно,
не потребляет много энергии. Показаны внутренности серводвигателя.
на картинке ниже. Вы можете увидеть схему управления,
мотор, набор шестерен и корпус. Вы также можете увидеть 3 провода
которые связаны с внешним миром. Один для питания (+5 вольт),
земля, а белый провод — провод управления.

(Нажмите на картинку, чтобы увеличить
посмотреть)

Сервопривод в разобранном виде.

Итак, как работает сервопривод? Серводвигатель имеет некоторый контроль
схемы и потенциометр (переменный резистор, он же потенциометр), который
подключен к выходному валу. На картинке выше горшок
можно увидеть на правой стороне печатной платы. Этот горшок
позволяет схеме управления контролировать текущий угол
серводвигатель. Если вал находится под правильным углом, двигатель
Выключается. Если схема обнаруживает, что угол неправильный, она
повернет двигатель в правильном направлении до тех пор, пока угол не станет
правильный.Выходной вал сервопривода может перемещаться
где-то около 180 градусов. Обычно это где-то 210
диапазон градусов, но он зависит от производителя. Нормальный сервопривод
используется для управления угловым перемещением от 0 до 180 градусов. А
нормальный сервопривод механически не способен поворачиваться дальше
из-за механического упора, встроенного в главную ведомую шестерню.

Мощность, подаваемая на двигатель, пропорциональна
расстояние, которое ему необходимо преодолеть.Итак, если валу нужно повернуть
большое расстояние, мотор будет работать на полной скорости. Если это нужно
поверните только небольшое количество, двигатель будет работать с меньшей скоростью.
Это называется пропорциональным управлением.

Как сообщить угол, под которым сервопривод должен
очередь? Контрольный провод используется для сообщения угла. В
угол определяется длительностью импульса, подаваемого на
провод управления. Это называется импульсной кодированной модуляцией. В
сервопривод ожидает увидеть импульс каждые 20 миллисекунд (.02 секунды).
Длина импульса определяет, как далеко вращается двигатель. А
Например, импульс 1,5 миллисекунды заставит двигатель переключиться на
положение 90 градусов (часто называемое нейтральным положением). Если
импульс короче 1,5 мс, тогда двигатель включит
вал, чтобы приблизиться к 0 градусам. Если импульс длиннее 1,5 мс,
вал поворачивается ближе к 180 градусам.

Как видно на картинке, длительность импульса
определяет угол выходного вала (показан зеленым кружком
со стрелкой).Обратите внимание, что время здесь носит иллюстративный характер, и
фактическое время зависит от производителя двигателя. В
принцип, однако, тот же.


Работа серводвигателей

| Как работают серводвигатели

Как работают серводвигатели

Этот маленький мотор отличается высоким КПД и мощностью

Серводвигатели существуют уже давно и используются во многих приложениях. Они небольшие по размеру, но обладают большой мощностью и очень энергоэффективны.Эти особенности позволяют использовать их для управления игрушечными машинками, роботами и самолетами с дистанционным или радиоуправлением. Серводвигатели также используются в промышленных приложениях, робототехнике, поточном производстве, фармацевтике и пищевой промышленности. Но как работают маленькие ребята?

Сервосистема встроена прямо внутри моторного блока и имеет позиционируемый вал, который обычно оснащен шестерней (как показано ниже). Двигатель управляется электрическим сигналом, который определяет величину перемещения вала.

Что внутри сервопривода?

Чтобы полностью понять, как работает сервопривод, вам нужно заглянуть под капот. Внутри находится довольно простая установка: небольшой двигатель постоянного тока, потенциометр и схема управления. Мотор прикреплен шестернями к управляющему колесу. Когда двигатель вращается, сопротивление потенциометра изменяется, поэтому схема управления может точно регулировать, насколько велико движение и в каком направлении.

Когда вал двигателя находится в желаемом положении, питание двигателя прекращается.В противном случае двигатель вращается в соответствующем направлении. Требуемое положение передается с помощью электрических импульсов по сигнальному проводу. Скорость двигателя пропорциональна разнице между его фактическим положением и желаемым положением. Таким образом, если двигатель находится рядом с желаемым положением, он будет вращаться медленно, в противном случае он будет вращаться быстро. Это называется пропорциональным управлением . Это означает, что двигатель будет работать ровно настолько, насколько это необходимо для выполнения поставленной задачи, очень эффективный маленький парень.

Как сервопривод управляется?

Внутренности серводвигателя (L) и собранного сервопривода (R)
Сервомашинки
управляются путем отправки электрического импульса переменной ширины или широтно-импульсной модуляции (ШИМ) через провод управления.Есть минимальный импульс, максимальный пульс и частота повторения. Серводвигатель обычно может поворачиваться только на 90 ° в любом направлении, всего на 180 °. Нейтральное положение двигателя определяется как положение, в котором сервопривод имеет одинаковую величину потенциального вращения как по часовой стрелке, так и против часовой стрелки.
ШИМ, отправляемый на двигатель, определяет положение вала на основе длительности импульса, отправляемого через провод управления; ротор повернется в нужное положение. Серводвигатель ожидает увидеть импульс каждые 20 миллисекунд (мс), и длина импульса будет определять, насколько далеко двигатель вращается.Например, импульс 1,5 мс заставит двигатель повернуться в положение 90 °. Менее 1,5 мс перемещает его против часовой стрелки к положению 0 °, а более 1,5 мс поворачивает сервопривод по часовой стрелке к положению 180 °.
Положение сервопривода с регулируемой шириной импульса

Когда эти сервоприводы получают команду двигаться, они перемещаются в положение и удерживают это положение. Если внешняя сила толкает сервопривод, когда сервопривод удерживает позицию, сервопривод будет сопротивляться выходу из этого положения.Максимальное усилие, которое может оказать сервопривод, называется номинальным крутящим моментом сервопривода. Однако сервоприводы не будут оставаться на своем месте вечно; импульс положения должен быть повторен, чтобы сервопривод оставался на месте.

Типы серводвигателей

Есть два типа серводвигателей — переменного и постоянного тока. Сервопривод переменного тока может выдерживать более высокие скачки тока и, как правило, используется в промышленном оборудовании. Сервоприводы постоянного тока не предназначены для сильных скачков тока и обычно лучше подходят для небольших приложений.Вообще говоря, двигатели постоянного тока менее дорогие, чем их аналоги переменного тока.
Это также серводвигатели, которые были созданы специально для непрерывного вращения, что упрощает движение вашего робота. Они оснащены двумя шарикоподшипниками на выходном валу для уменьшения трения и легкого доступа к потенциометру регулировки точки покоя.

Применения серводвигателя

Сервоприводы используются в радиоуправляемых самолетах для позиционирования поверхностей управления, таких как рули высоты, рули направления, шагающий робот или управляющие захваты.Серводвигатели небольшие, имеют встроенную схему управления и обладают хорошей мощностью для своего размера.

В сфере общественного питания и фармацевтики инструменты предназначены для использования в более суровых условиях, где высока вероятность коррозии из-за многократной мойки при высоких давлениях и температурах для соблюдения строгих гигиенических стандартов. Сервоприводы также используются в поточном производстве , где требуется высокая повторяемость, но точная работа.

Конечно, вам не нужно знать, как работает сервопривод, чтобы использовать его, но, как и в случае с большинством электроники, чем больше вы понимаете, тем больше возможностей открывается для расширенных проектов и возможностей проектов.Если вы любитель, конструирующий роботов, инженер, разрабатывающий промышленные системы, или просто постоянно любопытствуете, куда вас приведут серводвигатели?

Руководство покупателя серводвигателя


Если у вас есть история или проект в области электроники, которым вы хотели бы поделиться, отправьте электронное письмо [электронная почта защищена].

Что такое сервопривод?

Сервопривод, сокращенно от «сервомеханизм» или «серводвигатель», — это простой механизм, который добавляет движение любому электронному проекту. Этот полезный двигатель, изначально использовавшийся в автомобилях и самолетах с дистанционным управлением, очень популярен благодаря простоте точного управления его движением.

Двигатель постоянного тока против сервопривода Hobby

Обычный двигатель постоянного тока имеет два соединительных провода и просто непрерывно вращается при подаче питания. Чтобы вращаться в обратном направлении, мощность необходимо поменять местами. Нет встроенного способа измерить угол поворота двигателя. Если это необходимая метрика, это должна быть дополнительная часть проекта.

Серводвигатель, с другой стороны, получает указание точно, где он должен вращаться, с помощью тщательно синхронизированных импульсов, которые можно измерить в вашем коде.Сервопривод имеет три провода: питание и заземление, а также третий провод для передачи командных импульсов.

Двигатель постоянного тока (слева), сервопривод Hobby (справа)

Как работают сервоприводы?

В самом общем смысле сервопривод — это устройство, которое использует обратную связь для достижения желаемого результата. Управление с обратной связью используется во многих различных областях, включая скорость, положение и температуру. Большинство серводвигателей имеют диапазон вращения от 0 до 180 градусов и обеспечивают петлю обратной связи по местоположению / углу для микроконтроллера, поэтому ваш Arduino, например, знает, под каким углом он находится.Затем вы можете использовать микроконтроллер, чтобы указать сервоприводу двигаться на определенный угол, и он будет двигаться и оставаться там, пока вы не скажете ему снова повернуться.

С помощью потенциометра, прикрепленного к вращающемуся валу, сервоприводы определяют положение. Измеряется ширина входящего импульса, и на двигатель подается ток для вращения вала до тех пор, пока потенциометр не покажет, что положение соответствует ширине входящего импульса. Это форма контроля с обратной связью. В это время двигатель получил желаемое положение по ширине импульса, и фактическое положение вала передается обратно в схему через потенциометр.

Идем дальше

Подходит ли сервопривод для вашего проекта? Ознакомьтесь с нашим списком двигателей, их достоинствами и недостатками.

Продолжайте свое обучение сервоприводам с помощью нашего учебного пособия по сервоприводам для хобби. Это руководство проведет вас от введения в сервоприводы к управлению сервоприводом с помощью Arudino, а также к поиску неисправностей.

Назначение серводвигателей | Колонна для продуктов Fuji Electric

Сервосистемы

Назначение серводвигателей

Технологии прошли долгий путь с момента изобретения колеса в 3500 B.C. Технологический прогресс позволил людям жить и работать более удобно и более эффективно. С сотнями тысяч технологических прорывов на протяжении всей истории некоторые из наиболее важных повседневных технологий потерялись в беспорядке, и люди со временем перестали осознавать их важность.
Без ведома большинства людей, такие детали, как серводвигатели, играют огромную роль в ежедневном облегчении жизни людей. Небольшие технологические элементы, такие как серводвигатели, ежедневно активно используются в устройствах, которых вы меньше всего ожидаете, как вы узнаете из продолжения этой статьи.Он также используется в промышленной сфере, в том числе в различных продуктах Fuji Electric.
Узнайте все, что вам нужно знать о серводвигателях, включая его назначение, список предметов повседневного обихода и механизмов, которые работают с ним, его преимущества и недостатки, а также его части и их функции.

Назначение

Серводвигатели или «сервоприводы», как их еще называют, представляют собой электронные устройства и поворотные или линейные приводы, которые вращают и толкают части машины с точностью.Сервоприводы в основном используются для углового или линейного положения, а также для определенной скорости и ускорения.

Компании активно используют серводвигатели из-за их компактности и мощности. Несмотря на свой размер, он генерирует довольно много энергии и известен своей невероятной энергоэффективностью.

Большинство компаний, использующих сервоприводы, являются производственными компаниями, которым они нужны для позиционирования управляющих поверхностей и вращения объектов на точные углы и расстояния. Большинство компаний, использующих серводвигатели, являются производственными компаниями, которые используют машины с сервоприводами.

Два типа серводвигателей

Есть два типа серводвигателей, которые доступны и используются в промышленной сфере.

Во-первых, серводвигатель переменного тока. Этот тип сервопривода в настоящее время используется большинством компаний. Серводвигатели переменного тока в основном используются в промышленных областях. Серводвигатели переменного тока — это двигатели переменного тока, которые используют энкодеры. Эти типы серводвигателей работают через контроллеры, обеспечивающие обратную связь и управление с обратной связью. Известно, что они работают с высокой точностью и легко управляемы.

Второй — серводвигатель постоянного тока. Такие серводвигатели использовались Fuji Electric в прошлом, но в настоящее время используются редко, поскольку серводвигатели переменного тока проще в использовании, более эффективны, усовершенствованы и надежны.

Элементы, в которых используются серводвигатели

Серводвигатели

используются в предметах, которые используются каждый день. Домашние электронные устройства, такие как проигрыватели DVD и Blu-ray Disc, используют сервоприводы для извлечения и втягивания лотков для дисков.

В автомобилях также используются серводвигатели.В современных автомобилях для управления его скоростью используются серводвигатели. При нажатии на педаль газа он посылает электрические сигналы на компьютер автомобиля. Затем компьютер обрабатывает эту информацию и отправляет сигнал сервоприводу, прикрепленному к дроссельной заслонке, чтобы отрегулировать скорость двигателя. Даже коммерческие самолеты также используют сервоприводы, чтобы толкать и тянуть все, что находится внутри самолета.

Они также используются для новинок, таких как игрушечные машинки с дистанционным управлением и масштабных размеров, игрушечные самолеты, игрушечные вертолеты и игрушечные роботы.Сервоприводы особенно полезны для радиоуправляемых самолетов для позиционирования рулевых поверхностей.

Но сервоприводы в основном используются в промышленных целях. Такие важные отрасли, как робототехника, фармацевтика, общественное питание и поточное производство, также используют сервоприводы.

Сервоприводы

также наиболее подходят для механизмов с электрическим приводом, таких как лифты, рули направления, шагающие роботы и рабочие захваты.

Преимущества и недостатки

Серводвигатели

обладают рядом преимуществ, но, как и все остальное, они также создают некоторые проблемы и трудности для компаний, использующих это устройство.

Преимущества

Известно, что сервоприводы

работают часто и работают с одинаковой скоростью. Таким образом, если на двигатель возложена большая нагрузка, драйвер будет увеличивать ток, подаваемый на катушку двигателя, когда он вращает двигатель. По сути, это означает, что серводвигатели всегда будут механически исправны. А благодаря своей точности он позволяет компаниям работать с ним в быстром темпе.

Недостатки

Как и все, что обеспечивает удобство и эффективность, серводвигатели, как правило, имеют высокую стоимость, когда речь идет о техническом обслуживании и эксплуатации.Более того, когда машина, использующая сервопривод, остановлена, двигатель продолжает двигаться вперед и назад на один импульс, поэтому нехорошо, если машина или участок не подходят для вибрации.

Детали и функции серводвигателей

Серводвигатель состоит из множества частей, каждая из которых играет жизненно важную роль в функциональности устройства. Вот его наиболее важные части и значительная роль, которую они играют в функциональности сервоприводов.

  • Статор — Статор создает вращающееся магнитное поле для эффективного создания крутящего момента.
  • Обмотка — Ток, протекающий в обмотке, создает вращающееся магнитное поле.
  • Вал — Вал передает выходную мощность двигателя. Эта нагрузка передается через передаточный механизм.
  • Ротор — Ротор представляет собой постоянный магнит, расположенный снаружи вала.
  • Энкодер — оптический энкодер всегда отслеживает и вычисляет количество завершенных оборотов и отслеживает положение вала.

Каждая часть серводвигателя служит огромной цели, заставляя сервоприводы правильно функционировать или работать.

Заключение

Серводвигатели

— одно из самых важных устройств на планете сегодня, хотя большая часть населения мира не знает о его существовании и важности. Многие компании продолжают полагаться на сервоприводы из-за их надежности, точности, эффективности, размера и мощности. Неудивительно, что компании будут продолжать использовать эти полезные устройства в ближайшие годы.

Сопутствующие товары

Сервопривод

— Ссылка Arduino

Позволяет платам Arduino / Genuino управлять различными серводвигателями.
Эта библиотека может управлять большим количеством сервоприводов.
Он осторожно использует таймеры: библиотека может управлять 12 сервоприводами, используя только 1 таймер.
На Arduino Due вы можете контролировать до 60 сервоприводов.

Эта библиотека совместима с avr, megaavr, sam, samd, nrf52, stm32f4, mbed
архитектуры так что вы
должен иметь возможность использовать его на
следующие платы Arduino:

Чтобы использовать эту библиотеку, откройте Диспетчер библиотек в
в
Arduino IDE и установите ее оттуда.

Использование

Эта библиотека позволяет плате Arduino управлять серводвигателями RC (хобби). Сервоприводы имеют встроенные шестерни и вал, которым можно точно управлять. Стандартные сервоприводы позволяют располагать вал под разными углами, обычно от 0 до 180 градусов. Сервоприводы непрерывного вращения позволяют устанавливать различные скорости вращения вала.

Библиотека Servo поддерживает до 12 двигателей на большинстве плат Arduino и 48 на Arduino Mega. На платах, отличных от Mega, использование библиотеки отключает функцию analogWrite () (PWM) на контактах 9 и 10, независимо от того, есть ли на этих контактах сервопривод.На Mega можно использовать до 12 сервоприводов, не мешая функциональности ШИМ; использование двигателей от 12 до 23 отключит ШИМ на контактах 11 и 12.

Для использования этой библиотеки:

Схема

Серводвигатели

имеют три провода: питание, заземление и сигнал. Провод питания обычно красного цвета и должен быть подключен к выводу 5V на плате Arduino. Заземляющий провод обычно бывает черного или коричневого цвета и должен быть подключен к контакту заземления на плате Arduino. Сигнальный контакт обычно желтого, оранжевого или белого цвета и должен быть подключен к цифровому контакту на плате Arduino.