Стабилизатор накала на полевом транзисторе: 11 схем питания различной сложности

Устройство защиты накала ламп. | Вячеслав Калашник

Из электротехники известно, что сопротивление нити накала электровакуумных приборов в холодном состоянии в 10 раз меньше, чем в нагретом. Таким образом, в маленьком объеме нити накала мгновенно выделяется большая тепловая мощность. Это приводит к термонапряжениям в стеклянном баллоне и нити накала. Для увеличения срока службы мощных и дорогостоящих радиоламп, прожекторов, проекционных и прочих ламп используют ступенчатое или плавное включение нити накала на полную мощность. Обычный метод уменьшения бросков тока — это установка мощных низкоомных сопротивлений. Мощные полевые транзисторы позволяют избавится от дорогих, дефицитных низкоомных резисторов. На рис.1 показана принципиальная электрическая устройства позволяющая в две ступени увеличить ток через нить накала. Основой устройства является электронный ключ на полевых транзисторах VT2,VT3 и RS триггер на логических элементах 2И-НЕ (DD1.2,DD1.3). В этом устройстве полевые транзисторы работают как стабилизаторы тока (низкоомные резисторы не требуются). Цепочка R3C3 служит для установки RS триггера в исходное состояние при первоначальном запуске. В момент включения устройства (а также при пропадании напряжения накала) на выводе 9 логического элемента DD1.2 появляется уровень нулевого напряжения. Для логического элемента «2И-НЕ» приоритетный сигнал — уровень нуля. Особенностью RS-триггера является то, что он срабатывает от первого нулевого импульса, а на остальные не реагирует. Интегрирующая цепь R2С2 создает временную задержку на включение, порядка 4 сек. В первоначальный момент заряд конденсатора С2 идет через резистор R2,VD2. Таким образом, через 4 сек. на выходе логического элемента DD1.1 появляется уровень нуля. Итак, в исходный момент на выводе 9 DD1.2 уровень нуля, а на выводе 5 DD1.3 уровень единицы. Такому состоянию входных сигналов RS-триггера соответствует то, что на выводе 10 будет уровень единицы, транзистор VT1 открыт. Этот транзистор подключает резистор R5 параллельно резистору R6, в результате чего выходное напряжение стабилизатора VR1 снижается до уровня установленного резисторами R5,R6. Электронный ключ открыт, и напряжение накала поступает на нагрузку через транзисторы VT2,VT3, но ток нагрузки будет ограничен. После заряда конденсатора С3 на выводе 9 DD1.2 присутствует уровень единицы. Единичные сигналы на обоих входах RS-триггера соответствуют режиму хранения информации триггера. Через 4 секунды на выводе 5 DD1.3 появляется уровень нуля, триггер переворачивается и подает низкий уровень на транзистор VT1. Транзистор закрывается, и резистор R5 отключается от резистора R6, выходное напряжение стабилизатора VR1 увеличивается, каналы транзисторов VT2,VT3 полностью открываются (напряжение накала без ограничения тока поступает на нагрузку). В случае кратковременного пропадания напряжения накала на конденсаторе С3 сформируется уровень нуля, триггер вернется в первоначальное состояние и подаст высокий уровень на транзистор VT1 а, следовательно, включит резистор R5 параллельно резистору R6. Выходное напряжение стабилизатора VR1 уменьшится, в результате чего произойдет ограничение тока нагрузки транзисторами VT2.VT3, так как уменьшится управляющее напряжение (между затвором и истоком). По истечению выдержки времени в 4 сек. триггер перевернется и транзисторы VT2,VT3 полностью откроются. Временную задержку можно изменить путем изменения постоянной времени интегрирующей цепи R2C2. Светодиод VD3 осуществляет индикацию работы силового ключа. Если ключ ограничивает ток нагрузки, то светодиод светит тускло, а без ограничения ярко. Устройство работает следующим образом. Учтем, что защитные диоды полевых транзисторов включены катодом к стоку. В исходном состоянии каналы полевых транзисторов закрыты (нет питания). Пусть отрицательная полуволна источника напряжения накала присутствует на стоке транзистора VT2. Ток проходит через защитный диод полевого транзистора VT2, стабилитрон VD1, резистор R1, другой вывод источника переменного напряжения. На стабилитроне VD1 возникает падение напряжения в 12В. Через диод VD2 заряжается конденсатор С1 и микросхемы VR1,DD1 получают питание. При положительной полуволне напряжения на стоке транзистора VT2 устройство не получает питания, так как защитный диод полевого транзистора VT2 закрыт. Диод VD2 предотвращает разряд конденсатора С1. Если устройство будет использоваться только для питания накала ламп от источников постоянного тока, то диод VD2 можно удалить, заменив его перемычкой. Микросхема VR1 представляет собой регулируемый стабилизатор положительного напряжения с малым падением напряжения вход-выход. Она имеет встроенную защиту по току и перегреву. Выходное напряжение может регулироваться в пределах от 1,2 … 34В. Отечественный аналог импортной микросхемы КР142ЕН22. Рассмотрим, как получает питание устройство при открытых каналах транзисторов VT2,VT3. Пусть на стоке транзистора VT2 действует положительная полуволна. Ток проходит через открытый канал транзистора VT2, стабилитрон VD1 (падение напряжение на нем 0,7В), резистор R1, другой вывод источника переменного тока. На стоке транзистора VT2 действует отрицательная полуволна. Ток проходит через открытый канал транзистора VT1 и его открытый защитный диод, стабилитрон VD1 (падение на нем 12В), резистор R1, другой вывод источника переменного тока. Микросхема DD1 может работать от напряжения в 3-15В. Принцип работы электронного ключа на полевых транзисторах заключается в том, изменяя управляющее напряжение между затвором и истоком полевого транзистора, можно установить необходимый ток стока транзистора. Полевые транзисторы VT2,VT3 имеют следующие параметры IRL3205 Uds=55v, Is=110A, R=0.008Om. Рассмотрим, как осуществляется регулировка тока в нагрузке. Выходное напряжение с микросхемы VR1 поступает на затворы полевых транзисторов. Изменяя выходное напряжение микросхемы VR1, мы в свою очередь изменяем управляющее напряжение для полевых транзисторов. Полевые транзисторы с индуцированным затвором при нулевом напряжении между затвором и истоком имеют нулевой ток стока. Появление тока стока в таких транзисторах происходит при напряжении на затворе больше порогового уровня Uпор. Увеличение напряжения на затворе приводит к увеличению тока стока. Обычно пороговое напряжение находится в пределах 4-5В. Но существуют полевые транзисторы, имеющие пороговое напряжение в 2-3В. Фирма IRF добавляет в обозначение таких транзисторов букву L. Выходные характеристики полевых транзисторов, как правило, имеют две области: линейную и насыщения. В линейной области вольтамперные характеристики вплоть до точки перегиба представляют собой прямые линии, наклон которых зависит от напряжения на затворе. В области насыщения вольтамперные характеристики идут практически горизонтально, что позволяет говорить о независимости тока стока от напряжения на стоке. Иногда пороговое напряжение называют напряжением отсечки. Особенности этих характеристик обуславливают области применения этих транзисторов. В линейной области полевой транзистор используется как сопротивление, управляемое напряжением на затворе. Области насыщения и отсечки используют как ключ, управляемый напряжением на затворе. Таким образом, изменяя с помощью резистора R6 величину выходного напряжения стабилизатора VR1, происходит установка тока через электронный ключ. Ключ может коммутировать, регулировать и постоянный ток. К стоку транзистора VT2 необходимо подключить

(-)Еп, а к стоку транзистора VT3 подключаем (+)Еп. Величина резистора R1 выбирается в зависимости от приложенного к ключу напряжения (исходя от тока стабилитрона в 30мА). Верхняя граница тока накала определяется величиной резистора R6, а нижняя – величиной параллельного сопротивления резисторов R6//R5. Источник постоянного напряжения накала ламп нужно подключать СТРОГО МИНУСОМ к стоку транзистора VT2. ИСТОЧНИКИ НАКАЛА ламп могут быть напряжением как 6,3В, так и напряжением 12В (любое другое при соответствующем выборе резистора R1 и транзисторов VT2,VT3). Силовые транзисторы расположены на отдельном радиаторе. Если транзисторы обдувать воздухом с помощью вентилятора от компьютера, то габариты радиатора можно существенно уменьшить. Настройка заключается в установке напряжения на выходе стабилизатора. Лучше начать с минимального порогового напряжения для выбранных силовых транзисторов. Справочные данные и выходные характеристики можно найти в интернете. Чтобы точно установить ток используются переменные построечные резисторы СП3-39А с червячным механизмом передвижения ползунка. Печатная плата имеет размеры 64*45мм. Резисторы R5,R6 приклеены к плате вертикально.

MOSFET + TL431 = компенсационный стабилизатор напряжения

LDO = low dropout = малое минимальное падение напряжения на проходном элементе

Идеальный стабилизатор напряжения 🙂

Для популярного трёх-выводного интегрального стабилизатора LM317 (datasheet) минимальное падение напряжения, при котором ещё нормируется его работа — 3 Вольта. Причём в документации этот параметр явно нигде не указан, а так, скромненько, в условиях измерений упоминается. В большинстве же случаев подразумевается, что падение на чипе 5 Вольт и более:
«Unless otherwise specified, VIN − VOUT = 5V».

Баба Яга — против! Жалко терять 3 Вольта на глупом проходном транзисторе. И рассеивать лишние Ватты. Популярное решение проблемы — импульсные стабилизаторы — здесь не обсуждаем по причине того, что они свистят. С помехами можно бороться, но, как известно: кто не борется — тот непобедим! 😉

Идея
Идея данной схемки восходит к одному из многочисленных datasheet’ов на TL431. Вот, например, что предлагают National Semiconductor / TI:

Vo ~= Vref * (1+R1/R2)

Сам по себе такой регулятор не шибко интересен: на мой взгляд он ни чем не лучше, чем обычные трёхвыводные стабилизаторы 7805, LM317 и тому подобные. Минимальное падение на проходном дарлингтоне меньше 2 Вольт тут вряд ли удастся получить. Да к тому же никаких защит ни по току, ни от перегрева. Разве что транзисторы можно ставить на столько толстые, на сколько душа пожелает.

Недавно мне понадобилось-таки соорудить линейный стабилизатор с минимальным падением напряжения. Конечно, всегда можно извернуться, взять трансформатор с бОльшим напряжением на вторичке, диоды Шоттки в мост поставить, конденсаторов накопительных поболе… И всем этим счастьем греть трёхвыводной стабилизатор. Но хотелось-то изящного решения и с тем трансом, что был в наличии. Какой проходной регулятор может обеспечить падение близкое к нулю? MOSFET: у современных мощных полевиков сопротивление канала может быть единицы милли-Ом.

Простая замена дарлингтона на полевой транзистор с изолированным затвором и индуцированным каналом (т.е. самый обычный MOSFET) в схеме выше — не особо поможет. Так как пороговое напряжение затвор-исток будет Вольта 3-4 у обычных, и всё одно больше Вольта у «логических» MOSFET’ов — чем и будет задано минимальное проходное напряжение на таком стабилизаторе.

Интересно могло бы получиться при использовании полевика, работающего в режиме обеднения (т.е. со встроенным каналом), или с p-n переходом. Но к сожалению, мощные устройства этих типов нынче практически недоступны.

Спасает дополнительный источник напряжения смещения. Такой источник совсем не должен быть сильноточным — несколько миллиАмпер будет достаточно.

Схема — скелетик

Работает это всё очень просто: когда напряжение на управляющем входе TL431, пропорциональное выходному напряжению, падает ниже порогового (2.5V) — «стабилитрон» закрывается и «отпускает» затвор полевика «вверх». Ток от дополнительного источника через резистор «подтягивает» напряжение на затворе, а, следовательно, и на выходе стабилизатора.
В обратную сторону, при увеличении выходного напряжения, всё работает аналогично: «стабилитрон» приоткрывается и уменьшает напряжение на затворе полевика.
TL431 суть устройство линейное, никаких защёлок в ней нету:

TL/LM431 — эквивалентная блок-схема

Реальность
В схеме реального устройства я всё же добавил защиту по току, пожертвовав пол-Вольта падения в пользу безопасности. В принципе, в низковольтных конструкциях часто можно обойтись плавким предохранителем, так как полевые транзисторы доступны с огромным запасом по току и при наличии радиатора способны выдерживать бешеные перегрузки. Если же и 0.5 Вольта жалко, и защита по току необходима — пишите, ибо есть способы 😉

Низковольтный линейный стабилизатор напряжения с минимальными потерями

30 января 2012: Проверено 🙂 Работает отлично! При токах нагрузки примерно от 2А и выше — мощные диоды желательно усадить на небольшой радиатор. R8=0; C7=0.1 … 10мкФ керамика или плёнка.

При номиналах R5-R6-R7, указанных на схеме, диапазон регулировки выходного напряжения примерно от 9 до 16 Вольт. Естественно, реальный максимум зависит от того, сколько может обеспечить трансформатор под нагрузкой.
R4 необходимо использовать достойной мощности: PmaxR4 ~= 0.5 / R. В данном примере — двухватник будет в самый раз.

Где это может понадобиться
Например: в ламповой технике для питания накальных цепей постоянным током.
Зачем постоянный, да ещё так тщательно стабилизированный ток для питания нитей накала?

  1. Исключить наводки переменного напряжения в сигнальные цепи. Путей для просачивания «фона» из накальных цепей в сигнал несколько (тема для отдельной статьи!)
  2. Питать накал строго заданным напряжением. Есть данные, что превышение напряжения накала на 10% от номинального может сократить срок службы лампы на порядок. Нормы же допусков для напряжения питающей сети плюс погрешности исполнения трансформаторов и т.п. — 10% ошибки легко набежит.

Для 6-вольтовых накалов необходимо уменьшить R5: 5.6КОм будет в самый раз.

Что можно улучшить
Например, для питания нитей накала полезно добавить плавный старт. Для этого достаточно будет увеличить C4 скажем до 1000мкФ и включить между мостом и C4 резистор сопротивлением в 1КОм.

Немножко окололамповой мифологии
Позволю себе пройтись по поводу одного стойкого заблуждения, утверждающего, будто питание накала «постоянкой» отрицательно сказывается на «звуке».
Наиболее вероятный источник происхождения этого мифа, как водится — недостаток понимания и кривые ручки. Например: один трансформатор запитывает и аноды и накал. Номинальный ток накальной обмотки, скажем, 1А, который до этого питал накал ламп напрямую, и те потребляли чуть меньше этого самого 1А. Всё работало хорошо, может быть фонило чуток. Если теперь некий паяльщик-такелажник, мнящий себя «tube-guru», вдруг запитал те же лампы от той же обмотки но уже через выпрямитель/конденсатор/стабилизатор — всё, хана усилку! Объяснение простое, хотя не для всех очевидное:

  1. Во-первых, трансформатор теперь перегружен из-за импульсного характера тока заряда накопительной ёмкости (нужна отдельная статья!) Если вкратце: надо брать транс с номинальным током вторички примерно в 1.8 раза больше, нежели выпрямленный ток нагрузки.
  2. Во-вторых — ударные токи заряда накопительных емкостей в источнике питания накала ничего хорошего в анодное питание не добавят.

Здесь я не претендую на уникальность. Хоть и додумался я когда-то сам до этой полезной схемки, после мне уже доводилось встречать подобные решения ещё у нескольких серьёзных разработчиков. Просто хочу поделиться с вами, друзья, своими наработками, мыслями…

  • Вам было интересно? Напишите мне!

Друзья мои, собратья по интересам! Пишу и буду развивать этот блог — идей море и опыта уже накоплено предостаточно — есть чем поделиться. Времени как всегда мало. Что было бы интересно лично Вам?

Спрашивайте, предлагайте: в комментариях, или по e-mail (есть в моём профайле). Спасибо!

Всего Вам доброго!
— Сергей Патрушин.

P.S.: Продолжение темы ЗДЕСЬ: LDO прототип в бочке

vitsserg — LiveJournal

Блок питания — 1.

Как бы мне этого не хотелось, но наступил момент, когда нужно было делать блок питания для приёмника на сверхминиатюрных лампах. Я прекрасно понимаю, что это один из важнейших узлов устройства, но не люблю это дело, поскольку каждый раз нужно искать подходящий трансформатор (или мотать его самому), подходящие радиаторы, придумывать способы размещения,  крепления и т.д.
Для начала измерил реальные токи потребления уже готовых блоков приёмника при питании их от лампового «медного» стабилизатора (по цепи +200 В). Результаты получились такие:

— блок УКВ на нувисторах — 26 мА
— блок УПЧ на 6Ж1Б-В — 34 мА
— индикатор на 6Е3П — 2 мА
— УНЧ на 6П30Б — 35 мА.

Путём несложных вычислений определяем, что для питания потребуется источник +200 В / 97 мА. А с учётом запаса на всякие «неожиданности» — хотя бы 120 мА. Однако! 
«Заморачиваться» с ламповым стабилизатором не очень-то хотелось, поэтому решил сделать стабилизатор на мощном полевом транзисторе и задержку подачи анодного напряжения. За основу взял вот эту схему:

http://www.jogis-roehrenbude.de/Leserbriefe/Ernst-Schlemm-FM1/UKW-Super_FM1.htm

Собственно, только немного «подогнал» её под свои требования и имеющиеся детали.  Схему задержки подачи анодного напряжения позаимствовал у Андрея, для неё так же предусмотрен свой стабилизатор. Если будет использовано два силовых трансформатора (предусматривается такой вариант), то, запитав этот выпрямитель от «накального» трансформатора, получим своеобразный «датчик» наличия накала — пока не включится «накальный» трансформатор, анодное напряжение на будет подано на схему.

http://www.blokipitaniyakr.narod.ru/UKV_2/Chast_3/Foto/ris30.JPG

Для питания накалов решил сделать два стабилизатора на +6,3 В / 2,0 А. Один будет питать УПЧ и индикатор, второй — УКВ и УНЧ.
Для цифровой шкалы предусмотрен стабилизатор 12 В / 0,5 А.
Так же предусмотрен мост+электролит, если вдруг понадобиться запитать, например, транзисторный блок УКВ.
В итоге «родилась» вот такая схема:

Принципиальная схема блока питания.

Строилась она по тому же принципу, что и предыдущие — используем то, что есть 🙂  Даже использовал пару б/у электролитов (100 мкФ х 400 В). Конечно, совсем ничего не покупать не получится, но всё же.
Так что, указанные на схеме элементы «не догма, а руководство к действию» 🙂
Например, от разборки нашлось несколько мощных полевиков, разных типов, но с примерно одинаковыми параметрами. Использовал  SSS7N60B, поскольку их нашлось 2 шт и они опрессованы в пластик — не нужно мудрить с изоляцией фланца. Кстати, и цоколёвки у многих MOSFET-ов совпадают.
Для стабилизаторов накала нашлись ИМС КА350 — это регулируемый стабилизатор 1,2 … 33 В / 3 А. Их цоколёвка и схема включения полностью совпадают с LM1083 — 1084 и LM317.
Диоды и диодные мосты так же установил те, что подходят по параметрам из тех, что нашлись в «закромах».
Стабилитроны — КС551А. Ток стабилизации для них задаётся с помощью R3. Вместо R1 желательно бы установить дрссель на 5 … 10 Гн / 150 мА. Кстати, резисторы R1, R2 и  R4 весьма ощутимо нагреваются, несмотря на то, что они 5-ваттные.
Реле на 12 В, Siemens V 23012-B0102. Опять-таки, нашлось несколько штук в «закромах», посмотрел их параметры — подходят. К тому же, удобный корпус для монтажа на РСВ. 
Радиатор для полевого транзистора — от северного моста чипсета сгоревшей материнской платы Asus. При работе под полной нагрузкой (120 мА) он нагревается градусов до 45 — 50, что вполне терпимо.

Устройство собрано на двух печатных платах, изготовленных из импортного стеклотекстолита толщиной 1,5 мм. На одной из них (100 х 80 мм) собран анодный стабилизатор и схема задержки, на другой (65 х 80 мм) — все остальные источники питания.

Печатные платы после травления, полностью готовые к монтажу и их чертежи.

В пятницу протравил платы, в субботу-воскресенье всё обрезал-просверлил-залудил и смонтировал те детали, которые смог  у себя найти:

На фото: плата стабилизатора анодного напряжения в сборе.

На фото: плата крупным планом.

Плата стабилизаторов накала ещё не готова — не хватает некоторых деталей, в основном, электролитов. И, как ни странно,  закончились «запасы» ИМС 7812. 🙂 
Чуток ошибся с разводкой «резервного»  диодного мостика (перепутал + и -), поэтому пришлось припаять его со стороны дорожек.

На фото: плата стабилизаторов накала в процессе сборки.

Вчера и сегодня проводил испытания и настройку стабилизатора анодного напряжения и схемы задержки. С задержкой какая-то ерунда: можно выставить примерно 15-20 сек, а потом повернёшь подстроечный резистор буквально на чуть-чуть — время резко увеличивается до 90-120 сек. Что только не пробовал! Пока грешу на транзистор — КТ972 не было (а это «дарлингтон») и я «тупо» поставил КТ815, а параметры у них существенно отличаются.

Для проверки анодного стабилизатора подключил его к своему, извиняюсь, «стенду» из 3-х резисторов С5-37-10 по 560 Ом каждый. Это эквивалентно нагрузке в 120 мА при 200 В. 
В качестве силового трансформатора использовал старенький ТА-197. Соединив 4 вторичных обмотки, получил 220 В переменки при токе до 0,5 А. Это напряжение и подал на стабилизатор. Плюс у него есть две 12-вольтовые обмотки, одну из которых использовал для схемы задержки.
Хороший «старичок», но очень уж громоздкий!

На фото: испытательный «стенд».

Повозился немного с R7. Первоначально установил его на 6,8 Ом и при нагрузке 120 мА уже срабатывала защита. Уменьшил это сопротивление до 4,7 Ом — 120 мА стал держать без проблем. 
А когда подключил вместо 3-х резисторов два, то напряжение на выходе стабилизатора упало до 164 В, при этом ток был 145 мА. В принципе, большего и не нужно.
Подобрал резисторы R1 — R4. Греются они не по-детски. Стабилитрона на 18 В не нашлось, поэтому поставил пока 2 х Д818, включенных последовательно. 
Все напряжения, указанные на схеме, сняты под нагрузкой 120 мА.
В таком виде он проработал у меня больше часа — всё в норме.
При подключении нагрузки (120 мА), напряжение на выходе стабилизатора «проседает» на 2 В (с 204 до 202 В), что весьма неплохо. Пульсации ещё не смотрел, поскольку трансформатор «не родной».

Собственно, на этом пока и закончил свои эксперименты. Теперь нужно прикупить недостающие детали, подобрать подходящий радиатор для КА350 (есть «мысля» использовать радиаторы для CPU P-4 — их у меня много) и закрепить их на нём, проверить работу стабилизатора накала под нагрузкой ну и как-то решить вопрос с силовым трансформатором (-рами).

Фильтр питания на полевом транзисторе для лампового усилителя

Фильтр на полевом транзисторе для лампового усилителя давно и заслуженно пользуется популярностью у радиолюбителей. Очень многие сделали его, но не все удовлетворены результатом. Поэтому надеюсь, что вам будет интересно узнать, что у меня получилось и какие при сборке могут возникнуть проблемы.

Содержание / Contents

Наиболее популярна схема на рисунке слева. Поскольку я чуть-чуть изменил её для своих целей, привожу так же мой вариант справа.
Я использовал полевые транзисторы от неисправных электронных балластов для галогеновых ламп в обычном корпусе ТО-220, цоколёвка стандартная, как у большинства полевых транзисторов. Удобно добавить цепь R5R6C2 для создания постоянного смещения, подаваемого на нити накала ламп.Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Обратите внимание, что для фильтрации напряжения 250 В и тока до 0,5 А взяты транзисторы с допустимым напряжением К-Э примерно 50 В и стабилитроны с рабочим током 0,03 А.
Сделать фильтр на полевых транзисторах с напряжением 600…800 В и током от 3 А, конечно, гораздо проще.

По моему скромному мнению, названия «электронный дроссель» или «умножитель ёмкости», принципиально неверны. Это калька с иноязычных терминов для «домохозяек». Разница принципиальна: дроссель и конденсатор НАКАПЛИВАЮТ энергию, отдают её быстро, а транзисторный фильтр этого не может. Поэтому настоящий дроссель был бы лучше, если бы не обладал рядом недостатков: большим весом и габаритами, высоким активным сопротивлением, большим полем рассеяния.

С точки зрения чистой аудиофилии, классический сглаживающий LC фильтр лучше, форма напряжения и тока после него должна получаться более гладкой.

Транзисторный фильтр позволяет плавно увеличивать напряжение на выходе. Название «УЗФ» – Узел Задержки тоже не совсем удачно. Задержка происходила бы с помощью реле срабатывающего от таймера, здесь – не задержка, а плавное нарастание напряжения.

При изготовлении усилителя для наушников и УНЧ для АС на лампах 6Н3П и 6П14П мне полностью побороть фон удалось только с помощью данного транзисторного фильтра.

На мой взгляд, удобно делать типовые модули, например, такие.

В качестве теплоотвода использованы радиаторы размерами примерно 45×45х5 мм от древних компьютерных плат.
Нетипичен монтаж деталей со стороны фольги и использование отрезков лужёного провода от выводов деталей для точек подключения. Это сделано для упрощения монтажа – плата держится на выводах полевого транзистора (и плотно прилегает к нему) достаточно прочно, транзистор с платой крепится одним винтом к теплоотводу. Сначала я предусмотрел вторую точку крепления платы к радиатору, затем от неё отказался. На фото достаточно хорошо виден монтаж.
В целях безопасности использованы изоляционные втулки и прокладки.

Весьма рекомендую, иначе на корпусе теплоотвода будет напряжение 300 Вольт.

Применённый транзистор 03N60S5 в корпусе ТО-220, при комнатной температуре окружающей среды может рассеивать до 2 Ватт. Суммарный ток однотактного стереоусилителя на 6Н3П и 6П14П примерно 0,1 А, при падении напряжении на фильтре порядка 20 В, тепловая мощность будет как раз 2 Ватта, поэтому даже небольшой теплоотвод легко справится со своей задачей.

Если использовать фильтр на каждый канал, каждый транзистор будет рассеивать всего 1 Ватт. Но это в установившемся, статическом режиме, а вот при включении питания падение напряжения на фильтре будет значительным, тепловая мощность тоже. Поэтому теплоотвод необходим, особенно пока не закончатся переходные процессы.

Первый вариант платы был под малогабаритные теплоотводы, он может быть использован при недостатке места (конденсатор на первом фото снят для наглядности).

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.Есть немало споров: нужен или нет делитель R1R2 на входе фильтра и будет ли фильтр работать без него. Почему у одних фильтр без делителя работает нормально, а у других – нет. Оказалось, что всё зависит от утечки конденсатора С1.

Я испробовал около десятка конденсаторов 10 и 22 мкФ на напряжение 400 и 450 В при входном напряжении около 300 В.

Оказалось, что при оксидном (электролитическом) конденсаторе фильтр хорошо работает и без делителя. За счёт утечки в конденсаторе совместно с резистором R3 образуется делитель и падение напряжения на фильтре вполне достаточно (от 10 В и более). Мало того, в результате установки новых только что купленных конденсаторов, падение напряжения составило вместо 20 В (со старым выпаянным конденсатором) более 50 В. Нагрев резко увеличился, а выходное напряжение упало.

Потребовалась многочасовая формовка новых конденсаторов, и всё равно, утечка у конденсаторов 22 мкФ оказалась заметно выше, чем у 10 мкФ. Формовка, конечно, должна быть без подключённого усилителя.

Утечка плёночных конденсаторов будет многократно меньше, поэтому с ними делитель на входе необходим, иначе на выходе фильтра может быть «пила», как на входе. В любом случае надо контролировать падение напряжения на транзисторе фильтра, оно должно быть более 10 В.

Теперь посмотрим на осциллограммы напряжений на входе и выходе фильтра.

Размах от пика до пика 6 В. На входе фильтра – выпрямительный мост и ёмкость 120 мкФ, на выходе две ёмкости 120 мкФ, ток потребляемый усилителем 0,1 А.

Размах пульсаций на выходе примерно 6 мВ (соответствует синусоидальному сигналу примерно 2 мВ), форма пульсаций более гладкая, подавление пульсаций около 1000 раз! (масштаб на фото, конечно, разный).

Для подавления возможных помех на радиочастотах можно поставить дополнительный LC-фильтр. Для меня в этом не было необходимости – фон и помехи на слух отсутствовали. В усилителях более высокого класса дополнительный LC-фильтр (с небольшой малогабаритной индуктивностью) желателен.

Ввиду высоких напряжений и влияния утечек, промывка платы совершенно необходима. Между деталями и платой должен быть небольшой зазор.
После настройки платы желательно покрыть её со стороны фольги слоем лака «Plastik» или аналогичным.

Делитель R1R2 позволяет плавно регулировать напряжение на нагрузке и гасить, при необходимости, лишнее напряжение. В усилителе для наушников я погасил примерно 50 В. Это проще, чем менять силовой трансформатор.
Плавная подача напряжения полезна для ламп и сглаживает переходные процессы.

Надо отметить, что замыкания в нагрузке недопустимы – транзистор фильтра моментально выйдет из строя. На время предварительной настройки, если нет уверенности в монтаже усилителя и исправности элементов, фильтр даже можно заменить постоянным резистором, например, МЛТ-2. Для данного усилителя при токе потребления 0,1 А и падении напряжения на фильтре 20 В, годится резистор МЛТ-2 200 Ом.

Изготовление универсальных плат фильтров «впрок» я считаю простым и полезным. Платы не нуждаются в настройке. Требуется только отформовать конденсаторы, особенно если они новые и проверить входное и выходное напряжение, а при необходимости – подстроить последнее.

Просмотр напряжений на входе и выходе фильтра желателен. Во избежание выхода осциллографа из строя, напряжение надо подавать на его закрытый вход.

Заодно выяснилось, что разделительный конденсатор на входе С1-94 обладает утечкой, поэтому для наблюдения на пределе «10 мВ» пришлось включать его через дополнительную качественную (конечно, не «электролит») ёмкость с полипропиленовым диэлектриком.

Прилагаю файл с принципиальной схемой и рисунком печатной платы.
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Приятного творчества!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке.
Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Высоковольтный выпрямитель и стабилизатор для лампового УМЗЧ

Если не принимать во внимание идеологические соображения, то стабилизатор анодного напряжения усилителя мощности звуковой частоты (УМЗЧ) на радиолампах дает много преимуществ при конструировании – экономия пространства и массы по сравнению с конденсаторно-дроссельным фильтром сравнимых способностей, лампы можно безопасно использовать в режимах близких к критическим, существенное снижение фона, независимость от обычных капризов неважной (например деревенской) осветительной сети.

Здесь, стабилизированный источник анодного напряжения (+250 В) лампового усилителя на 4-х 6С19П выполнен на стандартном трансформаторе ТА251 с раздельными для каждого канала выпрямителями и стабилизаторами. Выпрямители «твердотельные» мостовые, на быстрых диодах шунтированных пленочными конденсаторами для нейтрализации «ненулевого времени рассасывания зарядов при их переключении». Стабилизаторы на высоковольтных полевых транзисторах с изолированными затворами. Применен компактный печатный монтаж и элементы широкого применения. Два выпрямителя и два стабилизатора смонтированы на небольшой печатной плате привинченной к спине игольчатого радиатора. На обратной стороне платы, со стороны печатного монтажа смонтированы и регулирующие элементы – полевые транзисторы. Они прижимаются к радиатору через изолирующие слюдяные прокладки при установке платы. Выводы стабилизаторов и выпрямителей смонтированы с учетом ее установки – только со стороны установки деталей. В целом, получилось вполне удобно.

Схема электрическая принципиальная выпрямителя и стабилизатора одного канала, ниже.

На схеме не показаны конденсаторы шунтирующие диоды выпрямительного моста, подбором напряжения и количества стабилитронов D1…D3 устанавливаем напряжение на выходе стабилизатора. Напряжения оксидных конденсаторов должны соответствовать действующим в схеме. Транзистор Т2 защищает регулирующий от перегрузок и замыканий, R6 разряжает конденсаторы выключенного прибора (полностью ~1 мин). Регулирующий транзистор можно заменить на подходящий по напряжению IRF.

Что было использовано для работы.

Набор инструментов и материалов для разработки и изготовления печатной платы (ПП), набор инструментов для радиомонтажа, нечто для сверления (станок, дрель), в том числе и для отверстий на ПП (0,5…1,5 мм). Набор инструмента для нарезания резьбы М3, радиоэлементы, мелочи.

Разработка платы.

Применение печатного монтажа в высококачественном УМЗЧ не желательно – увеличивается количество паек каждая из которых чуточку ухудшает результат – ясность звучания прибора. Если в транзисторных схемах это затруднительно, то в лаконичных ламповых схемах вполне возможно, более того удобно. Здесь, много установочных элементов закрепляемых на шасси. Большая часть мелких элементов преотлично монтируется на их лепестках и жестких выводах. Такой объемный монтаж был очень распространен в эпоху ранней ламповой электроники, а печатный вытеснил его как более технологичный в изготовлении, компактный и ремонтопригодный.

Здесь, к печатному монтажу пришлось прибегнуть во имя компактности – нужно было поместить довольно большой усилитель (его более мощную версию на 6С19П) с его блоком питания в один корпус с площадью близкой к стандартной аппаратуре (поставить в стойку). Более того, применение ПП в БП извинительно – SRPP топология выходного каскада усилителя, в отличие от традиционного однотактного не предполагает протекание сигнального тока через источник питания, требования к нему могут быть не столь высокими. Тем не менее, постарался сделать дорожки ПП максимально короткими и достаточно широкими, применил лужение дорожек и припой без свинца.

Печатная плата разработана в программе Sprint-Layout, два независимых стабилизатора (левый канал, правый канал) поместились на ПП размером 80х110. Здесь находятся все элементы схемы, включая большие емкости и регулируемые транзисторы. Последние смонтированы навыворот, со стороны печатного монтажа и при установке на радиаторе охлаждения прижимаются к нему спиной — металлическими фланцами. Все выводы схемы для внешнего сообщения с усилителем сделаны с учетом одностороннего доступа к плате. В целом, получился удобный модуль питания.

ПП получилась весьма простой и без SMD элементов, при ее изготовлении применен ручной способ нанесения лакового защитного рисунка – старым добрым рейсфедером.

Заготовка для ПП нашлась только с двухсторонним фольгированием. Лишний слой снял пинцетом прогрев его строительным феном. Клей при этом размягчается.

Зеркальный рисунок разработанной ПП напечатал на принтере, вырезал его ножницами, оставив со всех сторон широкие лепестки. Они загибаются на обратную сторону заготовки ПП и закрепляются липкой лентой. Центры отверстий накерниваются, бумага снимается, плата сверлится и зачищается.

Рисунок дорожек нанес традиционным битумным лаком, стеклянным (широкие дорожки, большие расстояния между отверстиями) рейсфедером. После высыхания лака рисунок ретушировал шилом и привязав тонкую медную проволочку положил в кювету для травления. Готовый раствор хлорного железа хранится в полиэтиленовом пищевом контейнере с герметической крышкой. Небольшие платы можно травить прямо в нем.

Плату помещаю медью ко дну, приподнятую доставательной проволочкой за один край. Таким образом, продукты реакции не скапливаются на поверхности меди и не замедляют процесс. Травление идет весьма быстро без всяких покачиваний и взбалтываний. Единственный момент – шлам может накопиться на дне, тогда его слой замедляет травление нижнего конца платы. Выход – периодически избавляться от осадка, обновлять раствор.

Для подогрева раствора поставил кювету-контейнер на остывающую дровяную плиту.

Вытравленную ПП отмыл ацетоном от лака, слегка зачистил и залудил дорожки, приступил к монтажу элементов.

Элементы были использованы не новые, пришлось каждый проверять, к счастью их не много. Использовал китайский приборчик, низковольтные стабилитроны удобно проверить на стационарном БП.

Конденсаторы шунтирующие диоды выпрямительного моста нахлобучил поверх них, выводы для подключения переменного напряжения сделал из нетонкой луженой проволоки.

Регулирующий транзистор расположен спиной к радиатору с обратной стороны платы, ось отверстий для винтов М3 проходит через середину пластиковой части транзистора.

Устанавливаемые торчком резисторы не только экономят место на плате, но и предоставляют удобные выводы для подключения внешних проводов, особенно полезных при отсутствии удобного доступа к дорожкам. Например, на фото выше стрелочкой показан вывод платы «+ Ua». У 2 Вт резисторов МЛТ штатные проволочные выводы коротковаты для такого монтажа – верхний приходится наращивать нетонкой луженной проволокой, у импортных выводы длиннее, хватает и своих. Белые керамические резисторы – датчик тока R5, составлен из 2х3,3 Ом.

Собранная плата запитана от трансформатора ТАН30. Обнаружилось интересное – выходное напряжение скачет резвым козленком, запросто может прыгнуть на 4 вольта вне зависимости от изменений в сети. Однако. Обычно стабилизатор являл собой полнейшее хладнокровие и невозмутимость. Осциллограф показал нечто любопытное на выходе. Самовозбуждение?

Причина нашлась не сразу и по наитию – главным злодеем оказался сетевой паяльник 40 Вт включенный через осветительный диммер (для регулировки температуры). Его нагревательная, но все-же обмотка (фактически — катушка индуктивности) излучала. Неудачная (удачная) топология ПП сработала как рамочная антенна и получился радиоприемник с передатчиком. В лучшем виде.

Достаточно было разорвать рамку антенны – удалить часть «земляной» печатной дорожки (по контуру коротких сторон ПП) и все встало на свои места – стабилизатор стал вести себя прилично, выходное напряжение изменяется только на десятые вольта при колебаниях в сети, наводка от паяльника радикально уменьшилась.

Луженые дорожки перерезал бормашинкой и оторвал поддев конец лезвием ножа.

Вот что у меня получилось при близком поднесении паяльника (печатный монтаж уже исправлен). Кроме того, стабилизатор в готовой конструкции будет находиться в металлическом кожухе, суть — экране.

Babay Mazay, апрель, 2020 г.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Роман Стеблянский — LiveJournal

Есть на просторах рунета такой сайт: http://lincor-lib.narod.ru/. Хозяин сайта некий Linkor — человек творческий настолько, что иногда сам не знает что творит! Так вот, друзья, не верьте всем его обещаниям насчет, цитирую: «Мягкое, детальное и чистое звучание, прекрасная передача вокала, сцены и объема, простая конструкция, не требует настройки».

Это, так сказать, присказка. Сказка будет впереди.

Связался как-то со мной по электронной почте давний клиент (у него успешно работает усилитель для наушников, переделанный мной) и попросил доделать полностью собранный и готовый к установке в корпус (это по словам другого радиолюбителя, у которого будет куплен готовый комплект плат и трансформаторов) усилитель на микросхеме LM3886. Почитав объявление в форуме о продаже и описание комплекта, где автор говорил: «Усилитель гибридный 2×40Вт Corsair LM3886+6Н23П ЕВ готов к установке в корпус, но требуется добавить фильтр в БП для устранения фона лампы и немного увеличить время включения нагрузки», я решил взяться за эту небольшую работу. Тем более, что на сайте уважаемый Linkor об этой своей разработке пишет: «Corsair — долгожданный гибридный усилитель на основе двойного триода и LM3886 в инвертирующем включении с Т-образной ООС. Позволяет получить великолепный звук, не похожий ни на что. Очень понравится любителям лампового звука и музыки, заполняющей собой все сознание. Схема проста и не требует настройки. Еще никогда такого качества звучания нельзя было добиться так просто.» Правда последние слова меня несколько насторожили, но я взялся за эту работу.

Как же я ошибался! Я, видимо, доверчивый человек! Потому что как последний лох повёлся на восторженные АВТОРСКИЕ отзывы!

Пока посылка с полусобранным усилителем шла ко мне, я изучил схему сего творения и пришел в ужас, честно говоря. Как это может хорошо работать?!!! WTF???!!!

Поясню. Идея проста. Включить LM3886 в инвертирующем варианте (так действительно лучше и так рекомендует делать производитель микросхем). Но тогда возникают вопросы с входным сопротивлением. Для разгрузки усилителя нужен входной буфер. Обычно его делают на микросхеме ОУ, но лампа — тоже вариант. Теоритически все верно. Но вот практическая реализация в этой схеме просто ужасна.

Катодный повторитель — классика жанра. Но, во-первых, какого черта автор запитал лампу так криво? При таком низком анодном напряжении и токе, как в этой схеме, мы попадаем в самую кривую часть ВАХ! Ответ я нашел на форуме vegalab.ru. Оказывается, что это было нужно для благозвучных ламповых искажений! OMG и LOL!

Во-вторых, зачем эта дурацкая Т-образная обратная связь? Она совершенно не нужна здесь. А коэффициент усиления под 60? Это зачем? Ловить все наводки в округе?

Третий аккорд этой печальной песни. Блок питания.

Зачем выпрямлять и стабилизировать накал для такой лампы как 6Н23П? Это же лампа косвенного накала. При питании от переменки достаточно «упереть» накал в землю через два резистора Ом на 100-150. И все.

Более того, в готовой конструкции стаб. работал в кривом режиме, выдавая под нагрузкой не 6В, как положено, а лишь 5,5В. В такой ситуации и стабилизатор «шумит» и на лампе недостаточное напряжение накала. (За это я и не люблю фиксированные по вольтажу микросхемы-стабилизаторы. Предпочитаю LM317 и им подобные. Там можно настроить все и вся.) И последнее, 10000 мКф на плечо в таком стабилизаторе — маловато.

В-четвертых, схема задержки включения УМ.

В оригинальном варианте она работала стабильно, но включала динамики слишком рано, до окончания очень жестких переходных процессов в катодном повторителе. Если так подключить усилитель к динамикам, то с большой долей вероятности динамики попросту сгорят. Резистор R1 нужно увеличивать по номиналу раза в два.

Что мы имеем в итоге? При включении схемы в таком варианте — неистребимый фон в динамиках, отвратительный по качеству звук и возможность спалить колонки!

В результате пришлось переделать практически всю схему.

Катодный повторитель был полностью изменен. Я его рассчитал сам, но для желающих повторить — вот готовые варианты с сайта vegalab.ru, разработанные Yury Novikov с его же пояснениями:

«Вот три версии катодного повторителя на 6н23п, с разными вариантами смещения, в порядке усложнения. Первая со смещением от делителя в сетке. Просто, мало деталей, но и по параметрам попроще других. Вторая с делителем в катоде. Посложнее, но за счет дополнительного конденсатора-шунта имеет параметры получше. Можно играться со звуком подбирая шунтирующие конденсаторы разных типов. Третья со смещением от батарейки имеет лучшие чем у первых двух частотные и фазовые свойства (и звук по опыту тоже), и меньшее выходное сопротивление, но дает ослабление примерно в 3 дБ (первые две дают меньше 1 дБ ослабления).

Добавил еще одну схему без разделительного конденсатора на входе. Но ослабление −6 дБ.»

Т-образная обратная связь — удалена. Обвязка микросхемы была сделана точно по техническому описанию производителя. (Хороший вариант описания выложен тут.) Коэффициент усиления был уменьшен до 20.

В блоке питания микросхемы емкость фильтрующих конденсаторов была повышена до 26800 мКф на плечо (в «конструкторе», что прислали мне в каждом плече БП было всего по 6800 мКф). Анодное питание было повышено до 130В, и добавлены фильтрующие ёмкости. Плюс, в цепи анодного питания был поставлен электронный дроссель на полевом транзисторе. (Это еще больше сгладило синус и позволило задать плавную подачу напряжения на анод лампы.)

Выпрямитель и стабилизация накала были убраны за ненужностью.

В результате удалось практически минимизировать наводки по питанию. Схема заработала устойчиво и согласованно. Полностью избавиться от сетевых наводок не удалось только потому, что новый катодный повторитель собран на оригинальной плате. Я бы из разделил и собрал ламповую часть отдельно навесным монтажом. Но это потянуло бы за собой дополнительные переделки.

Несколько фотографий исходного варианта и завершенной конструкции.

Это то, что пришло ко мне по почте.

Это завершенная конструкция, смонтированная в корпус.

Плата усилителя с анодным фильтром

Анодный фильтр-дроссель

Блок питания

Усилитель полностью

Усилитель был помещен в корпус от старого кассетного магнитофона. Таков был договор с заказчиком. Я бы, конечно, сделал корпус другим. В конечном варианте на корпус надет кожух, и естественно, поставлена передняя панель.

И напоследок еще раз процитирую господина Linkorа: «Подытожив: Этот усилитель предназначен для музыки, а не для измерительных комплексов. Его объективные свойства сомнительны, однако его звучание и динамический диапазон настолько завораживают, что при слове „векторный измеритель нелинейных искажений“ хочется плеваться.»

Скажу от себя: это просто смешно, господин Linkor!

P.S. Ну а звук. Вполне нормален звук. Хорошее микросхемное звучание. Вот правильная оценка.

Стабилизаторы напряжения на полевых транзисторах: схема включения и регулировки

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат.

  Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения.

При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант — это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе  до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к.

я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт.

  Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

  • Устройство не боится коротких замыканий, просто сработает ограничение тока.
  • Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к.

при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт.

Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор,  и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции.

Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ.

По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки.

 При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное — микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494.

Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения.

Указанным резистором можно регулировать выходной ток.

  1. Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.
  2. Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков  намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

  • Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

  1. Подробное описание и испытания блока можно посмотреть в видео

Печатная плата тут

Источник: https://www.vip-cxema.org/index.php/home/bloki-pitaniya/422-impulsnyj-stabilizator-toka-i-napryazheniya

MOSFET: простые конструкции

ПРОЕКТ №33: Простые конструкции на MOSFET-транзисторах

  • 1. Регулятор напряжения
  • 2. Симметричный мультивибратор
  • 3. Стабилизатор напряжения
  • 4. Усилитель НЧ

Возникла идея выполнить несколько опытов по реализации простых конструкций на MOSFET-транзисторах с индуцированным каналом N-типа. Попробую. Возможно, что-то станет основой для будущих проектов моих студентов.

  • 1. Регулятор напряжения
  • или

на биполярном транзисторе:

Средний угол поворота:

Максимальный угол поворота: Регулятор работает вполне нормально. Правда, никакого выигрыша по сравнению с регулятором на биполярном транзисторе, не получится. Закон Ома никто не отменил и на кривой кобыле не объехал. Закон Джоуля-Ленца – аналогично.

Поэтому нагрев будет тем больше, чем больше разница между Uвх и Uвых, и чем больше ток. Величина тока зависит от мощности трансформатора и параметров вторичной обмотки.

Короче: детка за репку, бабка за детку и далее по тексту (в том смысле, что одно цепляется за друное).

  1. 2. Симметричный мультивибратор

Когда-то я посвятил небольшой цикл мультивибратору на биполярных транзисторах (см. «Мультивибратор» в разделе РАДИОбиблиотека). Напомню стандартную схему симметричного мультивибратора:

Там же приводится пример мультивибратора на ПОЛЕВЫХ транзисторах: ВНИМАНИЕ! В данном случае НЕТ ПРЯМОЙ ЗАМЕНЫ биполярных транзисторов полевыми. Частотозадающие цепочки и нагрузка ВКЛЮЧАЮТСЯ ИНАЧЕ!

  • Далее цитата:
  • Конец цитаты.

В данном мультивибраторе использованы отечественные полевые n-канальные транзисторы с изолированным затвором и индуцированным каналом. Внутри корпуса между выводами затвора и истока стоит защитный стабилитрон, который защищает транзистор при неумелом обращении. Конечно, не на 100%.  Частота переключения мультивибратора 2 Гц. Она задаётся, как обычно, С1, С2, R1, R2. Нагрузка — лампы накаливания EL1, EL2. Резисторы, включенные между стоком и затвором транзисторов, обеспечивают «мягкий» пуск мультивибратора, но, одновременно, несколько «затягивают» выключение транзисторов. Вместо ламп накаливания нагрузкой в цепях стоков могут служить светодиоды с дополнительными резисторами или телефоны типа ТК-47. В этом случае, разумеется, мультивибратор должен работать в области звуковых частот. Если используется один капсюль, то в цепь стока другого транзистора надо включить резистор сопротивлением 100-200 Ом. Резисторы R1 и R2 можно составить из нескольких, соединённых последовательно, или, если таковых не найдётся, использовать конденсаторы большей ёмкости. Конденсаторы могут быть неполярные керамические, либо плёночные, например, серий КМ-5, КМ-6, К73-17. Лампы накаливания на напряжение 6В и ток до 100 мА. Вместо транзисторов указанной серии, которые рассчитаны на постоянный ток до 180 мА, можно применить более мощные ключи КР1064КТ1 или КР1014КТ1. В случае использования более мощной нагрузки, например, автомобильных ламп, следует применить другие транзисторы, например, КП744Г, рассчитанные на ток до 9А. В этом случае между затвором и истоком следует установить защитные стабилитроны на напряжение 8-10В (катодом — к затвору) — КС191Ж или аналогичные. При больших токах стока транзисторы придётся установить на теплоотводы. Налаживание мультивибратора сводится к подбору конденсаторов для получения желаемой частоты. Для работы на звуковых частотах ёмкости должны быть в пределах 300-600 пФ. Если же оставить конденсаторы указанной на схеме ёмкости, то сопротивление резисторов придётся значительно уменьшить, вплоть до 40-50 кОм. При использовании мультивибратора в качестве узла в разрабатываемой конструкции, между проводами питания следует включить блокировочный конденсатор 0,1-100 мкФ. Мультивибратор работоспособен при напряжении питания 3-10В (с соответствующей нагрузкой). У меня нет отечественных полевых КП501А, в которых имеется встроенный стабилитрон между Истоком и Затвором. Да и нагрузкой моего мультивибратора будут автомобильные лампы. В следующей схеме применены буржуйские МДП-транзисторы:

При указанных номиналах С и R частота мультивибратора около 1 Гц. При использовании переменных резисторов (нужен ОДИН сдвоенный!) частота регулируется в широких пределах.

Если лампы заменить динамиками, а ёмкости С1 и С2 уменьшить в десятки раз, то можно получить колебания звуковой частоты. Стабилитроны (любые на 8-10 В) служат для предотвращения пробоя транзисторов.

Если нужна только одна нагрузка, то лампу EL1, например, нужно заменить резистором на 100-500 Ом. Транзисторы – любые аналогичные. При мощной нагрузке их надо ставить на радиаторы.

Я применю МОП-транзисторы FS10UM-5: .

Тип транзистора: MOSFET с индуцированным каналом N-типа Максимальная рассеиваемая мощность (Pd): 90 W Предельно допустимое напряжение сток-исток (Uds): 250 V Предельно допустимое напряжение затвор-исток (Ugs): 30 V Максимально допустимый постоянный ток стока (Id): 10 A Сопротивление сток-исток открытого транзистора (Rds): 0.4 Ohm Тип корпуса: TO-220 Как видно из фрагмента Datasheet’а, этот транзистор не имеет встроенного стабилитрона.

  1. Мои детальки: лампочки 12В х 5Вт, конденсаторы 1мкФ, резисторы 820к, стабилитроны Д814В:
  2. Мультивибратор спаян «IN STEREO»:

Подал напряжение непосредственно с диодного моста – загорелась EL1 и всё. Никаких пульсаций. Схема спаяна верно, обрывов, замыканий нет, все детали исправны.

В чём дело? Я даже хотел заменить FS10UM-5 на К1808 и отсоединил радиаторы, но возникли мысли: 1) ежели сгладить пульсации после моста? 2) так ли уж нужны стабилитроны при напряжении питания около ±14В? Я удалил стабилитроны и подключил параллельно ± диодного моста электролит 1000мк Х 40В:

  • Включил трансформатор в сеть и мультивибратор тут же заработал:

Пульсации действительно происходят с частотой ≈1 Гц. Чтобы прояснить ситуацию, решил вернуть стабилитроны на место и тут обнаружил, что один из них был Д818В (это хорошо видно на 2-м фото), а у них, по сравнению с Д814В, анод и катод – наоборот. Надо быть внимательнее! Я впаял ОБА стабилитрона Д814Б:

Без сглаживающего конденсатора в момент включения может быть: или т.е. один транзистор открывается, и лампа EL2 светится ярко, а второй – частично, нить накала EL1 еле тлеет; или наоборот, это уж как повезёт. Но мультивибратор НЕ ЗАПУСКАЕТСЯ.

Вывод: питать мультивибратор на MOSFET’ах надо от батареек, аккумуляторов или от блока питания с простейшим сглаживающим фильтром. И тут я подумал: а может и на биролярных будет то же самое?! Но проверять не стал.

К сожалению, я не нашёл у себя сдвоенного переменника даже на 100 кОм, поэтому оперативно порегулировать частоту не получилось. Но цель опыта достигнута: мультивибратор на MOSFET’ах с индуцированным каналом N-типа РАБОТАЕТ.

Кстати, 40-минутное «моргание» лампочек никак не сказалось на температуре транзисторов, хотя они без радиаторов. Значит 5 Вт для этих транзисторов – мелочь. И ещё одно. Я не применял никаких особых мер при пайке полевых транзисторов, но, не смотря на это, ни один из них статикой пробит не был.

  1. 3. Стабилизатор напряжения
  2. Начало цитаты:

Сначала процитирую источник, слегка подкорректировав текст (ПТ – полевой транзистор, БП – блок питания). В литературе неоднократно описывались различные схемы стабилизаторов к БП. В этой статье автор приводит описание аналогового стабилизатора напряжения для БП повышенной мощности. В схеме стабилизатора напряжения удалось значительно улучшить параметры, применив в качестве силового элемента мощный переключающий ПТ. В основном, при построении сильноточных стабилизаторов напряжения, радиолюбители используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими биполярными транзисторами. Если для этих целей применить мощный переключающий ПТ, то удастся собрать более простой сильноточный стабилизатор. Схема одного из вариантов такого стабилизатора: В нём применен мощный ПТ IRLR2905. Хотя он и предназначен для работы в ключевом режиме, в данном стабилизаторе он используется в линейном. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечивает ток до 30А при температуре корпуса до 100°С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В. Мощность, рассеиваемая транзистором, может достигать 110 Вт. Микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431) управляет ПТ. Работает стабилизатор следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе С1 большой емкости (обычно несколько десятков тысяч мкФ) выделяется постоянное напряжение около 16 В. Оно поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через делитель R2R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления «ву» микросхемы DA1 не достигнет порогового – около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т. е. частично закрывая его, и устройство входит в режим стабилизации. Конденсатор СЗ ускоряет выход стабилизатора на рабочий режим. Значение выходного напряжения можно установить в пределах от 2,5 до 30 В подбором резистора R2, значение которого может изменяться в широких пределах. Конденсаторы С1, С2 и С4 обеспечивают устойчивую работу стабилизатора. Для описанного варианта стабилизатора минимальное падение напряжения на регулирующем мощном транзисторе VT1 составляет 2,5…3 В, хотя потенциально этот транзистор может работать при напряжении сток-исток, близком к нулю. Обусловлен данный недостаток тем, что управляющее напряжение на затвор поступает из цепи стока, поэтому при меньшем значении падения напряжения на нём транзистор открываться не будет, ведь на затворе открытого транзистора должно быть положительное напряжение относительно истока. Чтобы уменьшить падение напряжения на регулирующем транзисторе, цепь его затвора целесообразно питать от отдельного выпрямителя с напряжением на 5… 7 В больше, чем выходное напряжение стабилизатора. Если нет возможности сделать дополнительный выпрямитель, то в устройство можно ввести дополнительный диод и конденсатор:

Эффект от такой простой доработки может быть большим. Дело в том, что напряжение, поступающее на сток транзистора, является пульсирующим, имеет значительную переменную составляющую, которая увеличивается при увеличении потребляемого тока.

Благодаря диоду VD2 и конденсатору С5 напряжение на затворе будет примерно равно пиковому значению пульсирующего, т.е. может быть на несколько вольт больше, чем среднее или минимальное. Поэтому стабилизатор оказывается работоспособным при меньшем среднем напряжении сток-исток.

Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту:

 В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе. При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроечным.

Значение выходного напряжения можно определить по формуле: Uвых=2,5(1+R2/R3). Детали В устройстве допустимо применитьлюбой подходящий транзистор. Если использовать, к примеру, IRF840, то минимальное значение управляющего напряжения на затворе будет составлять 4,5… 5В.

Конденсаторы — малогабаритные танталовые, резисторы — МЛТ, С2-33, Р1-4. Диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока.

Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод. Примененный транзистор предназначен для установки на радиатор с помощью пайки.

В этом случае целесообразно использовать промежуточную медную пластину толщиной несколько миллиметров, к которой припаивают транзистор и на которой можно установить остальные детали. Затем, после окончания монтажа, пластину можно разместить на радиаторе.

Пайки при этом уже не требуется, поскольку пластина будет иметь большую площадь теплового контакта с радиатором. Если применить для поверхностного монтажа микросхему DA1 типа TL431С, резисторы типа Р1-12 и соответствующие чип-конденсаторы, то их можно разместить на печатной плате:

  • Настройка
  • Конец цитаты.

из одностороннего фольгированного стеклотекстолита. Плату припаивают к выводам транзистора и приклеивают к упомянутой медной пластине клеем. В качестве такой пластины можно использовать, например, корпус с фланцем от испорченного мощного биполярного транзистора, скажем, КТ827, применив при этом навесной монтаж. Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам С1, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1. И. Нечаев Литература: 1. Мощные полевые переключательные транзисторы фирмы InternationalRectifier. — Радио, 2001, №5, с. 45. 2.И. Нечаев. Необычное применение микросхемы КР142ЕН19А. — Радио, 2003, № 5, с. 53,54. Я буду делать стабилизатор по схеме: Поставлю мост VD1 D5SBA60 600В/6А; диод VD2 RGP15J; транзистор VT1 K1531; DA1 (регулируемый стабилитрон) TL431C; конденсаторы С1 1000мк Х 50В, С2 здесь совершенно ни к чему, С3 4,7мк Х 50В, С4 680мк Х 35В, С5 100мк Х 30В; резисторы R1 470 Ом, R2 переменный 20к, R3 3,6к.

Детали: Стабилизатор буду делать на плате (без макетирования) старым способом – прорезыванием изолирующих дорожек между полигонами. Преимущество этого способа при изготовлении простых плат – быстрота. И экологичность:-)) разумеется. Эскиз платы:

  1. Кстати нашёлся подходящий кусок двухстороннего фольгированного текстолита:
  2. С одной стороны фольгу пришлось просто содрать:
  3. Дорожки прорезаны:
  4. Плата залужена:
  5. Детали распаяны:
  6. В качестве нагрузки использую мультивибратор. Напряжение на выходе стабилизатора минимально:
  7. Среднее:
  8. Максимальное:

Стабилизатор на MOSFET-транзисторе работает, причём я не подбирал транзистор по каким-то параметрам.

При переменном напряжении на выходе трансформатора около 13 В диапазон регулировки Uвых стабилизатора составляет 2,6…12,5 В. Это нормально.

Мой транзистор не установлен на радиатор, но это весьма желательно, поскольку пальцем ощутим его нагрев. После установки на теплоотвод  транзистор стал чувствовать себя гораздо комфортнее:

  • 4. Усилитель НЧ
  • 1-ый по адресу: http://amplif.ru/publ/usilitel_na_polevom_tranzistore_klass_a/1-1-0-119

На вход моста я подал ~30 В, что позволило повысить Uвых и регулировать его в более широком диапазоне. Следуя принципу «от простого», я не буду пытаться собрать УНЧ на MOSFET’ах мощностью в десятки и сотни Ватт. В сети я быстро нашёл два, подходящих для моих опытов, варианта:

2-ой по адресу: https://www.youtube.com/watch?v=nhTzc8eSNRY

IRF511 у меня нет, зато в достаточном количестве имеются IRF630, и я решил попробовать 2-й вариант. Хотя, вполне возможно, что и в 1-м варианте IRF630 тоже будет работать. Однако я не провожу тут научное исследование, а просто пробую МОСФЕТы в несложных конструкциях. Детальки:

    Транзистор IRFS630; резисторы МЛТ-1 Вт: 1,3к+1к=2,3к; 470 Ом; 1 Ом; конденсаторы 100мк Х25В, 2200мк Х 35В, 470мк Х 25В. УНЧ распаян в пространстве (в 3D, в STEREO):

    Подан ВХОДной сигнал с нетбука, ВЫХОД на отечественный динамик 10ГДШ-2 4 Ом, питание от стабилизатора на МОСФЕТе: Усилитель работает.

    Звук не очень громкий (на слух 300-400 мВт), но особых искажений не слышно. Опыт успешно завершён. Итак, простые конструкции на MOSFET’ах оказались вполне рабочими.

    Возможно, что несколько позже я сделаю кое-что не совсем простое, но это будет другой проект и другая история.

    ©SEkorp, 20 октябрь 2017

    Источник: http://radiomurlo.narod.ru/HTMLs_3/PROJECT_33.html

    Три простые схемы регулятора тока для зарядных устройств

    • Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.
    • Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.
    • В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.
    • Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.
    • Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

    Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

    Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

    Постараюсь пояснить принцип работы схем максимально простыми словами…

    Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

    Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

    Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

    Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

    Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

    Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

    Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

    1. Выход операционного усилителя управляется мощным полевым транзистором.
    2. То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.
    3. Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

    Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.

    Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

    Введите электронную почту и получайте письма с новыми поделками.

    • Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.
    • Взамен будет нагреваться транзистор и от этого никуда не денешься.
    • Архив к статье; скачать…
    • Автор; АКА Касьян

    Источник: https://xn--100—j4dau4ec0ao.xn--p1ai/tri-prostye-sxemy-regulyatora-toka-dlya-zaryadnyx-ustrojstv/

    Стабилизатор напряжения на мощном полевом транзисторе

    В статье описан аналоговый стабилизатор напряжения для блока питания повышенной мощности. Автору удалось значительно улучшить параметры стабилизатора, применив в качестве силового элемента мощный переключательный полевой транзистор.

    При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами.

    Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор.

    Схема одного из вариантов такого стабилизатора приведена на рис.1. В нем в качестве силового применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме.

    Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечиваетток до 30 А при температуре корпуса до 100 °С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В [1].

    Мощность, рассеиваемая транзистором, может достигать 110 Вт.

    Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431). Ее назначение, устройство и параметры подробно описаны в статье [2]. Работает стабилизатор (рис. 1) следующим образом.

    При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение).

    Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе большой емкости (обычно несколько десятков тысяч микрофарад) выделяется постоянное напряжение около 16 В.

    Оно поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через делитель R2R3 подается на вход микросхемы DA1, замыкая цепь ООС.

    Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления ву микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т. е.

    частично закрывая его, и устройство входит в режим стабилизации. Конденсатор СЗ ускоряет выход стабилизатора на рабочий режим.

    Значение выходного напряжения можно установить в пределах от 2,5 до 30 В подбором резистора R2, его значение может изменяться в широких пределах. Конденсаторы С1, С2 и С4 обеспечивают устойчивую работу стабилизатора.

    Для описанного варианта стабилизатора минимальное падение напряжения на регулирующем мощном транзисторе VT1 составляет 2,5…3 В, хотя потенциально этот транзистор может работать при напряжении сток-исток, близком к нулю.

    Обусловлен данный недостаток тем, что управляющее напряжение на затвор поступает из цепи стока, поэтому при меньшем значении падения напряжения на нем транзистор открываться не будет, ведь на затворе открытого транзистора должно быть положительное напряжение относительно истока.

    Чтобы уменьшить падение напряжения на регулирующем транзисторе, цепь его затвора целесообразно питать от отдельного выпрямителя с напряжением на 5…7 В больше, чем выходное напряжение стабилизатора.

    Если нет возможности сделать дополнительный выпрямитель, то в устройство можно ввести дополнительный диод и конденсатор (рис. 2). Эффект от такой простой доработки может быть большим.

    Дело в том, что напряжение, поступающее на сток транзистора, является пульсирующим, имеет значительную переменную составляющую, которая увеличивается при увеличении потребляемого тока.

    Благодаря диоду VD2 и конденсатору С5 напряжение на затворе будет примерно равно пиковому значению пульсирующего, т.е. может быть на несколько вольт больше, чем среднее или минимальное. Поэтому стабилизатор оказывается работоспособным при меньшем среднем напряжении сток-исток.

    Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3). В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе.

    При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроечным резистором. Значение выходного напряжения можно определить по формуле Uвых = 2,5(1+R2/R3).

    В устройстве допустимо применить подходящий транзистор из списка в вышеприведенном справочном листке, желательно выделенный желтым цветом. Если использовать, к примеру, IRF840, то минимальное значение управляющего напряжения на затворе будет составлять 4,5…5 В. Конденсаторы — малогабаритные танталовые, резисторы — МЛТ, С2-33, Р1-4.

    Диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока.

    Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод. Примененный транзистор предназначен для установки на радиатор с помощью пайки.

    В этом случае целесообразно использовать промежуточную медную пластину толщиной несколько миллиметров, к которой припаивают транзистор и на которой можно установить остальные детали (рис. 4). Затем, после окончания монтажа, пластину можно разместить на радиаторе.

    Пайки при этом уже не требуется, поскольку пластина будет иметь большую площадь теплового контакта с радиатором.

    Если применить для поверхностного монтажа микросхему DA1 типа~П_431С, резисторы типа Р1 -12 и соответствующие чип-конденсаторы, то их можно разместить на печатной плате (рис. 5) из односторонне фольгированного стеклотекстолита.

    Плату припаивают к выводам транзистора и приклеивают к упомянутой медной пластине клеем.

    В качестве такой пластины можно использовать, например, корпус с фланцем от испорченного мощного биполярного транзистора, скажем, КТ827, применив при этом навесной монтаж.

    Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов.

    Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам С1, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины.

    Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.

    ЛИТЕРАТУРА

    1. Мощные полевые переключательные транзисторы фирмы International Rectifier. — Радио, 2001, № 5, с. 45.
    2. И. Нечаев. Необычное применение микросхемы КР142ЕН19А. — Радио, 2003, № 5, с. 53,54.

    Источник: https://www.radio-schemy.ru/supply/common-supply/515-stabilizator-napryajeniya-na-mownom-polevom-tranzistore.html

    Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905)

       При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор,

       Схема одного из вариантов такого стабилизатора приведена на рис. 3.28.0. Со вторичной обмотки трансформатора переменное напряжение около 13 В (эффективное значение) поступает на выпрямитель и сглаживающий фильтр. На конденсаторах фильтра оно равно 16 В. Это напряжение поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор.

       Часть выходного напряжения через делитель R2, R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т.е.

    частично закрывая его, и, таким образом, устройство входит в режим стабилизации. Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3.28.6).

    В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе.

       При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроенным резистором.

       В стабилизаторе в качестве регулирующего элемента применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме.

    Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечивает ток до 30 А при температуре корпуса до 100°С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В.

    Мощность, рассеиваемая транзистором, может достигать 110 Вт.

       Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (импортный аналог TL431). Конденсаторы — малогабаритные танталовые, резисторы — MJ1T, С2-33, диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки).

    Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока.

    Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод.

       Налаживание стабилизатора сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовоз

       буждение возникает, то параллельно конденсаторам CI, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.

       Печатная плата устройства приведена на рис. 3.29. Эта плата рассчитана на установку малогабаритных деталей в корпусах для поверхностного монтажа, в том чис

       ле и микросхема КР142ЕН19 требует замены на импортный аналог в корпусе SO-8.

       В случае, если полевой транзистор найти не удалось, стабилизатор можно выполнить по другой схеме (рис. 3.30), на мощных биполярных транзисторах, с использованием той же микросхемы. Правда, максимальный ток нагрузки у этого варианта стабилизатора не более 3…4 А.

    Для повышения коэффициента стабилизации применен стабилизатор тока на полевом транзисторе, в качестве регулирующего элемента применен мощный составной транзистор.

    Трансформатор должен обеспечивать на вторичной обмотке напряжение не менее 15 В при максимальном токе нагрузки.

    Источник: http://nauchebe.net/2010/10/stabilizator-napryazheniya-na-moshhnom-polevom-tranzistore-13v-irlr2905/

    Мощный стабилизатор двухполярного напряжения для УМЗЧ

    Электропитание

    Главная  Радиолюбителю  Электропитание

    Автор предлагает двухполярныи стабилизатор напряжения питания, пригодный для усилителей мощностью до 50- 100 Вт на канал.

    Устройство выполнено на мощных полевых транзисторах, способных работать при многократных кратковременных перегрузках по току.

    Применение таких стабилизаторов в значительной степени оправдано в усилителях с высокой чувствительностью к изменению и пульсациям питающего напряжения, что особенно присуще несложным усилителям без общей обратной связи.

    Как известно, для питания мощного выходного каскада УМЗЧ в ряде конструкций используется отдельный источник питания, а остальная часть усилителя питается от стабилизатора напряжения.

    Большинство таких источников питания — нестабилизированные и представляют собой два двухполупе-риодных выпрямителя (на напряжения положительной и отрицательной полярности) со средней точкой со сглаживающими конденсаторами.

    Это нестабили-зированное напряжение не используется остальной частью усилителя, если в нём есть дополнительные узлы и коммутатор источников сигнала (полный, «интегральный» усилитель).

    Кроме того, общая обратная связь, применяемая в большинстве УМЗЧ, существенно снижает чувствительность к пульсациям напряжения питания. А если глубина общей ООС невелика или её совсем нет, пульсации питающего напряжения могут прослушиваться через акустические системы.

    Кардинальным способом подавления пульсации и нестабильности является питание выходных каскадов усилителя стабилизированным напряжением, однако применение интегральных стабилизаторов тоже наталкивается на ряд проблем. Дело в том, что такие стабилизаторы имеют относительно большое падение напряжения.

    Кроме того, в них, как правило, встроены ограничители по току и мощности, которые вообще могут свести на нет достоинства стабилизатора. Можно, конечно, применить интегральный стабилизатор большой мощности (например, с выходным током в 10 А), однако его стоимость, на мой взгляд, неприемлема.

    Альтернативой при решении этой задачи может быть использование в стабилизаторе напряжения питания мощных полевых транзисторов. Эти транзисторы, кстати, недороги и имеют малое сопротивление открытого канала (сотые доли ома) и максимальный ток до 70…

    100 А, что позволяет конструировать стабилизаторы с очень малым падением напряжения (не более 0,25 В) при токе до 20 А. Параметры описываемого стабилизатора следующие. При выходном напряжении в 27 В его максимальный ток достигает 4,5 А. При таком токе нагрузки минимальное рабочее напряжение между входом и выходом не превышает 0,25 В.

    Разница между выходным напряжением стабилизатора без нагрузки и напряжением при токе нагрузки в 4,5 А составляет не более 0,15 В, при токе в 6 А эта разница не превышает 0,16 В.

    Такие параметры стабилизатора обеспечивают применённые в нём мощные полевые транзисторы — IRF4905 (р-канальный) с максимальным током стока 74 А и сопротивлением открытого канала в 0,02 Ом и IRL2505 (п-канальный), с соответствующими током 104 А и сопротивлением 0,008 Ом.

    Рис. 1

    Источник: http://www.radioradar.net/radiofan/power_supply/powerful_regulator_bipolar_voltage.html

    Регулятор тока

    JFET | Дискретные полупроводниковые схемы

    ДЕТАЛИ И МАТЕРИАЛЫ

    • Полевой транзистор с одним N-канальным переходом, рекомендуются модели 2N3819 или J309 (каталожный номер Radio Shack № 276-2035 — модель 2N3819)
    • Две 6-вольтовые батареи
    • Один потенциометр 10 кОм, однооборотный, с линейным конусом (каталог Radio Shack № 271-1715)
    • Один резистор 1 кОм
    • Один резистор 10 кОм
    • Три резистора 1,5 кОм

    Для этого эксперимента вам понадобится N-канальный JFET, а не P-канал! Для эксперимента вам понадобится N-канальный JFET, а не P-канал!

    Помните, что не все транзисторы имеют одинаковые обозначения клемм или выводов, даже если они имеют одинаковый внешний вид.От этого будет зависеть, как вы будете соединять транзисторы вместе и с другими компонентами, поэтому обязательно проверьте спецификации производителя (техническое описание компонентов), которые легко получить на веб-сайте производителя.

    Помните, что на корпусе транзистора и даже в техническом описании производителя могут отображаться неправильные схемы идентификации клемм! Настоятельно рекомендуется дважды проверить идентификацию контактов с помощью функции «проверка диодов» мультиметра.

    Для получения подробной информации о том, как определить клеммы соединительного полевого транзистора с помощью мультиметра, обратитесь к главе 5 тома «Полупроводники» (том III) этой серии книг.

    ССЫЛКИ

    Уроки электрических цепей, том 3, глава 5: «Переходные полевые транзисторы» Уроки электрических цепей, том 3, глава 3: «Диоды и выпрямители»

    ЦЕЛИ ОБУЧЕНИЯ

    • Как использовать JFET в качестве регулятора тока
    • Как JFET относительно невосприимчив к изменениям температуры

    СХЕМА

    ИЛЛЮСТРАЦИЯ

    ИНСТРУКЦИЯ

    Ранее в этой главе вы видели, как пару биполярных переходных транзисторов (BJT) можно использовать для формирования токового зеркала, при котором один транзистор будет пытаться поддерживать через него такой же ток, как если бы другой был установлен уровень тока другого. переменным сопротивлением.Эта схема выполняет ту же задачу по регулированию тока, но использует полевой транзистор с одним переходом (JFET) вместо двух BJT.

    Два последовательных резистора R регулируют и R limit устанавливают точку регулирования тока, в то время как резисторы нагрузки и контрольные точки между ними служат только для демонстрации постоянного тока, несмотря на изменения сопротивления нагрузки. Чтобы начать эксперимент, прикоснитесь щупом к TP4 и отрегулируйте потенциометр по диапазону его хода.

    При перемещении механизма потенциометра вы должны увидеть небольшое изменение тока, показываемое вашим амперметром: не более нескольких миллиампер. Оставьте потенциометр в положении, дающем круглое число миллиампер, и переместите черный измерительный щуп измерителя в TP3.

    Текущая индикация должна быть почти такой же, как и раньше. Переместите датчик к TP2, затем к TP1. Опять же, вы должны увидеть почти неизменное количество тока.

    Попробуйте установить потенциометр в другое положение, чтобы получить другую индикацию тока, и прикоснитесь черным щупом измерителя к контрольным точкам с TP1 по TP4, отмечая стабильность показаний тока при изменении сопротивления нагрузки.Это демонстрирует поведение этой схемы при регулировании тока.

    TP5 на конце резистора 10 кОм предназначен для значительного изменения сопротивления нагрузки. Подключение черного щупа вашего амперметра к этой контрольной точке дает общее сопротивление нагрузки 14,5 кОм, что будет слишком большим сопротивлением для транзистора, чтобы поддерживать максимальный регулируемый ток через него.

    Чтобы испытать то, что я здесь описываю, прикоснитесь черным щупом к TP1 и настройте потенциометр на максимальный ток.Теперь переместите черный щуп к TP2, затем к TP3, затем к TP4.

    Для всех этих положений контрольных точек ток будет оставаться примерно постоянным. Однако, когда вы прикоснетесь черным щупом к TP5, ток резко упадет. Почему? Потому что на этом уровне сопротивления нагрузки падение напряжения на транзисторе недостаточно для поддержания стабилизации.

    Другими словами, транзистор будет насыщаться, поскольку он пытается обеспечить больший ток, чем позволяет сопротивление цепи.Переместите черный щуп обратно к TP1 и отрегулируйте потенциометр на минимальный ток.

    Теперь прикоснитесь черным щупом к TP2, затем к TP3, затем к TP4 и, наконец, к TP5. Что вы замечаете в текущей индикации во всех этих точках? Когда точка регулирования тока настроена на меньшее значение, транзистор может поддерживать регулирование в гораздо большем диапазоне сопротивления нагрузки.

    Важное предостережение при использовании схемы токового зеркала BJT состоит в том, что оба транзистора должны иметь одинаковую температуру, чтобы два тока были равными.Однако для этой схемы температура транзистора практически не имеет значения.

    Попробуйте зажать транзистор между пальцами, чтобы нагреть его, отмечая ток нагрузки с помощью амперметра. После этого попробуйте охладить его, дуя на него.

    Не только устраняется требование согласования транзисторов (из-за использования только одного транзистора), но также почти устраняются тепловые эффекты из-за относительной тепловой устойчивости полевого транзистора. Такое поведение также делает полевые транзисторы невосприимчивыми к тепловому разгоне; явное преимущество перед транзисторами с биполярным переходом.

    Интересным применением этой схемы регулятора тока является так называемый диод постоянного тока. Описанный в главе «Диоды и выпрямители» тома III, этот диод вообще не является устройством с PN-переходом. Вместо этого это JFET с фиксированным сопротивлением, подключенным между выводами затвора и истока:

    Нормальный диод с PN-переходом включен последовательно с JFET для защиты транзистора от повреждения напряжением обратного смещения, но в остальном средство регулирования тока этого устройства полностью обеспечивается полевым транзистором.

    КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

    Схема с номерами узлов SPICE:

    Netlist (создайте текстовый файл, содержащий следующий текст, дословно):

    Регулятор тока JFET vsource 1 0 rload 1 2 4.5k j1 2 0 3 mod1 rlimit 3 0 1k .model mod1 njf .dc vsource 6 12 0.1 .plot dc i (vsource) .end 

    SPICE не позволяет изменять значения сопротивления, поэтому, чтобы продемонстрировать регулирование тока этой схемы в широком диапазоне условий, я решил изменить напряжение источника с 6 до 12 вольт на 0.Шаги по 1 В. При желании вы можете установить для rload различные значения сопротивления и убедиться, что ток в цепи остается постоянным.

    При предельном значении r 1 кОм регулируемый ток будет 291,8 мкА. Это текущее значение, скорее всего, не будет таким же, как ваш фактический ток цепи, из-за различий в параметрах JFET.

    Многие производители предоставляют параметры модели SPICE для своих транзисторов, которые можно ввести в строке .model списка соединений для более точного моделирования схемы.

    СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

    Полевой транзистор | Журнал Nuts & Volts


    Необходимое устройство для современной микросхемы

    Обычно используемый биполярный транзистор, в котором электроны или дырки проходят через два PN полупроводниковых перехода, по сути, является устройством усиления тока. Хотя напряжение может быть усилено косвенно, если используются конфигурации проводки «общий эмиттер» или «общий коллектор», все же верно, что небольшая величина входного тока всегда должна течь в базовую область транзистора для целей управления.

    Другой тип полупроводникового устройства, полевой транзистор или «полевой транзистор», не так хорошо знаком многим энтузиастам электроники, возможно, потому, что его легко повредить при неправильном использовании. Полевой транзистор напрямую усиливает напряжение, а ток, необходимый для управления, настолько мал, что его невозможно измерить обычными приборами. Этот транзистор был фактически первым типом полупроводникового усилителя, теоретически предсказанным в Bell Labs еще в 1950-х годах, но он не был разработан в практическое устройство до тех пор, пока биполярный тип не стал популярным.Однако сейчас наиболее распространенным типом стали полевые транзисторы: их десятки миллионов в каждой микросхеме микропроцессора.

    С таким огромным количеством транзисторов, работающих в одной микросхеме, мы, конечно, не хотим, чтобы для управления каждым из них требовался большой ток — заряд батареи будет быстро израсходован, и потребуется много тепла. удаленный. Кроме того, существует множество других приложений, в которых желателен сверхнизкий входной ток. Очевидный пример — первая ступень точного вольтметра, когда мы не хотим вызывать каких-либо новых падений напряжения путем отвода тока из исследуемой цепи.

    Еще одним преимуществом полевого транзистора, вероятно, менее важным, является тот факт, что его входные и выходные характеристики аналогичны характеристикам электронных ламп. Поскольку лампы используются примерно с 1910 года, у нас есть большой опыт работы с ними, и некоторые разработчики чувствуют себя более комфортно с полевыми транзисторами, чем с биполярными устройствами, особенно в усилителях звука. (Действительно ли это преимущество или нет, зависит не только от научных факторов, но и от эмоциональных факторов. Некоторые читатели могут признать автора настоящей статьи одним из первых сторонников этой активно обсуждаемой проблемы, поэтому мы не будем ее обсуждать. дальше сюда!)

    В любом случае полевой транзистор полностью реагирует на напряжение на управляющем электроде, и это можно использовать для регулирования довольно больших значений выходного тока и / или напряжения в двух других проводах.

    JFET

    Вместо того, чтобы делать транзистор, который проводит через оба PN перехода, когда он включен («биполярный»), один тип полевого транзистора может быть изготовлен только с одним PN переходом («однопереходный»). Поскольку он имеет переход, он называется juncFET или JFET, и упрощенная диаграмма поперечного сечения показана на рисунке 1.

    РИСУНОК 1. Упрощенное поперечное сечение полевого транзистора с рабочей схемой. Это N-канальный режим, режим истощения и обычно включен.Символ находится в правой части рисунка.


    Прямоугольники, обведенные жирной линией, представляют собой твердые материалы, включая две области, которые представляют собой кремний P-типа, но не проводят заметного тока. Посередине находится область N-типа, которая может проводить весь ток. В очень простой схеме, показанной на схеме, которую читатель может легко построить, чтобы получить некоторый опыт работы с полевым транзистором, омметр выдает напряжение, а также показывает протекание тока нагрузки. Этот тип полевого транзистора обычно находится во включенном состоянии до подачи какого-либо управляющего напряжения.Если потенциометр 5K настроен так, что на «затворе» нет напряжения (перемещая его стрелку вниз, как показано на схеме), то «положительный» ток нагрузки от омметра переходит в верхний левый угол полевого транзистора, а затем вниз. в самый верхний металл, затем вниз через сплошной кремний N-типа и из транзистора через нижний металл. (Области «Бык» — изоляторы из диоксида кремния.)

    Диаграмма построена не в масштабе, а прямоугольники показывают области, размер которых на самом деле составляет всего около микрона.(Более формальное обозначение размера — «микрометр», что составляет миллионную долю метра.) Металл обычно представляет собой тонкую алюминиевую или медную пленку толщиной около микрона, и вся конфигурация иногда бывает более сложной, чем показано на этой упрощенной диаграмме. Кремний P-типа (справа, как показано здесь) в основном является просто механической опорой для небольших активных областей, которые проводят. Его часто называют «субстратом».

    Чтобы выключить транзистор, настройку потенциометра 5K можно увеличить, чтобы получить отрицательное управляющее напряжение.Это заряжает область P-типа, но электричество практически не течет, потому что имеется «обратносмещенный» PN переход (отрицательное напряжение на кремнии P-типа и положительное на N). Однако этот заряд сильно отталкивает электроны от очень тонкого проводящего «канала» N-типа в середине. Здесь образуется зона обеднения, содержащая меньше электронов, поэтому кремний внутри овала, изображенного пунктирной линией, становится внутренним (I-тип, как обозначено буквой I в скобках), который является изолирующим, и полевой транзистор перестает проводить.Такой тип поведения называется «режимом истощения». Поскольку управляющее действие осуществляется электрическим полем (а не носителями, текущими в базовую область), все устройство называется полевым транзистором или «полевым транзистором».

    Один металлический электрод называется истоком, один — затвором, а третий — стоком, аналогично эмиттеру, базе и коллектору в биполярном транзисторе. Это «N-канальное» устройство, потому что ток проходит через кремний N-типа. Символ отображается справа от поперечного сечения.Другой тип JFET, устройство с «P-каналом», имеет полупроводниковые области P и N противоположного типа, поэтому стрелка в символе направлена ​​в сторону от канала. Этот тип ворот должен быть заряжен положительно, чтобы отключить канал, отталкивая дыры. Он не так распространен, как показанный здесь, но он существует и может быть полезен для специальных целей.

    Диод постоянного тока

    Интересным применением JFET является «диод постоянного тока». Общий эффект от этого аналогичен эффекту биполярного регулятора напряжения, за исключением того, что здесь регулируется ток, а не напряжение.Это может быть очень простая схема, показанная на рисунке 2, диаграмма B.

    РИСУНОК 2. N-канальный полевой транзистор JFET, подключенный к саморегулирующемуся устройству с постоянным током, с символом, показанным рядом с ним слева. Два других символа справа относятся к источникам постоянного тока, в том числе к источникам питания, например батареям.


    Если посмотреть на отрицательный ток, который течет вверх через резистор, некоторая его часть будет направлена ​​на затвор, который частично отключает полевой транзистор.Это отрицательная обратная связь, поэтому, если ток в цепи начинает расти, транзистор отключается еще больше. Таким образом, протекает меньше тока, пока не будет достигнут некоторый постоянный уровень тока. Полевой транзистор и потенциометр находятся внутри изоляционного пластикового «пакета». Все это, а также источник питания, например аккумулятор (здесь не показан), символизируется двумя перекрывающимися кругами, рис. 2, диаграмма C. Иногда используется альтернативный символ со стрелкой вверх, особенно в Европе, как показано на диаграмме. Д.

    МОП-транзистор

    Другой тип полевого транзистора показан на рисунке 3, металл-оксид-полупроводник или устройство «MOS».

    РИСУНОК 3. Упрощенная диаграмма поперечного сечения полевого МОП-транзистора с рабочей схемой. Это N-канальный режим, режим улучшения и обычно выключен. Справа показаны два альтернативных символа.


    В этом транзисторе используется изолирующий диоксид кремния для предотвращения попадания тока затвора в основной полупроводник вместо обратносмещенного перехода, который использовался в полевом транзисторе.Его иногда называют IGFET из-за изолированного затвора. Это нормально выключенное устройство, которое нужно включить каким-либо действием, поэтому оно называется устройством «улучшенного режима». (IGFET также может быть выполнен в конфигурации режима истощения.)

    На рисунке, если потенциометр понижен до нуля, то ток батареи, имеющий тенденцию проходить как через лампочку, так и через транзистор, будет остановлен одним из PN-переходов. На этой диаграмме это верхний, который имеет обратное смещение.(Изначально пунктирная линия и область N посередине отсутствуют.)

    Если стрелка потенциометра поднята, и теперь к затвору приложен положительный потенциал, дырки в кремнии P-типа отталкиваются, в результате чего эта область становится N-типа (на что указывает N в скобках). Теперь нет соединения PN непосредственно на пути между верхней и нижней областями N-типа, потому что все это одна непрерывная область N-типа (нарисованная как вертикальная черта, с пунктирной линией как один край).Этот транзистор также является N-канальным, потому что электричество проходит через кремний N-типа, когда он включен.

    Если читатель хочет получить некоторый опыт работы с полевым МОП-транзистором, можно разместить амперметр, как показано на рисунке 3, чтобы показать, что в затвор не течет измеримый ток, даже когда горит лампочка. На этой схеме мультиметр был переключен на измерение тока, и он перемещен к выводу затвора. (Эту схему также можно использовать для эксперимента с полевым транзистором. Экспериментатор должен отметить, что меры предосторожности для предотвращения повреждения МОП-устройств описаны в разделе «Чувствительность к электростатическому разряду» ниже.)

    Символы для полевого МОП-транзистора показаны справа. Стрелка в данном случае указывает на то, что электрод «истока» внутренне соединен с подложкой, что часто делается, если один из PN-переходов не будет использоваться.

    Если бы устройство было P-каналом, исток и сток были бы P-типа, а стрелка была бы направлена ​​в сторону от подложки N-типа.

    Характеристические кривые и линия нагрузки

    В типичных «спецификациях» полевых транзисторов используются форматы, аналогичные форматам электронных ламп.Форма кривых почти такая же, но напряжения обычно намного ниже. На входе — V GS , на выходе — I D . В этом случае MOSFET типа 2N7000 используется в N-канальном режиме расширения.

    «Линия нагрузки» показана здесь пунктирной линией. Его наклон представляет собой эффект сопротивления нагрузки (например, лампочка на рисунке 4), и он весьма полезен как способ показать величину тока в любой ситуации.

    РИСУНОК 4.Характеристические кривые для полевого МОП-транзистора 2N7000 с линией нагрузки.


    В случае, показанном здесь, сопротивление нагрузки составляет 1000 Ом, а V DS составляет 20 вольт. Пунктирная линия нагрузки проведена от максимально возможного напряжения (показано здесь как B) до максимально возможного тока с этой конкретной нагрузкой, который составляет 20 В / 1 кВт = 20 мА (показано как A). Если транзистор частично включен (V GS = 3 вольта), ток стока будет около 11 мА, как показано пересечением (кружок под буквой C).

    КМОП

    Два МОП-транзистора противоположного типа могут быть подключены, как показано на рисунке 5, в комплементарной конфигурации МОП («КМОП»).

    РИСУНОК 5. Пара КМОП-транзисторов. При отсутствии входного сигнала ток очень низкий.


    Когда на вход не подается сигнал, один из транзисторов всегда «выключен», поэтому практически нулевой ток может проходить от источника питания вниз через резистор, а затем через пару транзисторов. Когда сигнал поступает на вход, ток нагрузки может поступать с выходной клеммы либо при высоком (V +), либо при низком (заземление) напряжении, в зависимости от полярности входного напряжения.Однако в ситуациях, когда нет входа, общий ток практически равен нулю.

    В современных интегральных схемах миллионы транзисторов подключены параллельно, поэтому, если бы только микроампер «тока утечки» протекал через каждый из неиспользуемых транзисторов, ампер или более все равно потреблялись бы от источника питания или батареи. Это будет генерировать много тепла, а также слишком быстро разряжать батареи для портативных устройств. Поэтому практически все современные калькуляторы, портативные компьютеры, сотовые телефоны и т. Д.по возможности используйте схемы CMOS.

    Чувствительность к электростатическому разряду

    МОП-транзистор особенно чувствителен к повреждению статическим электричеством, которое возникает, когда человек идет по ковру в сухую погоду. Искра, которую создает человек при прикосновении к металлической лицевой панели переключателя света, называется электростатическим разрядом или «ESD», но МОП-транзистор может быть поврежден, даже если статического электричества недостаточно, чтобы образовалась видимая искра.

    Статическое электричество может разрушить очень тонкий оксид кремния, изолирующий затвор.Некоторые МОП-транзисторы защищены стабилитронами, подключенными параллельно им внутри корпусов, но большинство из них не защищены. Чтобы предотвратить повреждение, люди, работающие с IGFET-транзисторами, всегда должны соблюдать эти две меры предосторожности:

    1. Касайтесь только пластиковой изоляции руками, а не металлическими проводами;
    2. Используйте заземленный браслет.

    Последний представляет собой пластиковую ленту (обычно черного или розового цвета), которая проводит электричество и прикрепляется к длинному проводу.Его следует закрепить на любом запястье, касаясь кожи человека, а затем другой конец провода подсоединить к надежному заземлению, например к водопроводу. NV


    Список деталей

    JFET N-канал
    Потенциометр 5000 Ом
    Силовой полевой МОП-транзистор N-канал
    Колба лампы Вольфрам, 12 В, 40 мА
    Аккумулятор Девять вольт
    Мультиметр
    Антистатический браслет

    10.2: Измерение основных транспортных свойств полевых транзисторов

    Типичные характеристики V-I полевых транзисторов

    Развертка напряжения — отличный способ узнать об устройстве. На рисунке \ (\ PageIndex {10} \) показан типичный график развертки напряжения сток-исток при различных напряжениях затвор-исток при измерении тока стока, ID для n-канального JFET. Характеристики V-I имеют четыре различных региона. Анализ этих областей может предоставить важную информацию о характеристиках устройства, таких как напряжение отсечки, VP, усиление прозрачности, gm, сопротивление канала сток-исток, RDS и рассеиваемая мощность, PD.

    Рисунок адаптирован из Electronic Tutorials (www.electronic-tutorials.ws).

    Омическая область (линейная область)

    Эта область ограничена VDS

    \ [R_ {DS} \ = \ \ frac {\ Delta V_ {DS}} {\ Delta I_ {D}} \ = \ \ frac {1} {g_ {m}} \ label {1} ​​\]

    \ [g_m \ = \ \ frac {\ Delta I_ {D}} {\ Delta V_ {DS}} \ = \ \ frac {1} {R_ {DS}} \ label {2} \]

    Область насыщенности

    Это область, в которой JFET полностью включен. Максимальный ток протекает для данного напряжения затвор-исток. В этой области ток стока можно смоделировать с помощью \ ref {3}, где ID — ток стока, IDSS — максимальный ток, VGS — напряжение затвор-исток, а VP — напряжение отсечки.Решение для напряжения отсечки приводит к \ ref {4}.

    \ [I_ {D} \ = \ I_ {DSS} (1 \ — \ frac {V_ {GS}} {V_ {P}}) \ label {3} \]

    \ [V_ {P} \ = \ 1 \ — \ \ frac {V_ {GS}} {\ sqrt {\ frac {I_D} {I_ {DSS}}}} \ label {4} \]

    Область разбивки

    Эта область характеризуется резким увеличением тока. Подаваемое напряжение сток-исток превышает предел сопротивления полупроводникового канала, в результате чего транзистор выходит из строя и протекает неконтролируемый ток.

    Область отсечения (обрезанная область)

    В этой области напряжения затвор-исток достаточно, чтобы ограничить поток через канал, по сути, отсекая ток стока.{2} / R_ {DS} \ label {5} \]

    V-I характеристики p-канального JFET ведут себя аналогично, за исключением того, что напряжения меняются местами. В частности, точка отсечки достигается, когда напряжение затвор-исток увеличивается в положительном направлении, а область насыщения достигается, когда напряжение сток-исток увеличивается в отрицательном направлении.

    Типичные характеристики V-I полевых МОП-транзисторов

    На рисунке \ (\ PageIndex {11} \) показан типичный график развертки напряжения сток-исток при различных напряжениях затвор-исток при измерении тока стока, I D для идеального n-канального полевого МОП-транзистора.Подобно полевым транзисторам, полевые МОП-транзисторы имеют различные области, которые предоставляют ценную информацию о транспортных свойствах устройства.

    Рисунок адаптирован из Electronic Tutorials (www.electronic-tutorials.ws).

    Омическая область (линейная область)

    n-канальный усовершенствованный MOSFET ведет себя линейно, действуя как переменный резистор, когда напряжение затвор-исток превышает пороговое напряжение, а напряжение сток-исток больше, чем напряжение затвор-исток. В этой области ток стока можно смоделировать с помощью \ ref {6}, где ID — ток стока, VGS — напряжение затвор-исток, VT — пороговое напряжение, VDS — напряжение сток-исток, а k — геометрическое коэффициент, описываемый как \ ref {7}, где µ n — эффективная подвижность носителей заряда, C OX — емкость оксида затвора, W — ширина канала, а L — длина канала.{2} \ label {8} \]

    Решение для порогового напряжения VT приводит к \ ref {9}.

    \ [V_ {T} \ = \ V_ {GS} \ — \ \ sqrt {\ frac {I_ {D}} {k}} \ label {9} \]

    Область отсечения (обрезанная область)

    Когда напряжение затвор-исток, VGS, ниже порогового напряжения VT, носители заряда в канале недоступны, «перекрывая» поток заряда. Рассеяние мощности для полевых МОП-транзисторов также можно решить с помощью уравнения 6 в любой области, как в случае полевого транзистора.

    FET V-I Сводка

    Типичные ВАХ для всего семейства полевых транзисторов, показанных на рисунке \ (\ PageIndex {11} \), показаны на рисунке \ (\ PageIndex {12} \).

    Рисунок \ (\ PageIndex {12} \) График ВАХ для различных типов полевых транзисторов. По материалам P. Horowitz и W. Hill, Art of Electronics, Cambridge University Press, New York, 2 nd Edn., 1994.

    Из рисунка \ (\ PageIndex {12} \) видно, как схемы допирования которые приводят к усилению и истощению, смещаются вдоль оси VGS. Кроме того, из графика можно определить состояние ВКЛ или ВЫКЛ для данного напряжения затвор-исток, где (+) положительно, (0) равно нулю, а (-) отрицательно, как показано в Таблице \ (\ PageIndex {1} \).

    Таблица \ (\ PageIndex {1} \): состояние ВКЛ / ВЫКЛ для различных полевых транзисторов при заданном напряжении затвор-исток, где (-) — отрицательное напряжение, а (+) — положительное напряжение.
    Полевой транзистор Тип В GS = (-) В GS = 0 В GS = (+)
    n-канальный JFET ВЫК НА НА
    p-канал JFET НА НА ВЫК
    N-канальный MOSFET с истощением ВЫК НА НА
    МОП-транзистор с p-каналом истощения НА НА ВЫК
    МОП-транзистор с n-каналом расширения ВЫК ВЫКЛ. НА
    МОП-транзистор с р-каналом расширения НА НА ВЫК

    (PDF) Переходная характеристика металл-оксидно-полупроводникового полевого транзистора в автомобильном регуляторе в условиях высоких температур

    181

    Trans.Электр. Электрон. Матер. 11 (4) 178 (2010): C. Kang et al.

    закрытого типа меньше, чем у полузакрытого. Следовательно,

    вполне вероятно, что силиконовый гель действует как теплоотвод. Далее — еще

    , перерегулирование в корпусе открытого типа наименьшее из

    всех. Этот результат можно объяснить следующим образом: Тепло, генерируемое полевым МОП-транзистором

    в открытом корпусе, передается на обе стороны

    корпуса, то есть как на радиатор, так и на поверхность полевого МОП-транзистора

    , открытую для воздуха и вокруг которой может течь воздух.На рисунке 6 показано превышение температуры

    до каждой точки измерения, когда Tsurr

    = 30 ° C. Величина перерегулирования в открытом типе увеличивается на

    , а затем уменьшается в закрытом типе по сравнению с результатом

    на рис. 5. Такое поведение происходит по двум причинам. Первый — это

    , снижение температуры окружающей среды с 100

    до 30 ° C, а второй — наличие силиконового геля, который

    действует как теплоотвод во время тепловыделения.На рисунке 7 показано изменение подаваемого тока

    при входном напряжении 12,6 В в течение

    во время работы AICVR. Показано, что все паттерны в запечатанном токе

    являются убывающей экспоненциальной функцией. Даже

    , хотя окружающая температура колеблется от 30 до 100 ° C,

    аналогичные модели встречаются и в закрытом типе упаковки,

    степень уменьшения подаваемого тока является максимальной с

    закрытого типа упаковки при температуре окружающей среды

    100 ° C, даже если превышение не является максимальным.Это

    еще одна проблема для выяснения связи между структурой упаковки

    и превышением температуры окружающей среды.

    4. ВЫВОДЫ

    Влияние состояния упаковки на изменение температуры слоя MOSFET было исследовано на рабочем

    AICVR. Все температуры во всех точках измерения показали

    переходных процессов, выбросы и экспоненциальную нисходящую модель

    подаваемого тока во время работы полевого МОП-транзистора.Превышение максимальной температуры

    было наиболее значительным для

    при полузакрытом типе упаковки. Перерегулирование упаковки закрытого типа

    (т.е. состояние, близкое к фактическому) было на

    меньше, чем у полузакрытой (Tsurr = 100 ° C) и открытой

    (Tsurr = 30 ° C). Кроме того, величина перерегулирования зависит от типа упаковки и окружающей температуры.

    Кроме того, силиконовый гель играет роль теплоотвода.Таким образом,

    , помимо своего предназначения — защиты полевого МОП-транзистора от

    отрицательного электрического и механического воздействия, силиконовый гель

    также обеспечивает некоторую тепловую защиту.

    БЛАГОДАРНОСТИ

    Работа выполнена при финансовой поддержке

    Национального университета Чонбук для зарубежных исследований (CBNU-12-2007). Один из авторов

    (C.K.) посещает для исследовательских работ технический факультет Университета Висконсина, Мэдисон, Висконсин

    53705, США.

    ССЫЛКИ

    [1] М. Х. Маклафлин и Н. Д. Фицрой, IEEE Trans. Детали Гибриды

    Packag. 8, 39 (1972).

    [2] Коваль В.А., Федасюк Д.В., Микроэлектрон. J. 28, 221 (1997)

    [DOI: 10.1016 / S0026-2692 (96) 00026-2].

    [3] С. Кристоловяну, Microelectron. Англ. 39, 145 (1997) [DOI:

    10.1016 / S0167-9317 (97) 00172-X].

    [4] К. Чен, Дж. Х. Хуанг, Дж. З. Ма, З. Х. Лю, М. К. Дженг, П. К. Ко и

    С.Ху, Твердотельная электроника. 39, 699 (1996) [DOI: 10.1016 / 0038-

    1101 (95) 00197-2].

    [5] Ю Ф., Ченг М. Твердотельная электроника. 51, 691 (2007) [DOI:

    10.1016 / j.sse.2007.02.029].

    [6] M.C. Cheng, F. Yu, P. Habitz, G. Ahmadi, Solid-State Elec-

    tron. 48, 415 (2004) [DOI: 10.1016 / j.sse.2003.08.007].

    [7] F. Balestra, J. Jomaah, Microelectron. Англ. 80, 230, (2005)

    [DOI: 10.1016 / j.mee.2005.04.069].

    [8] С. Ди Пасколи, П. Э. Баньоли, К. Казароза, Microelectron. J.

    30, 1129 (1999) [DOI: 10.1016 / S0026-2692 (99) 00075-0].

    [9] L. Dupont, S. Lefebvre, M. Bouaroudj, Z. Khatir, J. C. Fau-

    gieres, Microelectron. Надежный. 47, 1767 (2007) [DOI: 10.1016 /

    j.microrel.2007.07.066].

    [10] Y. Kojima, T. Ohta, M. Matsushita, M. Takahara, and T. Kurau —

    chi, J. Appl. Polymer Sci. 41, 2199 (1990).

    Рис. 6. перерегулирования температуры радиатора, подложки и

    в нижней части опорной плиты с типом пакета (Tsurr = 30 ° C).

    Рис. 7. Изменение подаваемого тока во время работы регулятора напряжения au-

    tomotive IC (интервал измерения 5 минут).

    Электроника Готово быстро 4 | Транзист | Сообщество RobotShop

    Транзисторы

    — это трехконтактные устройства, на биполярном переходном транзисторе эти выводы называются коллектором (C), базой (B) и эмиттером (E).Существует две версии BJT-транзистора: NPN и PNP, которые описывают физическое устройство полупроводниковых материалов, из которых они сделаны. Это только изменяет направление потока тока. А пока давайте сосредоточимся на более распространенном транзисторе NPN.

    Основной принцип транзисторов заключается в том, что, обеспечивая небольшой ток между базой и эмиттером, вы позволяете большему току течь между коллектором и эмиттером.

    Источник: Pixel Electric

    Режимы работы

    Существует четыре различных режима работы транзистора, которые зависят от напряжений на его трех выводах.Четыре режима:

    Насыщение — Транзистор работает как переключатель во включенном состоянии.

    Cut-Off — Транзистор работает как выключатель в выключенном состоянии.

    Активный — Транзистор работает как усилитель.

    Reverse Active — Транзистор работает как менее эффективный усилитель, чем активный режим, и поэтому не будет использоваться.

    В режимах насыщения и отсечки транзистор работает как переключатель.Если напряжение между базой и эмиттером превышает пороговое напряжение (около 0,7 В в большинстве транзисторов), это позволит току течь между коллектором и эмиттером, где находится основная цепь. Если оно упадет ниже порогового напряжения, ток перестанет течь, и транзистор перейдет в состояние ВЫКЛ.

    Активный режим — это самый мощный режим транзистора, потому что он превращает устройство в усилитель.Ток, идущий в базу, усиливает ток, идущий между коллектором и эмиттером.

    Для работы в активном режиме базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера. Коэффициент усиления (коэффициент усиления) транзистора β линейно связывает ток коллектора с током базы.

    Фактическое значение β зависит от транзистора.Обычно это около 100, но может варьироваться от 50 до 2000, в зависимости от того, какой транзистор вы используете и какой ток через него проходит. Если, например, у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА в базу может производить ток 100 мА через коллектор.

    Приложения BJT
    Н-образный мост

    H-мост — это простая схема, которая позволяет управлять направлением двигателя постоянного тока с помощью транзисторов.Двигатель постоянного тока вращается по часовой стрелке или против часовой стрелки в зависимости от полярности напряжения, приложенного к двигателю. Схема состоит из четырех транзисторов, которые действуют как переключатели, двух PNP и двух NPN. Разомкнув два переключателя и замкнув два других, вы можете управлять направлением двигателя.

    Источник: RobotShop

    Обычно вы управляете транзисторами с помощью микроконтроллера, такого как Arduino.Самое главное — убедиться, что все транзисторы выдерживают ток, достаточный для двигателя, иначе он перегорит. Например, если двигатель потребляет ток 1 ампер, вам нужны транзисторы, которые могут выдерживать минимум 1 ампер.

    Транзистор Дарлингтона

    Транзисторы Дарлингтона — это два BJT, соединенных вместе таким образом, что ток, усиленный первым транзистором, дополнительно усиливается вторым.Эта конфигурация дает гораздо более высокий коэффициент усиления по току, чем каждый транзистор в отдельности. Типичный транзистор Дарлингтона имеет коэффициент усиления по току 1000 или более, так что для переключения пары на более высокие токи переключения требуется только небольшой базовый ток.

    Источник: Википедия

    Пара Дарлингтона ведет себя как одиночный транзистор, то есть у нее одна база, один коллектор и один эмиттер.Один из недостатков — это примерное удвоение напряжения база-эмиттер. Поскольку между базой и эмиттером транзистора Дарлингтона имеется два перехода, эквивалентное напряжение база-эмиттер является суммой обоих напряжений база-эмиттер

    Транзисторы Дарлингтона

    могут использоваться в сильноточных цепях, например в тех, которые связаны с компьютерным управлением двигателями или реле. Ток усиливается от нормального низкого уровня выходной линии компьютера до величины, необходимой для подключенного устройства.

    Фототранзистор и оптопара

    Фототранзистор — это транзистор, который может определять уровни света и изменять ток, протекающий между эмиттером и коллектором, в зависимости от уровня света, который он получает.

    Характеристики фототранзистора при различной интенсивности света очень похожи на характеристики обычного биполярного транзистора, но с разными уровнями тока базы, замененными разными уровнями интенсивности света.

    В фототранзисторе протекает небольшой ток, даже когда нет света. Это называется темновым током и представляет собой небольшое количество электронов, которые вводятся в эмиттер. Как и фотогенерируемые электроны, он также усиливается транзистором.

    Источник: Tech-FAQ

    Фототранзистор можно комбинировать со светодиодом для создания оптрона.Оптопара — это электронный компонент, который передает электрические сигналы между двумя изолированными цепями с помощью света. Оптопары предотвращают воздействие высокого напряжения на систему, принимающую сигнал.

    Оптопары обычно содержатся в одном корпусе, часто размером с интегральную схему.

    Источник: RobotShop

    Если вы разрабатываете электронное устройство, которое будет восприимчиво к скачкам напряжения, ударам молнии, скачкам напряжения питания и т. Д.тогда вам понадобится один для защиты низковольтных устройств. Оптопара может эффективно:

    • Устранение электрических помех из сигналов
    • Изолируйте низковольтные устройства от высоковольтных цепей
    • Позволяет использовать небольшие цифровые сигналы для управления более высокими напряжениями переменного тока

    Чувствительные датчики на полевых транзисторах с атомарно тонкими нанолистами черного фосфора

    Полевые транзисторы с черным фосфором (BP) с атомарной тонкостью обладают прекрасным потенциалом для применения в датчиках.Однако коммерческое масштабирование датчиков PFET все еще находится на начальной стадии из-за различных технических проблем, таких как утомительное изготовление, низкий процент отклика, вызванный быстрым окислением, неидеальный выход отклика (пики / двунаправленные) и большой разброс устройств из-за плохого контроль толщины слоя среди устройств. Были предприняты попытки решить эти проблемы. Во-первых, разработана теоретическая модель зависимости процента отклика от количества слоев, чтобы показать роль атомарно тонкого БП для улучшения отклика.Метод отслаивания выбранной области с отслеживанием положения был разработан для быстрого получения тонких слоев БП с узким распределением (~ 1–7 слоев), что позволяет использовать превосходный контроль затвора над каналом PFET. Типичное соотношение тока включения / выключения находится в диапазоне ∼300–500. Модифицированные цистеином Al 2 O 3 -закрытые датчики PFET показывают высокие отклики (∼30–900%) в широком диапазоне обнаружения (∼1–400 ppb) ионов свинца в воде с типичным время отклика ∼10–30 с.Предлагается стратегия минимизации отклонений устройства путем соотнесения отношения включения / выключения полевых транзисторов с параметрами чувствительности. Изменение толщины оксида затвора исследуется для объяснения неидеальной и идеальной переходной кинетики отклика.

    У вас есть доступ к этой статье

    Подождите, пока мы загрузим ваш контент…

    Что-то пошло не так. Попробуй еще раз?

    Микроконтроллер Drivign FET транзистор

    Интерфейс микроконтроллера — Часть 9

    Коммутация на полевых транзисторах

    Голы

    В предыдущих разделах было показано, как использовать биполярные транзисторы для переключения нагрузок с более высокими токами и / или напряжениями, чем может обрабатывать непосредственно выходной контакт микроконтроллера.В этом разделе показано, как использовать другой тип транзистора, полевой транзистор (FET), который может иметь преимущества в некоторых схемах.

    Основы полевых транзисторов

    Часть 7 описывает работу транзисторов с биполярным переходом (BJT). Эти транзисторы известны как устройства с регулируемым током. По сути, ток коллектора BJT — это ток базы, умноженный на коэффициент усиления транзистора. Полевой транзистор — это устройство, управляемое напряжением. Как и BJT, полевой транзистор имеет три контакта.Это затвор, сток и исток. На затвор подается управляющее напряжение.

    Существует несколько типов полевых транзисторов. Сначала есть канал N и канал P. Затем есть варианты режима улучшения и режима истощения. Тогда есть и другие варианты. Наиболее распространенным типом полевых транзисторов в схемах переключения является MOSFET (полевой транзистор с металлическим оксидом и полупроводником). Мы ограничим обсуждение N каналом, режимом расширения MOSFET. Это наиболее часто используемые полевые транзисторы в схемах на основе микроконтроллеров.Если не указано иное, всякий раз, когда используется термин «полевой транзистор», он будет относиться к N-канальному полевому транзистору в режиме расширения.

    Лучше всего рассматривать полевой транзистор как переменный резистор, управляемый напряжением.Резистор находится между выводами истока и стока. Величина резистора будет зависеть от напряжения между затвором и истоком (Vgs). Если напряжение равно нулю вольт, сопротивление будет очень высоким (несколько миллионов Ом) и, по сути, будет разомкнутой цепью. Если Vgs выше определенного уровня, сопротивление будет очень низким (несколько Ом или меньше). В технических данных это значение будет обозначаться как Rds (сопротивление сток-исток). Если Vgs, иногда называемое просто напряжением затвора, находится между этими пределами, сопротивление будет где-то между низким и высоким.Это относится к линейному диапазону. Обычно мы не хотим, чтобы полевой транзистор находился в линейном диапазоне в коммутационных приложениях.

    Для выходного контакта микроконтроллера базовый контакт BJT выглядит как диод. Вывод должен пропускать ток через этот диод. Затвор, управляющий вывод полевого транзистора, выглядит как небольшой конденсатор между выводами затвора и истока. Единственный ток, который течет, — это величина, необходимая для заряда или разряда этой емкости. После того, как конденсатор заряжен, ток не будет течь до тех пор, пока состояние выходного контакта микроконтроллера не изменится.

    Пример: управление реле

    В разделе 7 мы использовали пример биполярного транзистора для переключения реле. Мы вернемся к этой проблеме, но на этот раз воспользуемся полевым транзистором в качестве переключателя. На рисунке 9-1 показана схема. Проблема заключается в том, чтобы управлять напряжением 12 В с выходного контакта микроконтроллера. Сопротивление катушки реле 360 Ом. Наш микроконтроллер на 5 В не может напрямую переключать 12 В без риска повреждения. Закон Ома также говорит нам:

    I = V / R = 12/360 = 0,033 A или 33 мА

    Так как микроконтроллер имеет максимальные пределы стока и источника 25 мА, мы не можем справиться и с током.Мы будем использовать полевой транзистор для тяжелой работы. Давайте попробуем 2N7000 для этого приложения. Беглый взгляд на спецификации показывает некоторые ключевые параметры.

    2N7000

    Vds 60 В макс.

    Id 200 мА макс. (Непрерывно)

    Pd 400 мВт

    Rds (вкл.) 5.3 Ом (макс.)

    Максимальное напряжение на устройстве Vds составляет 60 В, поэтому напряжение питания 12 В не будет проблемой.2 * R = 0,033 * 0,033 * 5,3 = 5,7 мВт

    2N7000 подойдет в этом приложении. Обратите внимание на использование диода D1. Он используется для управления током, создаваемым коллапсирующим магнитным полем, возникающим при выключении полевого транзистора. Без диода напряжение на полевом транзисторе может быть достаточно высоким, чтобы вызвать повреждение. Диоды необходимы всякий раз, когда используется индуктивная нагрузка.

    Итак, зачем нам использовать полевой транзистор вместо BJT? Полевой транзистор 2N7000 стоит больше, чем, скажем, PN2222 BJT. В этом конкретном приложении, вероятно, нет большой причины использовать полевые транзисторы.Бывают ситуации, когда полевой транзистор имеет одно или несколько основных преимуществ.

    Рассмотрим конструкцию портативного устройства с батарейным питанием. Срок службы батареи — это серьезная проблема в нашем приложении, поэтому мы хотим снизить потребление тока в каждой части цепи, которую мы можем. Теперь, вместо переключения энергоемкого реле, нам нужно включить компонент, которому требуется 9 В (от нашей батареи), но ток всего несколько мА.

    В этой ситуации мы, вероятно, будем управлять базой биполярного транзистора с током мА или более.Этот ток будет дополнительным расходом заряда батареи. С полевым транзистором, если частота переключения низкая, ток на затворе полевого транзистора будет незначительным. Использование полевого транзистора в этой ситуации позволит сэкономить электроэнергию.

    Коммутация высокой мощности

    Основная ситуация, когда полевые транзисторы лучше, — это сильноточные цепи. Предположим, мы хотим переключить двигатель, электрический нагреватель или другую сильноточную нагрузку. Полевые транзисторы производятся с очень низким сопротивлением между стоком и истоком.Чем ниже Rds, тем эффективнее будет схема.

    Допустим, мы делаем обогреватель для какого-то приложения. Нагревательный элемент работает от 24 В и потребляет 8 ампер, когда он включен. Давайте сначала посмотрим на использование биполярного транзистора. 2N3055 — это обычный сильноточный транзистор.

    2N3055

    Vce 60 В (макс.)

    Ic 15A (макс.)

    Vce (насыщ.) 3 В (Ic = 10A, Ib = 3A)

    Наши требования для Vce (24 В) и Ic (8A) намного ниже пределов для 2N3055. 2 * Rds = 8A * 8 A *.15 Ом = 9,6 Вт

    Мощность, рассеиваемая на полевом транзисторе, все еще довольно высока, 9,6 Вт, но она значительно ниже предела устройства 79 Вт и намного меньше, чем 24 Вт для биполярного транзистора 2N3055. Полевой транзистор по-прежнему будет нуждаться в теплоотводе, но это будет не так сложно, как с 2N3055.

    Приложив немного усилий, мы, вероятно, сможем найти полевой транзистор с более низким сопротивлением сопротивления, что еще больше снизит потери мощности на полевом транзисторе.

    IRF530

    Vdss 100 В

    Id 17A

    Pd 79W

    Rds (на).15 Ом (Vgs = 4V, Id = 8A)

    Vgs (th) 2V

    Vgs 16V макс.

    ШИМ

    Транзисторы

    FET часто используются для управления двигателями постоянного тока.Что, если бы мы хотели контролировать скорость двигателя? Мы можем контролировать скорость двигателя постоянного тока, изменяя напряжение на нем. Один из способов сделать это с помощью микроконтроллера — использовать широтно-импульсную модуляцию (ШИМ). Допустим, у нас есть мотор на 12 В. Если просто подать питающее напряжение на двигатель. Он видит 12 вольт и работает на полной скорости.

    Теперь предположим, что мы очень быстро включили и выключили 12В. Время включения и выключения одинаковы. Он работает в 50% случаев и выключен в 50% случаев. Считается, что сигнал имеет рабочий цикл 50%.Среднее напряжение, которое будет видеть двигатель, составляет 50% от 12 В или 6 В. Мотор работает медленнее при 6В.

    Допустим, мы изменили рабочий цикл на 75%. Напряжение сейчас включено 75% времени и выключено 25% времени. Двигатель теперь видит в среднем 75% от 12 В или 9 В. Он работает быстрее, чем при 6 В, но медленнее, чем при 12 В. Мы можем создать любое напряжение от 0 до 12 В, изменив рабочий цикл.

    Многие микроконтроллеры имеют встроенные периферийные устройства с ШИМ. После настройки они будут работать с заданной частотой и рабочим циклом без какого-либо дополнительного внимания.Если ваш микроконтроллер не имеет ШИМ, вы можете сделать то же самое с аппаратными или программными таймерами, контролирующими вывод.

    Схемы

    ШИМ обычно работают на нескольких десятках кГц. Это может вызвать ситуацию, которая, если ее не принять во внимание, может привести к разрушению полевого транзистора. Помните, ранее мы говорили, что затвор выглядит как конденсатор для выходной линии микроконтроллера. Этот конденсатор необходимо заряжать или разряжать каждый раз при переключении управляющего сигнала. Пока конденсатор заряжается или разряжается, полевой транзистор не будет ни включен, ни выключен.Он будет в своем линейном диапазоне, а Rds будет между Rds (вкл.) И Rds (выкл.). Ток, протекающий через полевой транзистор, вызовет рассеяние большой мощности.

    В наших примерах выше мы не включали и выключали нагрузку очень быстро, поэтому у полевого транзистора есть время, чтобы рассеять дополнительное тепло между переходами, и его обычно можно игнорировать. Если полевой транзистор меняет состояния 20 000 раз в секунду (частота ШИМ 10 кГц), он будет проводить больший процент своего времени в этом линейном диапазоне. Возможно, что мощность, рассеиваемая полевым транзистором в этих условиях, превысит максимальные значения и разрушит полевой транзистор.

    Величина емкости затвора на самом деле является зарядом затвора и будет показана в листе данных. Полевые транзисторы большей мощности имеют более крупные матрицы и, следовательно, будут иметь больший заряд затвора. В таких ситуациях необходимо управлять затвором с достаточным напряжением и током для зарядки (разрядки) затвора достаточно быстро, чтобы время, проведенное в линейной области полевого транзистора, было очень коротким. Это часто делается с помощью специальных схем или микросхем драйверов на полевых транзисторах. Расчеты и методы компоновки печатной платы для высокоскоростной ШИМ выходят за рамки этого руководства.У производителей полевых транзисторов есть указания по применению, в которых эта тема рассматривается более подробно.

    Резюме

    Полевые транзисторы

    являются альтернативой биполярным транзисторам для переключения нагрузок за пределами диапазона микроконтроллера для непосредственного управления.Полевые транзисторы обычно лучше подходят для приложений, где требуются большие токи, и в некоторых ситуациях с низким энергопотреблением. Схемы на полевых транзисторах требуют особого внимания, особенно при более высоких скоростях переключения.

    Gotcha List

    1.Убедитесь, что полевой транзистор может выдерживать напряжение и ток, необходимые для нагрузки.

    2. Рассмотрите возможность использования полевых транзисторов с переключением логического уровня для упрощения взаимодействия с микроконтроллерами.

    3. Защитите транзистор демпфирующим диодом, если нагрузка представляет собой реле, соленоид, двигатель или иную индуктивную нагрузку.

    4. В приложениях с ШИМ большой мощностью необходимо учитывать требования к приводу, чтобы избежать заряда затвора.

    .