Сварочный инвертор с осциллятором: Сварочные инверторы Атом — купить оптом и в розницу

Осциллятор для сварки: принцип действия устройства, виды

В работе с электродуговой сваркой необходимо обладать определенным навыком. Он потребуется не только при формировании шва, но и уже на начальной стадии, когда происходит процесс розжига дуги. В классическом представлении дуга возникает в результате соприкосновения электрода с поверхностью металла. Чтобы 1 см воздуха стал проводником, необходимо приложить разность потенциалов примерно в 30 тысяч вольт. Естественно, такое напряжение слишком высоко даже для современных инверторов, поэтому единственной возможностью зажечь дугу является соприкосновение с постепенным удалением электрода.

Результат такой манипуляции напрямую зависит от мастерства сварщика, однако даже профессионалы не гарантируют того, что стабильная дуга образуется после первого соприкосновения.

Зачастую сварщик совершает колебательные движения держателем, выполняя при этом постукивания о поверхность детали с целью нарушения слоя окисла. Особенно явно такие сложности возникают при работе с цветными металлами. Если учесть то, что по регламенту сварка цветных металлов ведется малыми токами, то вероятность получить стабильную дугу резко снижается.

Избежать подобных проблем помогает устройство, более известное, как осциллятор для сварки. Он выступает в качестве дополнительного оборудования к источнику питания при ведении аргонодуговой сварки. Для его использования мастер обязан обладать достаточным объемом знаний, начиная от устройства и заканчивая способом подключения.

Принцип действия и назначение

Применение осциллятора позволяет обеспечить бесконтактный розжиг дуги, что существенно облегчает задачу сварщика, а также влияет на стабильность электрической дуги в процессе работы. Хотя мы отметили, что устройство является обособленным элементом, иногда оно интегрировано в сварочный инвертор, то есть, источник питания и осциллятор находятся в одном корпусе. При достаточном объеме знаний в области электроники и электричества возможно изготовление самодельного осциллятора. Именно на этом обычно концентрируют свое внимание читатели, так как экономия денежных средств всегда выглядит привлекательно.

Начнем с того, что сформулируем основную идею работы данного устройства. При работе сварочного инвертора на электроды подается напряжение 220 В. Если сварка ведется переменным током, то его частота составляет 50 Гц. «Поверх» этого напряжения в импульсном режиме подается высокая разность потенциалов и высокая частота. Количество таких импульсов, как правило, невелико. Добавочный высокочастотный ток должен лишь разжечь дугу. На это уходят доли секунды. Для качественно оценки следует подчеркнуть, что амплитуда колебаний напряжения достигает 6 кВ, а частота при этом составляет 500 кГц. Но за счет малой продолжительности импульса мощность электрического тока не превышает 300 Вт.

Среди пользователей возникает лаконичный вопрос: «Может ли осциллятор генерируемым током проводить сварку металлов?». Действительно, это было бы логично, однако низкая мощность не позволяет расплавить металл и присадку, поэтому импульс используется исключительно для пробоя воздушного зазора. В задачи сварщика входит лишь приближение электрода на расстояние примерно 5 мм и нажатие кнопки. В осцилляторах интегрированного типа кнопка локализуется прямо на держателе. Длительность импульса соответствует времени удержания кнопки. Далее сварка проводится в обычном режиме.

Высокочастотный ток протекает через диэлектрик (воздух) после активной ионизации. Практически моментально возникает дуговой разряд. Одновременно ионизированный воздух становится проводником, и основной ток сварочного аппарата течет, образуя электрическую дугу. Если процесс сварки автоматизирован и инвертор обладает микропроцессором, то осциллятор в процессе формирования шва автоматически включается при необходимости, когда возникает тенденция гашения дуги. Примером может служить ситуация с перепадом напряжения или случайного движения руки сварщика в сторону. В результате работы осциллятора можно получить качественный и равномерный шов.

Устройство и работа

Если с назначением осциллятора разобраться не так сложно, то для понимания его работы потребуются некоторые знания в области физики. Первым делом необходимо понимать, что с помощью этого прибора мы получаем дистанционный розжиг дуги и в процессе сварки стабильную дугу, которая статична по отношению к изменяющемуся зазору между электродом и поверхностью металла.

Осциллятор принципиально состоит из нескольких блоков:

  • Повышающий трансформатор служит для преобразования амплитуды напряжения.
  • Колебательный контур, имеющий классическое строение. Он состоит из конденсатора и катушки индуктивности. В этом контуре возникают высокочастотные колебания.
  • Разрядник. Его основной элемент – воздушный зазор, в котором возникает искра.

Естественно, нами не учтены различные датчики, обеспечивающие автономность работы и систему контроля. При реализации интегрированной схемы, когда осциллятор является составной частью аргонодугового инвертора, устройство оснащено клапаном подачи газа. Последний управляется микропроцессором и подает аргон в нужный момент времени. Осциллятор оснащен системой безопасности, обеспечивающей бесперебойную работу электрической цепи, а также сохранность жизни и здоровья самого сварщика. От поражения электрическим током защищает конденсатор. В случае его пробоя в работу вступает плавкий предохранитель, размыкающий цепь при превышении силы тока.

Алгоритм работы осциллятора можно представить в виде последовательности процессов. Рабочее напряжение бытовой сети поступает на первичную обмотку повышающего трансформатора. После преобразования тока на вторичной обмотке индуцируется ЭДС заданной величины (5-6 тысяч вольт). На данный момент частота тока равна промышленной частоте, то есть, 50 Гц. К обмотке вторичной катушки подключен конденсатор колебательного контура. Он начинает заряжаться, но так как собственная частота колебательного контура превышает частоту тока на обмотке, то в контуре возникают колебания. Изначально контур разомкнут, но пробой в разряднике играет роль своеобразного ключа и замыкает цепь. Колебания тока в контуре поступают на электрод.

Одним из примечательных свойств конденсатора является пропускание переменного электрического тока. Емкостное сопротивление с повышением частоты уменьшается. Блокировочный конденсатор является препятствием для низкочастотного тока, которым питается сам инвертор, однако пропускает высокочастотный ток. Таким образом, обеспечивается защита осциллятора от короткого замыкания.

Виды, подключение

По принципу работы устройства делятся на два типа:

  1. Осцилляторы непрерывного действия.
  2. Осцилляторы импульсного действия.

При работе осциллятора первого типа сварочный ток суммируется с высокочастотным током высокого напряжения. Зажигание дуги происходит без непосредственного контакта электрода с поверхностью металла. При малом значении силы тока дуга остается стабильной. Исключается разбрызгивание металла и поражение сварщика электрическим разрядом. Такой осциллятор может быть включен в сеть последовательно или параллельно. При последовательном соединении устройство включается в разрыв кабеля электрода. Подобное подключение позволяет использовать осциллятор более эффективным образом. Нет потери энергии на обеспечение защиты от высокого напряжения.

Импульсный осциллятор подключается параллельно и используется преимущественно в тех случаях, когда требуется вести сварочные работы переменным током. Вся сложность заключается в том, что устройство должно реагировать на смену полярности, причем за минимальное время. Поддержать дугу, повысив ее стабильность, может только ток высокой частоты импульсного типа. Если применить при такой сварке аппараты непрерывного действия, то дуга будет получена без особых проблем, однако повторное ее зажигание уже невозможно, то есть осциллятор будет выполнять только одну свою функцию.

Наличие в схеме конденсаторов позволяет сделать более функциональное устройство. Накопленный электрический заряд позволяет производить повторные импульсы и поджигать дугу в процессе формирования шва, если сварщик случайно отклонил электрод на большое расстояние. В схеме устройства без обратной связи не обойтись. Именно управляющая система обеспечивает синхронизированный разряд конденсатора.

Сварочный инвертор SSVA-160TIG (с осциллятором) (Запорожье)





















ПараметрЗначениеПримечание
Номинальное напряжение питания, B220
Рабочее напряжение питания, B165―275Или эквивалентное сопротивление электросети не более 4 Ом
Диапазон регулировки выходных токов, А5―190
Рабочий диапазон температур окружающей среды, °С-30…+45Нет принципиальных ограничений для работы при более низких температурах
Потребляемая мощность (бытовая сеть 220 В, 16 А), кВт, не более2,7 (12 А)При постоянном выходном токе до 110 А
Потребляемая мощность (бытовая сеть 220 В, 16 А), кВт, не более3,5 (16 А)При постоянном выходном токе до 140 А
Потребляемая мощность (промышленная сеть 220 В, 25 А), кВт, не более5,5 (25 А)При постоянном выходном токе до 160 А
Потребляемая мощность (промышленная сеть 220 В, 25 А), кВт, не болееКратковременная,

0,2 с, 6,7 (30 А)
В режиме ММА с максимальными установками при отрыве дуги
Потребляемая мощность холостого хода, Вт, не более40
Максимальный ток короткого замыкания, А~ 250
ПН при нормальных условиях, %, не менеедо 135 А ― 100,

160 А ― 60
КПД, %, не менее88
cos φ0,67
Диаметр электрода, мм1,6―5,0С любым типом покрытия
Диаметр проволоки, мм0,6―1,0При использовании совместно с подающим устройством SSVA
Диапазон регулировки выходного напряжения, режим MIG/MAG, В7,8―24,6
Сопротивление изоляции, при напряжении 2,5 кВ, МОм, не менее50Типовое ― 300
Габаритные размеры (Д×Ш×В), мм470 × 150 × 230
Масса, кг, не более10Без сварочных кабелей

Создание осциллятора для инвертора и для сварки своими руками

Осциллятор для сварки является важным прибором для проведения подобных работ в различных промышленных производствах. Также может применяться и в домашнем хозяйстве. Однако не всегда стоит приобретать подобные устройства, хотя спрос на них велик. Ведь можно без проблем сделать осциллятор своими руками.

Принцип действия прибора

Вне зависимости от того, куплен ли осциллятор для инвертора или сделан самостоятельно, его основное предназначение состоит в создании стабильной работы сварочной дуги. Частота прибора — 50 герц при номинальном напряжении 220 вольт. Выходные же параметры могут изменяться до 300 тысяч герц и 2500 вольт. Такая работа осциллятора создает импульсы периодом до нескольких десятков микросекунд. Сходные параметры работы, когда ток высокой частоты проходит в сварочную цепь, обусловлены высокой мощностью от 250 до 350 ватт.

Из чего состоит осциллятор

Изготовленный своими руками сварочный прибор имеет возможности, которые соответствуют осуществлению сварочных работ на производстве или в домашних условиях. Применяя его, можно произвести сварку алюминия и других похожих по свойствам металлов.

Основные электрические составляющие данного аппарата:

  • Разрядник;
  • Катушки дросселей;
  • Стандартный и высокочастотный трансформатор;
  • Колебательный контур.

Контур, который создается с участием конденсатора и трансформатора высокой частоты, позволяет создавать затухающие искры. При этом конденсатор защищает само устройство и работника от воздействия электричества и возникающих в результате травм. При пробое электрическая цепь размыкается специальным предохранителем.

Порядок изготовления осциллятора

Если вам предстоит сваривать преимущественно алюминиевые детали, то можно изготовить сварочный агрегат своими силами. Монтаж осуществляется одной из наиболее известных схем:

  • Для начала подбирается надежный трансформатор, который способен обеспечить увеличенную подачу напряжения от стандартных 220 до 3000 вольт;
  • Затем необходимо произвести установку разрядника, который будет пропускать искру;
  • После чего следует присоединение еще одного важного элемента. Таковым является колебательный контур с блокировочным конденсатором, который способен генерировать высокочастотные импульсы, чтобы добиться необходимых показателей.

Осциллятор готов к работе, его основным элементом является колебательный контур. Обязательным должно быть наличие блокировочного конденсатора. Все это помогает создать необходимые импульсы. В результате сварочная дуга обладает стабильностью и процесс ее зажигания становится проще.

Процесс работы достаточно простой. После запуска начинает загораться разрядник, создающий частотные импульсы. За это ответственнен высоковольтный трансформатор. Высокомагнитное поле появляется через дугу, затем преобразовывается с помощью катушки, изготавливаемой путем наматывания сварочного кабеля. Плюс идет на горелку, а минус на деталь, в результате газ будет поступать через клапан в горелку. Начинается процесс сварки.

Перед созданием такого устройства следует внимательно ознакомиться с чертежами. Даже начальные познания в электротехнике вкупе с навыками конструирования помогут без серьезных проблем изготовить данный осциллятор. Еще важно соблюдать технику безопасности и помнить о вероятности поражения электрическим током.

Особенности изготовления

Если планируется использование аппарата исключительно в домашнем хозяйстве, то можно изготовить инверторный осциллятор самостоятельно, поскольку у производителя такие приборы весьма дорогие. Необходимо также обладать опытом сборки подобных устройств и знаниями электричества.

Немаловажным является грамотная эксплуатация устройства, ибо при несоблюдении техники безопасности можно получить серьезные травмы. Тщательно подойдите к сборке техники, выбирайте исключительно такие компоненты, которые подходят по своим характеристикам. Соблюдение всех рекомендаций значительно облегчает сборку осциллятора в домашних условиях. Достаточно наличия соответствующих инструментов и деталей.

Осциллятор для сварки является важным инструментом как на производстве, так и в домашнем быту. С его помощью обеспечивается стабильная и сильная дуга, помогающая сваривать различные алюминиевые конструкции. Знание соответствующих разделов физики и электротехники облегчает в соответствующей степени работу и создание подобных устройств. При этом нельзя забывать и о грамотной эксплуатации осциллятора, ведь есть вероятность получить травмы при поражении электрическим током. Удачного создания сварочных осцилляторов!

что такое и для чего применяется, схема, видео

От стабильности электродуги зависит качество сварки тяжело свариваемых металлов: нержавейки, некоторых алюминиевых и цветных сплавов. В качестве стабилизатора используют сварочный осциллятор – устройство для генерации импульсного разряда. Для дополнительного подключения к сварочному аппарату покупают готовый прибор или применяют творение своих рук, сделать электронное устройство для сварки алюминия, сложных сталей можно самостоятельно.

Осциллятор – это еще один источник тока для сварочника, электроприбор, предназначенный для генерации импульса. Когда подключен осциллятор, аппарат или инвертор для сварки поддерживает дугу без обязательного контакта заготовки и электрода. Горение обеспечивается наложением токов от основного источника и осциллографа. Сварка стабилизируется, формируется равномерный шов, снижается риск залипания во время короткого замыкания по капле при использовании плавящихся электродов.

Устройство сварочного осциллятора

Рассматривая принципиальную схему, нужно выбрать способ подключения, сварочный осциллятор (фабричный или собранный своими руками) присоединяется к сварочнику одним из двух возможных способов:

  • последовательное подключение эффективно при работе с алюминием и алюминиевыми сплавами, обеспечивается бесперебойное продолжительное горение электродуги;
  • при параллельном присоединении варят нержавеющий прокат, такое соединение краткосрочного характера.

Схема устройства осциллятора

Любой осциллятор, применяемый для процесса сварки, собирается из подобного набора электродеталей:

  1. Стандартный искровой разрядник – одноконтурный, состоит из индукционной катушки (зажигания) с последовательно подключенным конденсатором, аккумулирующим заряд. Разрядник генерирует затухающие колебания. В качестве контактов используют вольфрамовые электроды.
  2. Две катушки индуктивности, обладающие высоким сопротивлением переменному току, малым — постоянному, выполняют функцию дросселей. На выходе рост напряжения запаздывает, тормозится.
  3. Ток преобразуется по вольтажу и частотности повышающим трансформатором до 6 кВ. Монтируют модель большой мощности, выдающей частотность до 250 Гц.
  4. Сформированный импульс на сварочный инвертор передает выходной трансформаторный блок (используется принцип индуктивности).
  5. В блок управления входят два узла: стабилизатор и пусковой механизм.
  6. Предохранители обеспечивают безопасную работу осциллятора (когда своими руками создаются устройства своими руками, нельзя сбрасывать со счетов технику безопасности).

Разрядник, дополнительные катушки выполняют функцию выпрямителя, созданного при помощи своих рук.

При использовании осциллятора при сварке повышается риск поражения электротоком, защита необходима. Повышение частоты и вольтажа происходит мгновенно, в доли секунды.

Принцип работы

Генерация состоит из нескольких последовательных операций, для наглядности их лучше перечислить:

  • подача тока;
  • от повышающей обмотки заряжается конденсатор;
  • при полной зарядке емкости блок управления подает сигнал на разрядник;
  • происходит пробивной разряд;
  • закорачивается колебательный контур;
  • в рабочую зону подаются затухающие колебания;
  • предохранитель размыкает электрическую цепь, когда освобождается конденсатор;
  • за счет ионизации воздуха или защитного газа вспыхивает дуга.

С помощью специальной кнопки на держателе или корпусе горелки (для аргонодуговой сварки) можно управлять процессом.

Осциллятор для сварки, сделанный своими руками или приобретенный магазине, подключается к аппарату, чтобы в процессе сваривания при необходимости генерировать импульс, разжигающий потухшую дугу. Как только дуга разгорится, импульс исчезает. Кратковременный разряд схож с ударом молнии, непосредственный контакт детали с электродом для возникновения дуги не нужен. Осциллятор применим для работ:

  • с вольфрамовым неплавящимся стержнем, присадочной проволокой;
  • стандартными электродами в обмазке (подбираются по типу свариваемых заготовок).

Импульсы, генерируемые осциллятором, небольшие по длительности, характеризуются низкой скважностью, мощностью до 300 Вт. Формируют искровой пробой между электродом и деталью на удалении.

Осциллятор можно купить фабричный, либо изготовить своими руками

Созданные своими руками осцилляторы не хуже фабричных поддерживают стабильное горение дуги в процессе сварки. Устройства срабатывают, когда возрастает промежуток между деталью и электродом. Когда воздушный промежуток слишком большой, электродуга самопроизвольно затухает. Дополнительный генератор возобновляет горение без процедуры электродного чиркания или прямого контакта детали с электродом. Приложив свои руки, можно сделать осциллятор из имеющихся электродеталей. До этого нужно узнать критерии выбора устройств.

Разновидности

Тем, кто планирует собирать осциллятор самостоятельно, следует выбрать тип оборудования для сварки. Импульсное устройство применяется на аппаратах различного типа.

Существует классификации фабричных осцилляторов для инверторов по разным признакам: габаритам, весу, техническим характеристикам: выходному вольтажу, частотности.

В электроприборах непрерывного действия используется постоянный ток, в устройствах для сварки с краткосрочной разрядкой – переменный. В зависимости от режима работы подключаются приборы параллельно или последовательно. Устройство, изготовленное своими руками, лучше подключать последовательно, снижается риск поражения сварщика током при неисправности оборудования. При варианте последовательного присоединения один из трансформаторов дополняют сглаживающим конденсатором с предохранителем, вторичную – колебательным контуром, соединенным с разрядником.

Схема подключения осциллятора

Устройства для сварки цикличной полярности чаще применяют для сварки алюминия, а также сплавов на его основе. Для нержавейки и цветных металлов нужен постоянный ток. При выборе устройств учитывают особенности заготовок, тип имеющегося сварочника, предстоящий объем работы. Когда сформировалась привычка к имеющемуся сварочному аппарату, расширить возможности оборудования можно самостоятельно.

Как сделать осциллятор для сварки своими руками

Осуществляют сборку из готовых узлов и распространенных деталей, которые несложно приобрести или извлечь из других электротехнических приборов и старого электрооборудования. Сделать самодельный осциллятор «с нуля» невозможно. Слишком сложная схема.

Схема изготовления сварочного осциллятора

Устройство базируется на входном повышающем трансформаторе. Вместо нее умельцы используют катушку зажигания. Этот узел необходим для преобразования низковольтного напряжения, поступающего от аккумулятора, в высоковольтное. Автомобильная катушка способна создавать напряжение до 400 В. За счет этого генерируется электроимпульс на свече. Вторая катушка выполняет функцию фильтра, защищает от вероятных значительных колебаний тока.

Изготовление осциллятора, предназначенного для ручной или аргонной сварки, предусматривает формирование печатной платы своими руками. Обычно блоки располагаются следующим образом:

  • посередине размещают колебательный контур, отсеивающий низкочастотный ток;
  • в левой части – повышающий трансформатор, преобразующий стандартное электропитание с высокочастотный ток; устанавливают предохранители, монтируют блок управления;
  • справа – индуктивную катушку, лучше сделать сдвоенный вариант, тогда контур будет работать стабильно.

Конденсатор должен иметь двойной запас по напряжению. Для первого контура оптимальный параметр – 500 В (выбирают емкость 0,3 мФ), для второго – 4 кВ (конденсатор 1 микрофарад).

При выборе варистора следует учитывать, что нужна обмотка для второго касакада с показателями 150 вольт, для первого достаточно 100.

Катушки индуктивности можно изготовить самостоятельно. Это – обмотанные проволокой (диаметр до 2 мм) стержни из ферромагнитного сплава. На первой делают 7 витков, на второй только 6 (это фильтр, сглаживающий амплитудные скачки).

Трудности возникают при изготовлении разрядника. Он формирует мощную искру, является частью колебательного контура. Лучше найти готовый узел. Собранную плату размещают в корпусе, защищающим детали от пыли. Желательно предусмотреть охлаждающий вентилятор.

После сборки осциллятор для сварки необходимо проверить. Один контакт выводится на зажим, другой к держателю или сварочной горелке. Правильно собранный сварочный осциллятор своими руками будет работать долго, самоделки служат порой дольше заводских аналогов.

Page not found — VDI-UA

Unfortunately the page you’re looking doesn’t exist (anymore) or there was an error in the link you followed or typed. This way to the home page.

  • Главная
  • Полуавтоматы
  • Инверторы MMA
  • Инверторы TIG
  • Газосварка
  • Плазменная резка
  • Система охлаждения
  • Патон
  • Днепровелдинг
  • Элсва (Запорожье)
  • Атом (Запорожье)
  • Техмик (Ровно)
  • ИИСТ (Херсон)
  • SSVA (Харьков)
  • GYSmi
  • DECA
  • Jasic
  • Welding Dragon
  • Modern Welding
  • Telwin
  • Днипро-М
  • Энергия-сварка
  • Тесты и видеоматериалы
  • Статьи
  • Фотогалерея
  • Маска Хамелеон
  • Расходные
    • Электрододержатели, масса
    • Горелки MIG/MAG
    • Расходные MIG/MAG
      • 08-M6-25mm
      • 1,0-M6-25mm
      • Ролик 30х22х10 (0,8-1,0) — V
      • Ролик 30х22х10 (1,0-1,2) — V
      • Ролик 35х25х8 (0,8-1,0) — V
      • Ролик 35х25х8 (1,0-1,2) — V
      • Ролик 30х10х10 (0,6-0,8) — SSVA
      • Ролик 30х10х10 (0,8-1,0) — SSVA
      • Ролик 30х10х10 (1,0-1,2) — SSVA
      • KZ-2 евроразъем (мама)
      • Спрей Binzel NF
    • Горелки TIG
    • Головки TIG
    • Комплектующие TIG
      • Цанга 1,0мм 50мм TIG
      • Цанга 1,6мм 50мм ТИГ
      • Цанга 2,0мм 50мм аргон
      • Цанга 2,4мм 50мм TIG
      • Цанга 3,0мм 50мм аргонная
      • Цанга 3,2мм 50мм (ТИГ)
      • Цанга 4,0мм 50мм (TIG)
      • Корпус цанги 1,0мм
      • Зажим цанги 1,6мм
      • Корпус цанги 2,0мм
      • Кнопка внешняя TIG
      • Капа короткая ТИГ
      • Капа длинная ТИГ
    • Плазмотроны CUT
    • Циркули CUT
    • Редукторы
    • Светофильтры
    • PT-31 (CUT-40) расходные
    • SG-55 (AG-60) расходник
    • SG-51 (CUT-60)
    • P-80 Panasonic
    • A101/A141 Trafimet
    • Powermax 45
    • Термопенал
    • Перчатки сварщика
  • Электроды сварочные
  • Контакты

виды и характеристики, принцип работы, схема сборки своими руками

Без сварочных работ трудно представить современный мир. Даже в быту время от времени приходится выполнять некоторые сварочные работы. Для облегчения сварочного процесса нержавейки или цветных металлов необходим осциллятор.

Этот аппарат может зажигать электрическую дугу без контакта с поверхностью детали и поддерживать горение, необходимое для сварки. Для бытовых нужд необязательно приобретать промышленное изделие, поскольку вполне можно собрать осциллятор своими руками в условиях дома или небольшой мастерской.

Принцип работы осциллятора

При сварках где участвуют цветные металлы обычно применяют аргонодуговые аппараты, в которых вольфрамовые электроды подплавливают края и создают своеобразную ванну. Алюминиевый материал и нержавеющую сталь сшивают, когда источником напряжения и тока является инвертор.

В любых случаях наблюдается одна и та же проблема — первоначальное разжигание дуги. При работе с цветными металлами постукивают электродом по поверхности, в результате чего образуются трещины и следы, которые требуют дальнейшей обработки. Осциллятор — это то, что нужно для аргонной сварки.

Если лист металла тонкий, то при работе на небольших токах дуга постоянно тухнет. Неоднократное и постоянное её возбуждение забирает рабочее время. Для предотвращения подобных ситуаций тоже необходим осциллятор.

Сборка этих приборов может быть разная, но все они необходимы для возбуждения сварочной дуги между электродом и изделием на расстоянии около пяти миллиметров. Осциллятор размещают между источником тока и горелкой с электродом из вольфрама.

Принцип работы заключается в изменении входящего напряжения в высокочастотные короткие импульсы. Эти импульсы суммируются со сварочным током и принимают активное участие в розжиге. Можно собрать такой осциллятор для инвертора своими руками.

Эти устройства могут питаться от переменного или постоянного тока и повышают как значение напряжения, так и частоту электротока. Если на вход прибора подать напряжение 220В с частотой тока в 50 Герц, то на выходе получится напряжение от 2500 до 3000В при частоте от 150 000 до 300 000 Герц. Полученные импульсы имеют продолжительность десятков микросекунд.

Номинальная мощность таких устройств примерно 250–350 Ватт.

Функциональная схема

Технические характеристики каждого прибора зависят от его конструкции и свойств элементов на схеме. Принципиально агрегат состоит из таких элементов:

  • Колебательный контур. Он собран из индуктивной катушки и конденсатора. Катушка представляет собой вторичную обмотку трансформатора высокой частоты. Сам контур генерирует необходимые искры.
  • Разрядник.
  • Катушки дроссельные. Их количество — две единицы.
  • Высокочастотный повышающий трансформатор. Он преобразует входные параметры напряжения в высокочастотные колебания.

Прибор также содержит вспомогательные электрические детали, которые отвечают за безопасность использования агрегата. Это защитный конденсатор, предохраняющий работника от поражения электрическим током и предохранитель.

Предохранитель должен срабатывать при коротком замыкании и пробое конденсатора.

Входное напряжение, проходя через обмотки повышающего трансформатора, проходит через колебательный контур и начинает зарядку конденсатора. Затем, после зарядки последнего до необходимой ёмкости, происходит разряд и возникает пробой. Пробой вызывает короткое замыкание колебательного контура, вследствие которого возбуждаются резонансные колебания. Ток высокой частоты, создающий эти колебания, через защитный конденсатор и обмотки катушки доходит до сварочной дуги.

Защитный конденсатор свободно пропускает высокочастотный ток, который отличается также большой величиной напряжения. Но этот блокировочный конденсатор не способен пропускать ток низкой частоты, так как обладает большим сопротивлением. Это свойство мешает пройти низкочастотному току от сварочного прибора и является надежной защитой от короткого замыкания.

Последовательность процесса сварки

Невзирая на некоторые отличия в сборке, использование устройств этого класса проходит по одному сценарию. Можно так представить последовательность работы прибора:

  • Сварщик на горелке нажимает кнопку «Пуск».
  • Выпрямитель на входе получает напряжение из сети, выпрямляет и отправляет на накопитель.
  • Накопительный узел заряжается.
  • После срабатывания накопительного конденсатора, освобождается импульс.
  • Импульс поступает на высокочастотный трансформатор и преобразовывается в высоковольтный импульс.
  • Одновременно срабатывает клапан газа и выходит аргон из аргонно содержащей камеры.
  • После короткого разряда тока, дуга зажигается в газовом облаке и начинается процесс сварки.
  • Когда начинает работать сварочный ток с силой, превышающей пять ампер, то импульс затухает. Происходит процесс сварки с установленными на аппарате значениями. При потере контакта возникает следующий импульс для возрождения дуги.
  • Когда сварка заканчивается, прибор завершает процесс.

При изготовлении аргоновой горелки своими руками, конструкция может быть упрощена и прибор становится полуавтоматом. В этом случае при случайном завершении процесса сварки надо вручную включать бесконтактный поджиг, нажимая кнопку «Пуск».

Виды осцилляторов

Устройства этого типа в зависимости от вида работ, могут быть кратковременного или постоянного действия. Таким образом, осцилляторы делятся на:

  • Устройства непрерывной работы.
  • Аппараты с импульсным питанием.

При сварке тонких листовых материалов лучше подходит прибор постоянного действия, так как розжиг будет производиться сразу при поднесении к заготовке. В процессе сварки горение будет ровное и все время поддерживаться. В результате получится чистый и аккуратный шов.

Для безопасности рекомендуется последовательное соединение устройства. Если предусмотрено параллельное подключение, то надо установить защиту от напряжения. При выполнении работ с алюминием, которые выполняются исключительно на переменном токе, применяют импульсные аппараты.

Сборка в бытовых условиях

Для сборки прибора аргонной сварки своими руками из инвертора чаще всего используют распространенную и несложную схему.

В этой схеме главным элементом является повышающий трансформатор. Именно он увеличивает величину стандартного напряжения до трёх тысяч вольт. Самым проблемным узлом при сборке этого устройства является разрядник, который вырабатывает сильную искру. Разрядник и катушка индуктивности обеспечивают главное — они генерируют затухающие высокочастотные импульсы, которые зажигают дугу и поддерживают равномерное горение. Катушка и разрядник совместно с блокировочным конденсатором образуют узел колебательного контура.

Самодельные аппараты тоже могут быть выполнены по двум различным схемам. Они могут быть импульсного или непрерывного действия. Приборы, использующие принцип непрерывного действия менее эффективны и в их конструкцию надо обязательно включать блок защиты от напряжения. Импульсные устройства считаются лучше, удобнее и производительнее.

Основной деталью узла управления является кнопка. Она выполняет две функции: включение разрядника и контролирование подачи защитного газа в область сварки. Первичными данными при самостоятельной сборке являются детальные ответы на следующие вопросы:

  • Применение для алюминия или нержавейки.
  • Вид электрического тока — переменный или постоянный.
  • Какое напряжение предусматривается.
  • На какую мощность будет рассчитан прибор.
  • Какая величина вторичного напряжения.

Сборка деталей производится на прямоугольной плате. Слева обычно располагается трансформатор высокой частоты, блок управления и предохранительный узел. В центральной части логично расположить разрядник с конденсатором колебательного контура и блокировочный конденсатор. Последний становится преградой для низкочастотного тока на пути к сварке. Место справа остается для дросселя.

Трансформатор выбирают исходя из потребностей по величине тока во вторичной обмотке. При этом катушку индуктивности лучше сделать сдвоенной. Тогда напряжение и величина тока оказываются более стабильными, а защита аппарата надежнее. Контуры подобны друг другу и состоят из:

  • Конденсатора, запас которого по напряжению в первой части должен быть не менее 500В и 5–6 кВ для второй. Емкость первого конденсатора должна составлять не менее 0.3 мФ, а второго до 1 мФ.
  • Варистора с напряжением во вторичной обмотке около 90–100 В (для первого каскада) и до 140–150 В во второй линии.
  • Катушки индуктивности. Обе катушки имеют ферритовый стержень с намотанной на него медной проволокой сечением около 20 миллиметров квадратных с зазором не менее 0.8 миллиметров. В первом каскаде количество витков от семи, а во втором — меньше. Катушка второго каскада является фильтром и защитой от колебаний тока. Ток различной амплитуды может привести к нестабильному горению.

Для разрядника находят плату с ребрами теплоотвода. Эта плата охлаждает при срабатывании разряда. Электроды из вольфрама иногда заменяют на обычные. Главное, чтобы их диаметр составлял не менее двух миллиметров. Кончики электродов должны быть строго параллельны. При помощи специального винта делают возможной регулировку расстояния между электродами.

Чтобы получить максимальную стабильность, ко второй обмотке второго каскада подключают катушку от любого электрошокера. Для этого в схему устройства приходится подключать аккумулятор напряжением в шесть вольт. Он обеспечивает питание этой катушки.

Наличие аккумулятора не дает забыть, что время от времени всё устройство нужно осматривать и проводить регламентные работы. Первый каскад подключается к инвертору, а второй предназначен для сварочной горелки и заготовки, которую надо сварить. Корпус прибора должен иметь вентиляционные отверстия и быть влагозащищенным.

Правила эксплуатации

Применение осцилляторов несложно, но требует выполнения ряда правил. Тогда работа с прибором становится безопасной, удобной и продуктивной. Правила использования следующие:

  • Применение этих устройств разрешено как в помещениях, так и на воздухе.
  • В случае обильного снегопада или дождя лучше воздержаться от включения прибора при работе на улице.
  • Температурный режим окружающей среды должен быть от -10 до +40 градусов по Цельсию.
  • Влажность воздуха не должна быть больше 98%.
  • Крайне не рекомендуются работать со сварочным аппаратом в помещениях где сильно накопилась пыль или едкие газы способные повредить металл или изоляцию.
  • Обязательно перед включением нужно убедиться в наличии заземления.
  • Защитный кожух прибора можно снимать только в выключенном состоянии. Во время сварки кожух должен быть надет.
  • На рабочей поверхности разрядника не должно быть следов нагара или грязи. В случае загрязнения нужно вычистить кончики разрядника тонкой наждачной шкуркой.

При сборке осциллятора для инвертора своими руками необходимо также соблюдать правила поведения с электрическими устройствами. Необходимо строго соблюдать основные правила сборки электрических схем и использовать только те детали, которые обладают нужными характеристиками.

Осциллятор своими руками: виды и схемы сборки

Сварочный инвертор стараниями умельцев трансформируется в полуавтомат, работающий в среде защитных газов. Добавление собранного своими руками осциллятора превращает сварочный аппарат в профессиональное устройство ювелирной сварки цветных и тонколистовых металлов.

Зачем нужен самодельный осциллятор

Осциллятор как генерирующее устройство способен работать на постоянном и переменном токе. Предназначение прибора – возбуждение сварочной дуги без контакта электрода с объектом сварки и стабилизация горения. Вид электрода: вольфрамовый наконечник горелки или стандартный в обмазке — не имеет значения. Эффект достигается трансформацией сетевого тока в частотные импульсы высокого напряжения, с характеристиками параметров:

  • Напряжение сети 220 В – напряжение на выходе — 2,5–3 тыс. В;
  • Частота тока 50 Гц – частота на выходе — 15–30 тыс Гц;
  • Мощность осциллятора – 250–400 Вт.

Электрическая схема осциллятора

Принцип работы самодельного осциллятора, включённого в схему сварочного устройства с долей упрощения:

  • Подача сетевого напряжения на сварочное устройство;
  • Напряжение проходит обмотки повышающего трансформатора и начинает заряжать конденсатор колебательного контура;
  • Конденсатор-накопитель аккумулирует высокочастотное высоковольтное напряжение разряда;
  • Параллельно блок управления системой открывает газовый клапан;
  • Блок управления высвобождает импульс при наполнении ёмкости конденсатора на разрядник, происходит пробой;
  • Колебательный контур закорачивается, возникают резонансные затухающие колебания, идущие на сварочную дугу;
  • Предохранитель при пробое конденсатора размыкает электрическую цепь;
  • При падении напряжения формируется следующий разряд;
  • Дуга вспыхивает в облаке газа в 3–5 мм над деталью;
  • При разрыве дистанционного контакта схема управления дублирует импульс поджога дуги.

Функциональная схема осциллятора

Сварочный осциллятор своими руками – компоненты

В сети масса принципиальных схем осцилляторов для сварочного устройства. Представлены оба типа: последовательного и параллельного подключения. Масса аргументов в пользу каждого. Собрать осциллятор — полдела. Сложности подстерегают при настройке и эксплуатации.

Устройство состоит из нескольких блоков. Колебательный контур в качестве искрового генератора затухающих колебаний состоит из 2 элементов: конденсатор и подвижная обмотка трансформатора высокой частоты – катушка индуктивности.

Устройство осциллятора своими руками

Повышающий трансформатор устройства собирается на базе понижающего с 220 до 36 В, с П-образным сердечником. Для создания длинной магнитной линии убирается 50% пакета железа. Обмотка первого керна мотается по типу сварочной – получаем падающую характеристику.

Повышающая обмотка второго керна рассчитывается на получение 1000 В. Недостаток витков вынудит постоянно накручивать разрядник. Увеличение количества витков приведёт к улучшению поджога дуги в разряднике. Перебор намотки приводит к активизации роста перегрева катушки.

Дросселей 2 шт. при параллельной схеме, по 1 на трансформатор.

Изготовление разрядника из утолщённых эррозионностойких вольфрамовых стержней WR-3 на медных прутках требует привлечения механизма регулировки. Оптимум зазора по щупу — 0,08 мм. Требуется заливка быстротвердеющим диэлектриком. В качестве упрощения используют свечи зажигания, ионизаторы воздуха.

Выходной трансформатор соединяется линией обратной связи с датчиком тока.

Блокировочный конденсатор пропускает только ток высокой частоты. Низкочастотный ток сварочного аппарата блокируется, что предупреждает короткое замыкание осциллятора.

Выбираем тип сварочного осциллятора

Осциллятор для сваривания своими руками

Задумав собрать сварочный осциллятор своими руками, определимся со схемой включения. Последовательное либо параллельное подключение, тип функционирования устройства: импульсная разрядка или непрерывное действие прибора.

Устройства непрерывного действия подключаются параллельно и последовательно. В большинстве таких осцилляторов устанавливается выпрямитель. Превалирует последовательная схема – высокое напряжение не поразит сварщика.

Выгоды последовательного подключения: достаточно одного трансформатора. Первичная обмотка дополнена парой сглаживающих конденсаторов и предохранителем. Вторичная – разрядником и колебательным контуром.

Импульсное устройство используется на сварочных аппаратах переменного тока. Смена полярности инициирует очередное зажигание дуги за счёт синхронизации цикла последовательности действий:

  • Активизация зарядного устройства;
  • Накопление заряда конденсатором;
  • Обесточивание дуги при прохождении нулевой отметки перемены полюса;
  • Разряжение конденсатора с подачей энергии в дуговой промежуток.

Сварочные устройства цикличной полярности рекомендованы для сварки сплавов алюминия. Нержавеющие стали и цветные металлы варятся преимущественно при постоянном токе.

Предупредим ошибки при изготовлении осциллятора

Подробная инструкция изготовления осциллятора своими руками

При пошаговом следовании надёжной схеме и качественной сборке, результативного удержания дуги не происходит. Причина — в перегрузке сети. Вместо заявленных 220 В, доходит 190–200 В. Автотрансформатор решит проблему.

Экономия на дросселе. С разрядника идёт череда затухающих ВЧ-колебаний, превышающих киловольт. Вторичная обмотка без дросселя получит между витками до 50 В. Виток приобретает вид короткозамкнутого. Мощность сети пойдёт на нагрев.

Чтобы не сжечь сварочное устройство целиком, озаботимся установкой дросселя. Кроме изолирующих прокладок при намотке, пропитаем витки бакелитовым лаком.

Частота тока в рамках 150–300 кГц безопасна. Если тело сварщика рассматривать как проводник, поверхностный эффект протекания ВЧ-тока не затрагивает внутренние органы. Но ожог кожи получить кому хочется? Работаем только при надёжном заземлении. Удар при 10 кГц весьма чувствителен.

Пообщайтесь со специалистами по соответствию вашей схемы нормам безопасности. Эксперты оценят схемотехнику на предмет проникновения НЧ-тока на электрод. Предостерегут, если сборка осциллятора небезопасна.

Обязательно вхождение в состав блока колебательного контура блокировочного конденсатора.

Видео по теме: Осциллятор своими руками

Сварочный осциллятор — Производители сварочных осцилляторов Индия Поставщики сварочных осцилляторов Мумбаи Индия Сварочные осцилляторы экспортеры Производители поставщики Мумбаи Индия

Weld Arc Weaver, широко известный как Welding Oscillator, — это механизм, имитирующий состояние сварки сварочной дугой, выполняемый вручную опытным сварщиком.

Сварочный генератор Сварочный генератор

Моторизованный механизм перемещает сварочную дугу в направлении влево / вправо как колебательное движение по поверхности шва.

Сильно регулируемое колебательное движение дуги обеспечивает контролируемое распространение тепла дуги по поверхности сварного шва, что приводит к равномерному течению сварочной ванны за счет плавного, равномерного, стабильного и точного движения сварочной горелки. Основное назначение осциллятора — равномерное распространение сварочных шариков. Контролируемое и регулируемое распространение глобул дугового нагрева и сварки имеет очень отличительное преимущество, заключающееся в отличном проникновении при максимальной эффективности теплопередачи.Это также обеспечивает сокращение зоны термического влияния, высокую эффективность наплавки металла шва, высокую однородность сварных швов.

Заявки:

Подходит для процессов, которые удобно автоматизировать, таких как TIG, MIG, SAW, FCAW, плазменная сварка или плакирование, такие как PTA или порошковая плазменная сварка.

Характеристики:

  • Очень точный шариковый винт или механизм Rack & Pinion
  • Истинное линейное перемещение
  • Полностью закрытый, чтобы избежать попадания мелких частиц, тепла и т. Д.
  • Шаговый двигатель с приводом для облегчения управления
  • Ширина хода от 0 до 75 мм (большая ширина доступна по запросу)
  • Полное цифровое управление с простым программированием параметров
  • Доступны разные модели для разной мощности резака 5, 10 и 15 кг
  • Единый контроллер для управления тремя различными механизмами
  • Внешний пуск / стоп для легкого взаимодействия

Ключевые преимущества:

  • Значительное улучшение процесса сварки или плакирования
  • Повышенная производительность и простота использования для многопроходной сварки
  • Общее улучшение плавления боковых стенок и подрезки
  • Высокое качество, однородность и внешний вид сварного шва.

Технические характеристики:

Параметры OSC_5 OSC_10 OSC_15
Вход питания 220 В переменного тока, 3-Ø 220 В переменного тока, 3-Ø 220 В переменного тока, 3-Ø
Входная мощность (Вт) 50 100 150
Грузоподъемность (кг) 5 10 15
Ширина хода (мм) 0-25 +/- 0.2 0–50 +/- 0,5 0–75 +/- 0,5
Скорость хода (мм / мин) 0–2500 +/- 5 0–3000 +/- 5 0–3500 +/- 5
Число ходов в секунду 0-60 @ 25 мм 0-50 @ 25 мм 0-40 @ 25 мм
Левая выдержка (сек) 0.0 — 9,9 +/- 0,1 0,0 — 9,9 +/- 0,1 0,0 — 9,9 +/- 0,1
Правая задержка (сек) 0,0 — 9,9 +/- 0,1 0,0 — 9,9 +/- 0,1 0,0 — 9,9 +/- 0,1
Совместимость процессов TIG / MIG / PTA / плазменный Пила / TIG / MIG / PTA / Плазма Пила / TIG / MIG / PTA / Плазма
Механизм Шарико-винтовая передача Шарико-винтовая передача Стойка и шестерня
Размер (мм): Контроллер
(Д x Ш x В) Механизм
350 х 325 х 160 350 х 325 х 160 350 х 325 х 160
280 х 130 х 75 315 х 157 х 90 300 х 150 х 90
Вес нетто (кг): Контроллер
(Д x Ш x В) Механизм
8.5 8,5 8,5
4,8 5,5 5,8

Китайский производитель сварочного оборудования, Сварочный аппарат, Сварочный поставщик

Sichuan Morrow Welding Development Co., Ltd. (Chengdu Morrow Electronic Equipment Factory) — высокотехнологичное предприятие, специализирующееся на исследованиях, разработках, производстве и продаже инверторных сварочных устройств серии IGBT.Мы создали Morrow Inverter Power Research Institute, чтобы специально заниматься исследованиями, разработками и восстановлением инверторных сварочных аппаратов. Мы можем разработать и произвести …

Sichuan Morrow Welding Development Co., Ltd. (Chengdu Morrow Electronic Equipment Factory) — высокотехнологичное предприятие, специализирующееся на исследованиях, разработках, производстве и продаже инверторных сварочных устройств серии IGBT. Мы создали Morrow Inverter Power Research Institute, чтобы специально заниматься исследованиями, разработками и восстановлением инверторных сварочных аппаратов.Мы можем разрабатывать и производить специализированные продукты в соответствии с различными требованиями разных клиентов. Мы создали систему ERP. Вся наша продукция производится в соответствии с сертификатом системы качества ISO9001: 2000 и имеет сертификат CCC, а также сертификат CE.

Являясь одним из 50 ведущих предприятий китайской индустрии сварочной продукции, Morrow поставляла продукцию для многих проектов, например, для проекта «Птичье гнездо» на Олимпийских играх в Пекине в 2008 году, проекта «Три ущелья», гидроэлектростанции Эртан, компании Daya Bay Nuclear Power. Станция, Проект Сяоланди и др.Теперь мы получили право на импорт-экспорт и последовательно экспортировали продукцию в Японию, Индию, Канаду, Россию, Беларусь, Южную Африку, Вьетнам и т.д. плазменный сварочный аппарат, полностью цифровой сварочный аппарат, сварочный аппарат промышленного уровня. Все эти машины обладают такими характеристиками, как небольшие размеры, легкий вес, энергосбережение, высокая надежность и хорошее качество сварки и т. Д.

У нас отличная команда разработчиков, поэтому мы имеем независимые права интеллектуальной собственности на все наши продукты.Сейчас мы разработали множество современных сварочных аппаратов мирового уровня. В настоящее время эти продукты получили положительные отзывы от многих покупателей. Продажи в эти годы стабильно растут.

Сейчас мы разработали 40 серий и более 100 видов продукции. У нас есть практически все виды продукции, и мы можем удовлетворить различные требования разных клиентов. Сейчас наша продукция в основном используется в таких отраслях, как бензин, химическое машиностроение, машиностроение, судостроение, атомная промышленность, энергетика, металлургия, железная дорога, кипячение, стальные конструкции, авиакосмическая промышленность и т. Д.

Кроме того, в настоящее время разработана серия станков экономичного типа. В этих новых продуктах также используется технология IGBT, но они меньше, легче и дешевле.

Под бизнес-девизом «Качество прежде всего, производительность прежде всего и обслуживание превыше всего», мы стремимся предлагать идеальное сварочное оборудование для отечественных и зарубежных клиентов.

ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ ИНВЕРТОРА ТИПА 3КВА, 50 ГЦ, ОДНОФАЗНОЙ ДУГОВОЙ СВАРОЧНОЙ МАШИНЫ

ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ ИНВЕРТОРА ТИПА 3КВА, 50 ГЦ, ОДНОФАЗНОЙ ДУГОВОЙ СВАРОЧНОЙ МАШИНЫ

International Journal of Scientific & Engineering Research , Выпуск 5, май 2015 г. 931

ISSN 2229-5518

Проектирование и изготовление инвертора

3 кВА, 50 Гц, однофазная дуговая сварка

Аппарат

Engr.Ovbiagele U; Engr. Obaitan B

Резюме: Сварка служит множеству целей в разных доменах. Изготовление машин и оборудования, сварка трубопроводов и коллекторов, сварка конструкций, морская сварка и декоративная сварка — вот примеры сварки, применяемой в бизнесе и промышленности. Сварочное оборудование стало одним из важнейших инструментов, которыми может владеть производитель, поэтому возникла необходимость спроектировать и построить аппарат для дуговой сварки. В этой статье авторы спроектировали и сконструировали аппарат для однофазной дуговой сварки 3 кВА, 50 Гц, используя местные материалы.Чтобы решить проблему веса и размера обычного аппарата для дуговой сварки, была также разработана инверторная схема. Инвертор обеспечивает гораздо более высокую частоту, чем 50 Гц или 60 Гц для трансформатора, используемого при сварке. Произведенный на месте аппарат для электродуговой сварки, способный выдержать ток 150 А при испытании изоляции, испытании на короткое замыкание и разрыв цепи для определения рабочих характеристик, оказался весьма удовлетворительным.

Ключевые слова: дуговая сварка, изготовление оборудования, инвертор, трансформатор.

——————————  ———————————

Сварка — это метод соединения металлов, при котором тепло и / или давление прикладываются к области контакта между двумя компонентами. ; в стык может быть добавлен присадочный металл в зависимости от процесса сварки [1].
Существует множество видов сварки, в том числе дуговая сварка, контактная сварка, газовая сварка. Особое внимание будет уделено дуговой сварке, поскольку это наиболее распространенный вид сварки, а также основная цель данной конструкции.При дуговой сварке между основным металлом и электродом образуется электрическая дуга. Тепло дуги плавит основной металл и сварочные материалы для получения металла шва для соединения элементов конструкции [2].
Оборудование, которое выполняет сварочные операции под наблюдением и контролем сварщика, называется сварочным аппаратом. Чтобы решить проблему веса и габаритов обычного аппарата для дуговой сварки, необходимо сконструировать инвертор. Инвертор обеспечивает гораздо более высокую частоту, чем 50 Гц или 60 Гц для трансформатора, используемого при сварке.Таким образом, трансформатор гораздо меньшей массы используется для обеспечения работы с гораздо большей выходной мощностью. Выбор рабочей частоты с учетом человеческих способностей снижает сварочный шум, производимый обычным аппаратом для дуговой сварки [1]. Выбор частоты 20 кГц для аппарата дуговой сварки инверторного типа соответствовал вышеуказанным ожиданиям. Управление питанием трансформатора на высокой частоте позволяет контролировать выходной сварочный ток. Этот источник питания обеспечивает преобразователь частоты. Силовой переключатель IGBT (биполярный транзистор с изолированным затвором) или MOSFET используется для конструкции инвертора из-за его высокой степени коммутации.
Схема управления, используемая для управления выходным сварочным током, предназначена для управления переключателем мощности на высокой частоте. Переключатель питания биполярного транзистора с изолированным затвором более эффективен и менее подвержен сбоям, чем переключатель питания MOSFET.

Вес и размер трансформатора обычного сварочного аппарата намного выше шума сварки.

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 932

ISSN 2229-5518

Целью и задачей данной работы является спроектировать и сконструировать аппарат для дуговой сварки, работающий от сети
48 В постоянного тока с переменной частотой.Это снижает вес, размер и уровень шума трансформатора, используемого для сварки.
Иметь более эффективный дуговой сварочный аппарат, обеспечивающий аккуратную сварку.

Важность этого проекта заключается в том, что он направлен на создание рентабельного, прочного, портативного и мобильного сварочного аппарата.

Сварочный источник питания трансформаторного типа преобразует электричество высокого и слабого тока из электросети в высокое и низкое напряжение (обычно от 17 до 45 В и от 55 до 590 А).Выпрямитель используется для преобразования переменного тока в постоянный для получения постоянного тока на выходе. Перемещение магнитного шунта внутрь и наружу трансформатора помогает изменять выходной ток. Последовательный реактор к вторичной обмотке регулирует выходное напряжение от набора отводов на вторичной обмотке трансформатора. Этот тип блока питания наименее дорогой, но громоздкий. Это низкочастотные трансформаторы, которые должны иметь такую ​​высокую намагничивающую проводимость, чтобы избежать ненужных шунтирующих токов. Трансформатор также может иметь значительную проводимость утечки для защиты от короткого замыкания в случае прилипания сварочного стержня к рабочей силе.Индуктивность рассеяния может изменяться, поэтому оператор может устанавливать выходной ток [3].

С появлением мощных полупроводников, таких как полевой транзистор с изолированным затвором (IGFET), также известный как MOSFET (металлооксидный полупроводниковый полевой транзистор), теперь также можно создать импульсный источник питания, способный справляется с высокими нагрузками при дуговой сварке. Эти конструкции известны как инверторные сварочные аппараты. Электроэнергия переменного тока сначала выпрямляется в постоянный ток; затем переключатель питания постоянного тока (инвертировать) в понижающий трансформатор на высокой частоте для получения необходимого сварочного напряжения или тока.Частота переключения обычно составляет от 20 кГц до 100 кГц. Высокая частота переключения резко уменьшает габариты понижающего трансформатора. Масса магнитных компонентов (трансформатор и проводники) быстро уменьшается с увеличением рабочей (коммутационной) частоты. Циркуляционный преобразователь может также обеспечивать такие функции, как управление мощностью и защита от перегрузки. Этот тип сварочных аппаратов (на основе инвертора) более эффективен и обеспечивает лучший контроль изменяемых функциональных параметров, чем обычные сварочные аппараты.Микроконтроллер управляет IGBT или IGFET в инверторной машине, поэтому электрические характеристики мощности сварки могут быть изменены с помощью программного обеспечения [4].

Наш подход к этому проекту реализуется через проектирование и создание его подсистемы ввода, блока управления и подсистемы вывода. Сварка металла происходит, когда блок управления и выходная подсистема соединяются вместе через свариваемый токопроводящий объект. Сварка — это процесс соединения двух или более одинаковых или разнородных материалов с / без приложения тепла и / или давления с использованием или без использования присадочного материала.

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 933

ISSN 2229-5518

В разработке мы начали с общую систему и начинайте разбивать ее на системы. Удобным инструментом, используемым на этом этапе, является блок-схема, показанная на рис. 1. Блок-схема изображает иерархию того, как подсхемы инвертора
будут взаимодействовать и взаимодействовать друг с другом.Аппаратный прототип был реализован или реализован на экспериментальном макете. Это было достигнуто за счет реализации подсистемы ввода
инвертора в подсистему вывода. Они были тщательно выполнены в соответствии с блок-схемой проекта и окончательной принципиальной схемой.
Системная блок-схема проекта инверторного сварочного аппарата представлена ​​на рис.
Буфер генератора
Усилитель мощности
Трансформатор

O / P
Источник питания
Обратная связь

Система представляет собой гибкий источник питания, спроектированный как источник тока, соответствующий блок-схеме, показанной на рис.который состоит из следующих этапов.

для переключения питания постоянного тока. Выходной сигнал каскада генератора усиливается с помощью транзистора (9013). Это

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 934

ISSN 2229-5518

усиленный сигнал запускает металлооксидный Полевой транзистор с Vgs больше порогового напряжения.Частота работы схемы определяется каскадом генератора.

Трансформаторы сварочные рассчитаны на характер сварочных работ. Для сварочного аппарата инверторного типа трансформатор имеет небольшие размеры и меньший вес по сравнению с обычным сварочным аппаратом. В аппарате для дуговой сварки для сварки используется электрический разряд. Этот разряд известен как дуга.
Напряжение, необходимое для поддержания дуги, равно
В = C + DL [5] …………………………………………………… ………………………………………….. …………………… (1) Где; C = от 15 до 20 вольт
D = от 2 до 3 вольт
L = длина дуги в мм, ее значение составляет примерно от 2 до 4 мм. Дуга поддерживается при напряжении примерно от 24 до 30 вольт. Проектная спецификация
Выходное напряжение = 25 В переменного тока
Выходной ток = 80 А Входное напряжение = 48 В постоянного тока
Номинальная мощность трансформатора = 3 кВА K = 0,45
F = 50 Гц
BM = 1,2 Т
Плотность тока, j = 3.2 A мм-2 или 3,2 x 106 A / м2
Коэффициент площади Kw = 0,3

Вольт на оборот

Вт = K KVA [6] ……………… ………………………………………….. …………………. (2)
Для прямоугольной формы,
Расчет площади жилы, Ai

Vt = 0,45 3 = 0,78
Vt = 4,44 fBm Ai [6] ……………………………………… ………………………………………….. …………………………… (3)
A1 =
0,78

4.44 x 50 x 1,2
= 0,0029,28 м2 или 29,28 см2

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 935

ISSN 2229-5518

Общая площадь железа Ag =

Ai
0,9
3 ………………………….. ………………………………………….. ……………………………. (4)

29,28 = 32,53 см2
0,9
Принимая 0,9 в качестве коэффициента суммирования.
Ширина центральной конечности = 2 x ширина боковой конечности
= 2 x a …………………………. ………………………………………….. ………………………………………….. …………….. (5) Глубина керна, b = 2,5 x ширина центрального лимба = 2,5 x 2a = 5a
Ag = bx 2a = 5a x 2a = 10a2. ………………………………………….. ………………………………………………………. (6)
Следовательно, 10 a2 = 32,53
Так как a = 1,80

a = 32,53 = 1,80 см
10
b = 5 x 1,80 = 9 см
Глубина сердечника, b = высота ярма для типа оболочки, Hy

Глубина ярма Dy = ширина боковая конечность = 1,80 см

Aw =
KVA

2,22 xfx B x A x K xjx 10−3
[7] …………………. ………………………………………….. …………….. (7)
Aw =
3

2.22 x 50 x 1,2 x 2,928 x 10-3 x 0,3 x 3,2 x 106 x 10-3
Aw = 8,01 x 10-3 м2 или 80,1 см2
Aw = высота окна (Hw) x ширина окна (Ww)

HW = 3
WW
HW = 3 Ww
Aw =
3Ww
= w 2
[6] ………………………. ………………………………………….. ………………………………………. (8)

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 936

ISSN 2229-5518

Ww =

80.1 = 5,2 см
3
Следовательно, Hw = 3 x 5,2 = 15,6 см
Общая высота H = Hw + 2 ……………………. ………………………………………….. …………………………………… (9)
= 15,6 + ( 2 x 1,80) = 19,2 см
Общая ширина W = (2 x Ww) + (4 xa) ………………………. ………………………………………….. ……………….. (10)
= (2 x 5,2) + (4 x 1,80) = 17,6 см
Обмотка
V1

Витки первичной обмотки T1 =
Вт
…………………………………………… ………………………………………….. …… (11)

48 = 62
0,78
Общее количество витков на первичной обмотке 124 (с отводом по центру)
Ток первичной обмотки
I1 =

Мощность ………. ………………………………………….. ……………………………… (12)
V1

= 3000
48
= 62,5 A
Принимая ток 3,2 A / мм2 для первичной обмотки, площадь проводника
a1 =
62.5

3,2
= 19,53 мм2
Для расчета диаметра проводника
a1 = πr =
πd2

4
………………….. ………………………………………….. ………………………………………….. ………. (13)
Где a1 = площадь первичного проводника, d = проводник

d = (4 x 40)
3,142
= 4,996 мм
Витки вторичной обмотки T2 =

V2. ………………………………………….. ……………………………………………. (14)
Вт

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 937

ISSN 2229-5518

T2 =
25

0,78
= 32
В то время как При расчете числа витков вторичной обмотки выбирается допуск 5%, чтобы компенсировать падение напряжения в обмотке.
Следовательно,
T = 32 +  5
+ 32  = 34

2  100 

 
Ток вторичной обмотки
I2 =

Мощность ………….. ………………………………………….. ………………………… (15)
В2

= 3000
25
= 120 А
Потребляемый ток 3,2 A / мм2 для вторичной обмотки, площадь проводника

a = 120
= 40 мм2

2 3,2

Для расчета диаметра проводника
a 2 = πr =
πd2

4
…………………………………………… ………………. (16)
Где a2 = площадь вторичного проводника, d = проводник

d = (4 x 120)
3,142
= 12,4 мм

RT (R8 + R9) и C1, подключенные к контактам 6 и 7 микросхемы SG3524 соответственно, определяют частоту колебаний. Используя приведенное ниже уравнение, мы определяем значение неизвестного параметра.

f = 1,18
C1CT
[8] ………………………………… ………………………………………………………… ………………………… (17)
Предположим, что C1 = 0,1 x 10-6 F и требуемая частота f = 50 Гц
Следовательно,

f = 1,18
0,1 x 10−6 x 50
= 236 кОм
Микросхема SG3524 используется в секции колебаний этого инвертора. Эта ИС используется для генерации частоты 50 Гц, необходимой для генерации переменного тока инвертором. Для запуска этого процесса питание от батареи подается на вывод 15 SG3524 через транзистор NPN (TIP41).D3 у основания Q3, как показано на рис. используется для регулирования напряжения питания микросхемы SG3524. Контакт 8 подключен к отрицательной клемме аккумулятора. Штыри 6 и 7 ИС являются штырями колебательной секции. Частота, создаваемая ИС, зависит от номинала конденсатора и резистора, подключенных к этим контактам. Конденсатор (0,1 мкФ) подключен к выводу 7. Этот конденсатор определяет частоту 50 Гц на выходе ИС. Контакт 6 — это контакт синхронизирующего сопротивления. Сопротивление на этом выводе поддерживается

IJSER © 2015 http: // www.ijser.org

Международный журнал научных и технических исследований, том 6, выпуск 5, май 2015 г. 938

ISSN 2229-5518

постоянная частоты генератора. Предустановленный переменный резистор (20 кОм) подключен к земле от контакта 6 IC. Эта предустановка используется для того, чтобы значение выходной частоты можно было установить на постоянное значение 50 Гц. Фиксированное сопротивление
220 кОм подключено последовательно с переменным резистором, как показано на рис.соотношением:

F = 1,30
C1CT
[9]. ………………………………………….. ………………………………………….. …………………………… (18)
Где F — частота в кГц, RT — полное сопротивление. на выводе 6, а CT — это общая емкость на выводе 7. Следовательно, чтобы получить частоту 50 Гц,
При условии CT = 0,1 мкФ

F = 1,30
50 x (0,1 X 10-6)
= 260 кОм
Следовательно , RT необходимо изменять на 100K, чтобы получить частоту 50 Гц.В нашей конструкции мы использовали постоянный резистор 200 кОм и переменный резистор 100 кОм.
Сигналы, генерируемые в секции генератора IC, достигают секции триггера IC. Эта секция преобразует входящие сигналы в сигналы с изменяющейся полярностью. В этом сигнале изменение полярности означает, что когда первый сигнал положительный, второй будет нулевым, а когда первый сигнал станет нулевым, второй будет положительным. Поэтому для достижения частоты 50 Гц этот процесс чаще всего повторяется каждые 50 раз в секунду i.е. пульсирующий сигнал с частотой 50 Гц генерируется внутри триггерной секции ИС.
Этот переменный сигнал частоты 50 Гц имеет выход на выводах 11 и 14 микросхемы.
Этот пульсирующий сигнал также может быть известен как сигнал возбуждения MOS. Этот управляющий сигнал MOS на выводах 11 и
14 находится в диапазоне 4,6 — 5,4 В. Напряжение
на этих выводах должно быть одинаковым, потому что любое изменение напряжения на этих выводах может повредить полевой МОП-транзистор
на выходе.
Так как опорное напряжение для усилителя ошибки (вывод 2) устанавливается равным 2.5В с использованием делителя напряжения. Следовательно, напряжение, подаваемое на контакт 1, составляет 2,5 В.
Использование делителя напряжения:

Предположим, что R4 = 4700,
Vpin 1 = Vref x

R 4
R 4 + R 3
………………… ………………………………………….. ………………………………………….. .. (19)
Vpin 1 = 2,5 v
2,5 = 5 x
4700

4700 + R 3
R3 = 4700 или 4,7 K

IJSER © 2015 http://www.ijser.org

International Journal of Научные и технические исследования, Том 6, Выпуск 5, май 2015 г. 939

ISSN 2229-5518

Vpin 2 = Vout x

R s
R s + R 5
…………………………………………… ………………………………………….. ……………….. (20)
RS = R6 + R7, обратите внимание, что Vout — это положительное значение, которое в нашем дизайне равно 14,5 В. Требуемое напряжение на выводе 2 равно 2,5 В

Предположим, R5 = 100 К;
R s =

Vpin2 x R s
………………………………… ………………………………………….. ……………………………………. (21)
Vout
+ Vpin2
R s =
2.5 x 100 000

14,5 — 2,5
= 20,833 кОм

Принимая предустановку R6 как 20 кОм, тогда R7 = 0,83 кОм
Vpin 15 = VD3 — VBE (Q3)
Vpin 15 = 13 — 0,7 = 12,3 В

После Проектирование и конструкция, испытание на обрыв и короткое замыкание. Физическая работа машины также была проведена.
Клещи электрододержателя плотно захватывают электрод при различных рабочих положениях; следовательно, на ключе не было замечено дугового разряда. Производство дуги с электродом другого калибра было очень удовлетворительным для металлургического завода.
Он обладает хорошими характеристиками и высокой эксплуатационной эффективностью. Испытания показали, что конструкция соответствует ожидаемым требованиям по сравнению с обычным аппаратом для дуговой сварки.

В данной работе успешно представлена ​​конструкция инверторного аппарата для однофазной дуговой сварки 3 кВА, 50 Гц.
Успешное завершение этой работы предоставит возможности трудоустройства и повысит уровень жизни большинства людей в странах третьего мира, таких как Нигерия.Это также снизит зависимость стран третьего мира от импортных товаров.

V1 = первичное напряжение V2 = вторичное напряжение Vt = количество оборотов на вольт

IJSER © 2015 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 940

ISSN 2229-5518

I1 = первичный ток
I2 = вторичный ток
F = частота (герцы)

U1
D4 D6
+ 48V
D7 D5

PC 123

4.7 кОм R1
U2 D3
13 В
TIP41
Q3

100 кОм

R6

20 кОм

1 кОм

R5

4,7 кОм

R7
3

4,7 кОм

R7
2 9002

R7
3

R4 4
5
16
15
14
13 R2
12
330 Ом
10 кОм
D1
R10
T1
9012
Q2
6

R9 100K 200 кОм

R8 7

.1 мкФ

11
10 10 кОм
9 R14
10 кОм
R11
D2
9012
Q2
T2
0,1 мкФ
C2 R13
R12

47 кОм

C3

47 кОм

C3
1 10 кОм 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 941

ISSN 2229-5518

R17
Q4 1 кОм

T2 T1
R24
1 кОм
Q11
Q5
Q6
Q7
Q8
Q9
Q10
R18
1 кОм
R19
1 кОм
R20
1 кОм
R21
1 кОм
R22 4865 6565 R21
1 кОм
R22 4865
R22 1 кОм R22 4865
1 кОм 1 к
1 кОм
R28
1 кОм
R29
1 кОм
R30
Q12
Q13
Q14
Q15
Q16
Q17
1 кОм D8
D9 1 кОм
a
N1
A2 A1
Первичный

N1
A2 A1
Первичный

Рабочий электрод 902 U2 U2 902 U2 902 U2 Вторичный

IJSER © 2015 http: // www.ijser.org

Международный журнал научных и технических исследований, том 6, выпуск 5, май 2015 г. 942

ISSN 2229-5518

[1] А. Александер, Р. Боннарт, Э. Виткрафт, Р., Основы сварки, резки, пайки, пайки и наплавки металлов, Лондон: John Deere Publishing, стр. 234-256, 2000.
[2] A. Althouse, K. Bowditch, & Turnquist, Modern Welding.Лондон: Goodheart-Wilcox Company, Inc., стр. 456-461, 2004 г.
[3] M.G. Скажем, характеристики и конструкция машины переменного тока, Лондон: Pitman, стр.176-198,
1978
[4] Б.А. Эзекой, «Характеристика и характеристики твердотельного инвертора и его применение в фотоэлектрической установке
», The Pacific journal науки и техники, Том 8, вып. 1, pp.68-72, May 2007.

[5] E.Lincolin, The Procedure Handbook of Arc Welding, (14th edition), New Jersey: Prentice Hall Inc., pp

1-6, 1994.
[6] K. M. Murthy Vishnu, Computer-Aided Design of Electrical Machines, Sultan Bazar: Adithya Art printers, pp.95-134, 2008.

[7] Б.Л. Тераджа и А.К. Theraja, Electrical Technology (24-е издание), Нью-Дели: S.Chand and Company

Ltd, стр.1122-1146, 2005.

[8] R..L. Бойлестад и Л. Нашельски, Устройства силовой электроники и теория схем, (6-е издание), New

Delhi: Prentice Hall, стр. 415-468.1996.

[9] М.Рашид, Силовая электроника, схемы, устройства и приложения (4-е издание), Нью-Дели: Prentice

Hall, стр. 378-388, 2013
Авторы: Engr. Ovbiagele U, Engr. Obaitan B Департамент электротехники и электроники Auchi Polytechnic, Auchi
Эл. Почта: [email protected]
08062495480

IJSER © 2015 http://www.ijser.org

Сварка кварцевого генератора Сварочная машина для полупроводниковой микросхемы

Сварочный аппарат

для сваривания кристаллического осциллятора к микросхеме

полупроводника

ОПИСАНИЕ

Этот аппарат специально разработан для точечной сварки монокристаллического генератора в соответствующий полупроводниковый кристалл и совмещения с другими микросхемами для завершения сварки полупроводника с полным набором функций.

ОСОБЕННОСТЬ

Два комплекта стойки для приспособлений и двойные сварочные головки. Он может сваривать два кварцевых генератора одновременно. Скорость выше. Этот аппарат является первым выбором сварочного оборудования для полупроводниковой сварки.

Принять ПЛК для управления логическими действиями и использовать сенсорный экран для создания интерфейса человек-машина.

Модификация координаты местоположения и спецификация сварочного продукта довольно просты и удобны.

Серводвигатель в сочетании с точной шарико-винтовой парой обеспечивает быстрое обнаружение. Два комплекта среднечастотных инверторных источников питания для контактной сварки позволяют сделать аппарат более надежным и сэкономить на 30% энергии больше, чем при использовании обычного источника питания для сварки.

КОНКУРЕНТНОЕ ПРЕИМУЩЕСТВО

1. HWASHI уже 20 лет является ведущим брендом в области контактной сварки в Китае; Прямая продажа с фабрики, конкурентоспособная цена.

2. Индивидуальное обслуживание: мы можем помочь спроектировать и разработать сварочный аппарат в соответствии с вашими требованиями. Мы гибкий и способный поставщик.

3. Оригинальный продукт с отличным качеством: гарантия 12 месяцев. Наши машины строго соответствуют требованиям ISO9001: 2000 и обязательной сертификации Китая. Срок службы большинства наших машин составляет 8-10 лет. 100% гарантийный тест перед доставкой.

4. Послепродажное обслуживание и техническая поддержка: круглосуточная техническая поддержка по электронной почте.Наша профессиональная команда всегда готова стать вашим техническим консультантом.

5. Быстрая доставка: Наша компания осуществляет доставку точно в срок.

6. Оперативное реагирование на клиентов: наша цель — это ваше удовлетворение.

Здравый подход к электронным лампам и твердотельным машинам

Рисунок 1 Как правило, длина клина зависит от конструкции мельницы, но не должна превышать наружный диаметр трубы.

С 1960-х годов «рабочей лошадкой» трубной промышленности является высокочастотный (ВЧ) сварочный аппарат для вакуумных труб. В последнее время все больше производителей устанавливают аппарат для высокочастотной твердотельной сварки, отчасти из-за его эффективности, компактной конструкции и высокого коэффициента мощности.

Однако многие аппараты для сварки вакуумных трубок все еще используются, и операторы должны быть осведомлены о текущих методах обслуживания и устранения неисправностей вакуумных трубок так же, как и о процедурах с твердотельными электродами.

В этой статье описаны процедуры обслуживания и устранения неисправностей для каждого типа сварочного аппарата.

Сварочные аппараты для вакуумных трубок

Сварочные аппараты для вакуумных трубок состоят из четырех основных частей: источника питания, который преобразует напряжение переменного тока (AC) в напряжение постоянного тока (DC); генератор, преобразующий постоянный ток в ВЧ мощность; система охлаждения; а также пакет средств управления и диагностики для контроля и управления функциями сварочного аппарата.

Техническое обслуживание

Для технического обслуживания аппарата для сварки вакуумных труб операторы должны быть полностью знакомы с технологией системы и соблюдать все процедуры безопасности (например, директивы Управления по охране труда [OSHA], блокировку / маркировку и т. Д.).

Техническое обслуживание следует проводить каждые шесть месяцев или не реже одного раза в год, в зависимости от производственного графика. После того, как сварочный аппарат был заблокирован и размечен, необходимо полностью протереть все внешние стены и панели перед тем, как приступить к выполнению следующих действий:

  1. Проверьте все предохранительные устройства и дверные блокировки.
  2. Осмотрите все уплотнители двери и панели.
  3. Осмотрите всю соединительную проводку между источником питания, генератором и элементами управления.
  4. Проверьте все заземления и высоковольтную проводку.
  5. Проверить все датчики расхода воды.
  6. Слейте, промойте и долейте дистиллированную воду из контура и устраните утечки.
  7. Осмотрите все водяные шланги на предмет износа или обесцвечивания.
  8. Шкафы вакуумных генераторов и источников питания.
  9. Вымойте все стены и полы в шкафах генератора и источника питания чистой ватной тряпкой и только водой.
  10. Осмотрите и очистите теплообменник воздух-вода и замените все фильтры.
  11. Проверить настройки всех искровых разрядников.
  12. Осмотрите и очистите выходной радиочастотный трансформатор и медные шины.
  13. Проверьте всю изоляцию Teflon ® .
  14. Отсоедините и очистите все медные соединения в генераторе и источнике питания, затем снова подключите должным образом.
  15. Осмотрите дроссель RF на предмет обесцвечивания.
  16. Осмотрите тиристоры, сеточный резистор и цепь обратной связи на предмет надлежащего значения сопротивления.
  17. Проверьте блоки выпрямителей на предмет короткого замыкания диодов.
  18. Проверьте керамические конденсаторы в генераторе на предмет утечек или трещин.
  19. Снимите трубку (и) генератора для проверки и проверки.

После завершения технического обслуживания выполните заключительный визуальный осмотр, чтобы убедиться, что система была правильно перенастроена. Затем уведомите операторов мельницы, чтобы они включили систему, чтобы убедиться в надлежащих рабочих условиях.

Профилактическое обслуживание имеет важное значение для всех вакуумных сварочных аппаратов. Если операторы следят за чистотой дистиллированной воды, поддерживают чистоту и сухость внутренних поверхностей шкафов и регулярно проверяют соединения и компоненты, время простоя сварщика должно быть значительно сокращено.

Оценка проблем

Поиск и устранение неисправностей должен выполняться полностью обученным персоналом под руководством производителя сварочного аппарата. У большинства производителей сварочных аппаратов обслуживающий персонал доступен по телефону 24 часа в сутки, 365 дней в году.

Операторы всегда должны обращаться за помощью к производителю. Если проблема не может быть решена по телефону, производитель отправляет полевого инженера для оказания экстренной помощи на месте.

Неисправности сварщика делятся на несколько категорий: проблемы вне сварщика, в настройке зоны сварки или в механике.

Если температура колеблется без регулировки органов управления сварочного аппарата, проблема может заключаться либо в насыщении препятствия, либо в дыхании или перекатывании.

Если импедер входит в насыщение и выходит из него, это будет отображаться как нерегулярный сварочный ток в клиновидном патрубке и протекающий по внутреннему диаметру (ВД) трубы. Обычно это происходит, если импедер не получает достаточно охлаждающей жидкости или трубопроводы охлаждающей жидкости блокируются во время работы.

Решение состоит в том, чтобы убедиться, что охлаждающая жидкость импедера течет правильно; если это так, то необходимо проверить наличие полосы до точки сварки.Полоса должна стабильно касаться точки сварки (длина клинового шва должна оставаться стабильной). Если он изменяется, сварочный ток будет изменяться, вызывая заметные колебания тепла в сварном шве.

Аналогичная проблема заключается в недостаточном нагреве сварного шва, особенно на трубах малого диаметра. Это может произойти из-за того, что импедер не использовался, или он был слишком маленьким, или, в зависимости от размера трубки, длина клина значительно превышает норму для данного наружного диаметра трубки (OD).

Практическое правило для индукционной высокочастотной сварки заключается в том, что импедер должен занимать 75 процентов внутреннего диаметра трубы и выдвигаться.125 дюймов за вершину сварочных валков, проходя вверх по потоку через рулон на одну ширину рулона.

Чем больше импедеров оператор сможет без механического вмешательства вставить в трубу, тем эффективнее будет сварочная операция. Импедер — это компонент, который легче всего не заметить, но, пожалуй, самый важный для эффективности сварщика.

Длина V-образного сечения должна быть минимальной. Обычно его длина зависит от конструкции мельницы, но не должна превышать наружный диаметр трубы (см. Рисунок 1).

Другой вид проблемы — короткое замыкание в сварочной системе, обычно обнаруживаемое неисправностью, зарегистрированной диагностикой.

При регистрации неисправности сначала визуально осмотрите систему при выключенном питании. Проверьте генератор, выходную станцию ​​и источник питания, чтобы определить что-либо необычное, например, утечки воды, ожоги, следы дуги, поврежденные или треснувшие компоненты.

Если очевидных проблем не обнаружено, систему необходимо отделить и начать поиск и устранение неисправностей.

Устранение неисправностей вакуумных трубчатых сварочных аппаратов

  1. Отделите выходную станцию ​​от генератора для проверки выходного высокочастотного трансформатора и связанных с ним проводов и изоляции, установив испытательную катушку вместо выходной станции и затем включив сварочный аппарат на малой мощности.
  2. Если сварщик остается на линии, проблема в выходной станции, обычно в ВЧ трансформаторе или тефлоновой изоляции на выходных выводах. Если сварщик регистрирует ту же ошибку, с выходной станцией все в порядке, и проблема в другом.
  3. Повторно подключите выходную станцию, чтобы определить, неисправен ли источник питания или шкаф генератора. Изолируйте и отключите соединение высокого напряжения (HV) постоянного тока с генератором (более известное как соединение b +). Подайте питание на источник постоянного напряжения с регулировкой.
  4. Если это произойдет, проблема в генераторе; если регистрируется неисправность, проблема в блоке питания. Предполагая, что источник питания работает нормально, начинайте поиск неисправностей в шкафу генератора.
  5. Проверьте рабочее состояние трубки (ей) генератора. Все электронные лампы имеют ограниченный срок службы, и пользователи должны иметь надежные запасные лампы в качестве резервных. Для замены трубки необходим обученный персонал. Трубка хрупкая, поэтому необходимо соблюдать все предупреждения и спецификации производителей трубок.
  6. После того, как запасная трубка установлена ​​и предварительно нагрета, снова включите систему. Если неисправности не зарегистрировано, проблема решена; в случае возникновения неисправности продолжайте поиск неисправностей.
  7. Исследуйте короткое замыкание емкостного конденсатора, изолировав по одному емкостному конденсатору на каждой стороне цепи емкости; затем подайте питание на систему с низким энергопотреблением для каждого набора конденсаторов, пока не будет обнаружен неисправный компонент.
  8. Если неисправный конденсатор резервуара не обнаружен, перенесите диагностику в электрическую цепь, где можно обнаружить множество проблем. Сеточная схема большинства сварочных аппаратов для вакуумных трубок состоит из множества конденсаторов, дросселей и резисторов. Теперь каждый компонент должен пройти тщательный осмотр, сниматься по одному и проверяться на предмет надлежащего сопротивления в соответствии со спецификацией производителя.
  9. После того, как генератор был диагностирован как исправный, предположим, что источник питания не может достичь полного напряжения постоянного тока без возникновения неисправности: вспомните ранее, что это произошло, когда высоковольтный постоянный ток был отключен от генератора. Это означает, что компонент выходит из строя под нагрузкой.
  10. Если это так, оставьте постоянный ток отключенным от ВЧ-генератора и при выключенном питании снова визуально осмотрите секции низкого и высокого напряжения источника питания.
  11. После выполнения визуальной проверки и отсутствия проблем приступайте к диагностике источника питания.Начните с сети фильтра b + и двигайтесь к входящей линии переменного тока. После отключения входа фильтра включите источник питания и определите, будет ли ошибка регистрироваться фильтром вне цепи, проверив, не выходят ли из строя конденсаторы или дроссель с железным сердечником сети фильтра под нагрузкой.
  12. Стратегия состоит в том, чтобы изолировать каждую часть источника питания, пока не будет обнаружен неисправный компонент. После проверки фильтра отключите блоки выпрямителей, пластинчатый трансформатор и, наконец, тиристоры.

Сварочные аппараты для полупроводниковой сварки

Хотя их использование увеличивается, аппараты для высокочастотной твердотельной сварки имеют обратную сторону из-за их младенчества по сравнению со сварочными аппаратами для вакуумных трубок, которые существуют уже почти 40 лет.

Даже если сварщику для вакуумных трубок исполнилось 20 лет, а его производитель больше не работает, этого сварщика может обслуживать давний конкурент из-за общих рабочих характеристик всех сварщиков для вакуумных труб.

Однако с твердотельными сварочными аппаратами клиенты должны быть осторожны.Производители не всегда имеют возможность диагностировать оборудование конкурентов из-за разнообразия технологий твердотельных сварочных аппаратов на рынке.

Твердотельный сварочный аппарат имеет те же четыре основных компонента, что и вакуумный трубчатый сварочный аппарат, за исключением того, что секция инвертора заменяет генератор.

Техническое обслуживание

Должны быть выполнены все проверки безопасности и документации, как и в случае с вакуумными трубчатыми сварочными аппаратами, с последующей надлежащей блокировкой / маркировкой оборудования и тщательной внешней очисткой всех шкафов и панелей.

Приемлемый график технического обслуживания — один раз в 12–18 месяцев, в зависимости от производственных требований. Техническое обслуживание должно включать следующее:

  1. Проверить все предохранительные устройства и дверные блокировки.
  2. Осмотрите все уплотнители двери и панели.
  3. Проверьте всю соединительную проводку между источником питания и шкафом инвертора, а также между элементами управления и заземлением.
  4. Слейте, промойте и долейте дистиллированную воду из контура.
  5. Осмотрите все шланги на предмет износа или обесцвечивания и устраните утечки.
  6. Проверить все расходомеры.
  7. Тщательно очистите все внутренние стенки шкафа источника питания и инвертора.
  8. Вакуумный интерьер шкафов.
  9. Осмотрите и отключите SCR в соответствии со спецификациями производителя.
  10. Проверьте все соединения платы управления; Должны соблюдаться надлежащие процедуры электростатического разряда (ESD) — критический этап технического обслуживания.
  11. Проверьте все внутренние силовые кабели и медные соединения на предмет надлежащего момента затяжки.
  12. Проверьте весь тефлон в шкафу инвертора и сборных шинах.
  13. Проверьте все предохранители, выполнив проверку на обрыв.
  14. Проверить настройки на всех концевых выключателях.
  15. Осмотрите конденсаторы в секции инвертора.

Поиск и устранение неисправностей Сварочные аппараты твердотельного электрода

В аппаратах твердотельной сварки конструкция схемы, более низкое напряжение и технология монтажа на печатной плате помогают повысить надежность и время безотказной работы мельницы. Однако при возникновении проблем может потребоваться диагностика неисправностей.

Большинство современных сварочных аппаратов для полупроводниковой сварки поставляются с диагностическим пакетом компьютерной графики.В случае возникновения неисправности пакет диагностики направляет операторов к наиболее вероятной причине. Также можно установить модем для удаленного доступа к системе, чтобы помочь в поиске и устранении неисправностей.

Самая распространенная неисправность любого сварщика — это короткое замыкание, вызванное пробоем изоляции или отказом компонентов.

Когда неисправность все же регистрируется, диагностика должна помочь направить операторов в первую зону для исследования, которая обычно находится за пределами самого сварочного аппарата и в области катушки или контактов:

  1. Проверить индукционную катушку на общее состояние и изоляцию статус; также проверьте соединения катушек с шинами.
  2. Проверить контакты на чрезмерный износ; проверьте изоляцию между контактами.
  3. Проверить изоляцию шин на предмет загрязнения с территории завода; он должен быть чистым, без дырок и разрывов.
  4. Осмотрите зону сварки, сварочные ролики, импедер и общее выравнивание катушки или контактов на предмет механических помех.
  5. Если снаружи неисправности не обнаружено, осмотрите блок питания и шкаф инвертора. Ищите очевидное — утечку воды, скопление конденсата или любой общий перегрев.
  6. Если проблем не обнаружено, просмотрите массив ошибок. Большинство твердотельных сварочных аппаратов имеют внутренний диагностический массив, который показывает, работают ли уровни системы. Обычно он управляется светодиодами и устанавливается на узлах.
  7. В секции инвертора сначала осмотрите матрицу неисправных светодиодов на предмет правильного освещения: ВЧ-модули, ВЧ источники питания, вспомогательные источники и схемы управления ВЧ.
  8. Если все светодиоды инвертора в норме, проверьте массив неисправностей источника питания: блок SCR, плату управления, плату зажигания и источник питания 24 В.

Заключение

Эти основные этапы общего профилактического обслуживания и поиска неисправностей как для вакуумных, так и для твердотельных высокочастотных сварщиков должны помочь сварщикам оставаться в рабочем состоянии и производить трубы или трубы.

Для достижения этого результата эксплуатационный персонал должен быть полностью обучен всем аспектам безопасности и оборудования. Если возникают проблемы, которые нельзя сразу устранить, операторы должны обратиться за технической помощью к производителю сварочного аппарата.

Universal Bug-O-Matic | Сварка во всех положениях

Комбинация универсального компактного привода и генератора для сварки в любых положениях!

Универсальный Bug-O-Matic (BUG-5700, BUG-5702 и BUG-5704) — это компактный блок, который сочетает в себе мощный привод и прецизионный генератор в одном корпусе.Агрегат легкий, и с ним легко справится один оператор. Аппарат работает во всех положениях и может использоваться для вертикальных и потолочных сварных швов. При простой замене каретки устройство может работать на жестких рельсах, полужестких рельсах, хай-гибких рельсах или полных кольцевых рельсах. Механизм открывания каретки позволяет освободить или установить устройство в любом месте рельса. Во время сварки можно регулировать скорость движения, амплитуду и скорость колебаний, а также останавливаться влево и вправо.Во время сварки горелкой можно управлять с помощью отдельной ручки управления. Обратная связь с обратной связью и динамическое торможение позволяют Bug-O-Matic точно трогаться с места, останавливаться и двигаться с постоянной скоростью.

Универсальный Bug-O-Matic с автоматическим контролем высоты (BUG-6550, BUG-6552 и BUG-6554) имеет те же функции, что и универсальный Bug-O-Matic, но, кроме того, оснащен функцией автоматической регулировки высоты резака с измерением силы тока, которая поддерживает постоянное расстояние от горелки до рабочего расстояния. Регулировка высоты оснащена моторизованными салазками, которые обеспечивают в общей сложности 2 дюйма (51 мм) вертикального хода.

Подвесной пульт

Universal Bug-O-Matic имеет подвесной пульт дистанционного управления, который позволяет оператору управлять машиной с расстояния до 10 футов (3 м). Кулон можно закрепить на ручке машины для удобного хранения или транспортировки. Все Universal Bug-O-Matics в стандартной комплектации включают переключатель реверсирования ориентации управления. Подвесные элементы управления можно настроить в соответствии с ориентацией машины. Пример: 2 машины, работающие на одном кольце, сваривают стык на горизонтальной трубе.

Universal Bug-O-Matic удобен для оператора и обеспечивает точные и точные сварные швы. Удаленный подвесной пульт позволяет оператору производить повторяемые сварные швы с предварительно заданными параметрами, что увеличивает производительность, улучшает качество и условия труда.

Аппарат для сварки кварцевых генераторов

Автоматическая сварочная машина с кварцевым осциллятором

Приглашаем Вас посетить наш аппарат.Я Лили из Guangdong Hwashi Technology Inc. Мы специализируемся на производстве сварочных аппаратов в течение 20 лет. И у нас есть полный опыт экспорта машин в зарубежные страны. Чтобы порекомендовать вам подходящую машину, необходимо знать следующие вопросы.

1. Какую продукцию вы производите? Или какой тип машины вы хотите?

2. Расскажите, пожалуйста, о характеристиках вашего продукта, например, о материалах. толщина, максимальный и минимальный размер.

3. Не могли бы вы прислать фотографии вашего продукта для справки?

Согласно вашим отзывам, будет рекомендована соответствующая машина.

Спасибо

Lily

Описание

MF Inverter Spot Welder — это современное сварочное оборудование. Трехфазный источник питания, выпрямленный специальным инвертором, преобразуется в напряжение переменного тока 1000 Гц и затем передается на трансформатор средней частоты, после чего ток выпрямляется для подачи сварочного тока постоянного тока.

Преимущество состоит в том, что это помогает значительно снизить энергию материала железного сердечника, поскольку частота сварочного трансформатора повышается с 50/60 Гц от сети до 1000 Гц.Кроме того, коммутационный диод подцепи трансформатора может преобразовывать электрическую энергию в мощность постоянного тока, которая используется для подачи питания на сварку.

В таких условиях коэффициент индуктивности подобласти может быть значительно улучшен, а стоимость производства может быть сведена к минимуму, поскольку коэффициент индуктивности является важным фактором, который приводит к потерям энергии, но его можно почти игнорировать в цепи сварки на постоянном токе.

Характеристики производительности

→ Энергосбережение: по сравнению с использованием низкой частоты, это может помочь снизить потребление электроэнергии.Трансформатор того же веса мог выдавать больше энергии. Его также можно удобно использовать с большим автоматическим сварочным зажимом.

→ В полуавтоматической установке один среднечастотный трансформатор может заменить множество низкочастотных трансформаторов, чтобы уменьшить ситуацию с умножением во вторичной цепи.

→ Повышение коэффициента мощности, снижение производственных затрат.

→ Уменьшите помехи во вторичной цепи, которая находится на большом открытом пространстве: сварочный ток является постоянным.При наличии индукционного или магнитного материала во вторичной обмотке это не повлияет на сварку.

→ Чтобы сбалансировать нагрузку блока питания: MF инверторный точечный / проекционный сварочный аппарат использует трехфазные источники, которые могут накапливать энергию.

→ Более адаптируется к колебаниям электросети и падению напряжения: поскольку часть энергии накапливается инвертором и подается на нагрузку. Он заменяет способ питания нагрузки напрямую от электросети.

→ Более точное и быстрое управление током: Сравните с низкочастотной системой, она может более точно анализировать больше параметров.

→ Более надежный процесс: для большинства металлов, применяемых для контактной сварки, использование постоянного тока для сварки поможет достичь лучшего эффекта.

→ Технология системы MF более традиционна и надежна, что может предотвратить повреждение в результате разрушения контролируемого кремния.

→ Снижение эксплуатационных расходов, включая экономию энергии каждой точечной сварки и сокращение цикла сварки.

Область применения

Датчик, светодиод и его вывод, медная фольга и исчезнувший провод, реле, часы, емкостный провод и провод, медный провод, контакт сопротивления, индуктивность, батарея и соединительное звено, гнездо, серебряный контакт и медный лист, сварочные молнии с вольфрамом и молибденом и т. д.

Образцы

Щелкните здесь, чтобы узнать больше о машине.

Введение в компанию

Компания Guangdong Hwashi Technology Inc.