Тестер емкости конденсаторов: Китайские измерители ёмкости. Измерители ёмкости Китай купить в интернет-магазине AliExpress

Измеритель ёмкости конденсаторов HONEYTEK A6013L

Измеритель ёмкости конденсаторов HONEYTEK A6013L. Есть доставка из России. В Новосибирск пришёл за неделю, и был доставлен на дом курьером.

В небольшом чёрном конверте была только картонная коробка с прибором, без «пупырки». Коробка универсальная, поэтому изображённый на ней прибор не похож на тот, что находится внутри:


Первая загадка! Найди отличия на изображении двух приборов в центре коробки (я нашёл только одно):


Сзади на коробке информация о производителе:


Слева на коробке модельный ряд. Нужная модель помечена вручную маркером:


Содержимое. Загадка вторая! Как произносится название TIANQIU на комплектной батарейке типа «Крона»:


Внутри находится лист A4 с инструкцией на плохом английском, книжка-инструкция на хорошем китайском, талон ОТК от 29.05.2020 г, прибор, батарейка, и два коротких провода с «крокодилами»:


Сам прибор довольно компактный, но увесистый. В руке лежит нормально, защищён чехлом из резиноподобного пластика:


Загадка третья! Как понять надпись на крышке батареи на 9 вольт (Во избежание удара электрическим током перед заменой батареи или открывания корпуса отсоедините измерительные провода):


Защитный чехол оранжевого цвета съёмный, пахнет химической резиной:


Сам измеритель заключён в твёрдый синий пластик без запаха:


Тестируем новенький китайский электролитический конденсатор, 10000 мкФ на 16 вольт путём втыкания его в контактную площадку под экраном справа:

Измерение конденсаторов с точностью 2% в качестве эталонных.

Два б/у слюдяных конденсатора СГМ-4 6200x500v. Первый:


Второй:


Один «новый» СГМ-3 на 3600x500v от 03.1970 г.:


Один «новый» СГМ-3 на 1200x500v от 04.1976 г.:


Померил также имеющиеся у меня б/у электролиты, все в порядке.


Есть приятная голубоватая подсветка, включаемая кнопкой со знаком «солнышко» (горит 5 секунд):


Кнопка HOLD, там же, фиксирует на экране цифры, в противном случае при измерении электролитических конденсаторов они имеют обыкновение хаотично меняться в плюс и минус в небольшом диапазоне. Плёночные конденсаторы тестируются нормально.

Сей девайс успешно продаётся по всему миру уже лет десять. И даже на Амазон, и имеет там высокую оценку. В России же его почему-то мало кто знает. И даже здесь, на Муське, этот обзор будет первый.

На Ютубе есть хороший видеообзор, не мой.

Предвижу вопрос: Зачем покупать отдельный тестер конденсаторов, если обычный мультиметр может измерять ёмкости тоже?

Ответ прост: Многие недорогие мультиметры могут мерить конденсаторы максимум до 200 микрофарад, тот же VC97, а этот — до 20 миллифарад. Так что для ремонта конденсаторов блока питания — самое то.

Вердикт — дёшево и сердито. Полезно. Быстрая доставка из России.

Купил за свои:


К покупке рекомендую.

Измеритель емкости конденсаторов

В статье описаны схема и конструкция простейшего
измерителя емкости конденсаторов от единиц пикофарад до десяти микрофарад. В
качестве измерительной головки применен тестер ТЛ-4 или любой цифровой. Прибор
используется более 10 лет. Приведены рисунок печатной платы и рекомендации по
настройке.

По мере того как у радиолюбителя накапливается опыт, начинают
четко прослеживаться две тенденции. С одной стороны, интуиция подсказывает пути
решения многих задач без использования большинства измерительных приборов,
достаточно тестера и … отвертки, С другой стороны, становится очевидным, что
наличие хотя бы простейших измерительных приборов значительно упрощает работу.
Появляется желание (и возможность) произвести не только ремонт, но и
исследование. В настоящее время в продаже появилось большое количество
простейших цифровых тестеров, доступных радиолюбителям по цене. Одновременно со
стрелочным ТЛ-4 они уверенно входят в практику. Другие типы
контрольно-измерительных приборов более дорогостоящие, поэтому применяются в
практике реже. Ниже приводится описание схемы и конструкции простейшего
измерителя емкости конденсаторов, Хотя он был изготовлен более 10 лет назад, но
с успехом используется в домашней лаборатории и сейчас.

Конструкция выполнена на двух микросхемах таймеров 3E555N
(аналог КР1006ВИ1) — рис.1. Аналогичная схема того времени [1] содержала
ошибки и требовала доработки. На DA1 выполнен задающий мультивибратор. В
зависимости от требуемого поддиапазона измерений емкости конденсаторов (пФ/мкФ)
переключателем SA1 выбирают частоту мультивибратора.

На DA2 выполнен ждущий мультивибратор. В зависимости от
требуемого поддиапазона измерений емкости конденсаторов (пФ/мкФ) переключатели
SA2-SA5 обеспечивают выбор предела измерений (100 пф, 1000 пф, 10 нФ/1 мкФ,
ЮОнФ/10 мкФ). Конденсаторы С2, СЗ могут быть и большей емкости. На работу
устройства это не влияет. Цепочка R10,VD1,VD2 является простейшим ограничителем
напряжения. Она предотвращает сильные зашкаливания стрелки прибора при
неправильно выбранном пределе измерений. Сопротивление резистора R11 выбирают
при настройке с учетом сопротивления микроамперметра. У тестера ТЛ-4
сопротивление головки составляет около 987 Ом. Резистором R13 устанавливают
стрелку прибора на нуль перед измерением. В авторском варианте схема питается от
источника питания цифровых микросхем (+5 В), можно использовать любые блоки
питания напряжением до 15В.

Настройка. Подбору подлежат сопротивления резисторов
R3-R9, а в некоторых случаях и R11. Первоначально подключаем к схеме
микроамперметр на 100 мкА (гнезда РА). На этом пределе измерений проще всего
использовать ТЛ-4 Переключателем SA1 выбираем предел измерений прибора «мкФ» При
этом в работе участвует резистор R2. Нажимаем кнопку переключателя SA5, а ко
входу прибора «Сх» подключаем любой конденсатор емкостью около 10 мкФ. Для
обеспечения большой точности настройки прибора желательно подготовить несколько
конденсаторов с заранее . проверенной емкостью. Их величины не имеют
принципиального значения. Важно только, чтобы их значения находились в пределах
под-диапозонов. Автор использовал произвольно выбранные и заранее проверенные по
емкости конденсаторы. 9,7 мкФ (К50-16, 10 мкФ), 0,94 мкФ (КМ-6, 1 мкФ), 96 нФ
(КМ-60, 1мкФ), 9500пФ (КМ5, 10 нФ), 930 пФ (КСО-1, 910 пФ), 98 пФ (КД-1 100пФ).
Как было сказано выше, первым подключаем конденсатор емкостью 9,7 мкФ. Подбирая
сопротивление резистора R9, добиваемся отклонения стрелки прибора ТЛ-4 на 97
делений по шкале 100 мкА. Для этого не время настройки временно заменяем
постоянные резисторы R5-R9 подстроенными. Измерив сопротивление подстроечного
резистора, заменяем его постоянным. Далее переключатель SA4 устанавливаем на
измерение емкостей до 1 мкФ. При этом, естественно, SA5 отключаем.

Подключив на вход прибораконденсатор емкостью 0,94 мкФ и
изменив сопротивление резистора R8, добиваемся отклонения стрелки ТЛ-4 на 94
деления (мкА). Переключаем SA1 в положение «пФ» При этом в работе участвуют
резисторы R3, R4. Замкнув SA5, подключаем ко входу «Сх» конденсатор 96 нФ. Для
того чтобы стрелка прибора установилась на 96 делений (мкА), подбираем
сопротивление резистора R3. Замкнув SA4, подключаем ко входу «Сх» конденсатор
емкостью 9500 пФ. Сейчас прибор должен показать деление 95 (мкА) Включаем SA3, а
ко входу прибора, подключаем конденсатор емкостью 930 пФ. Чтобы микроамперметр
показал 93 деления (мкА), подбираем сопротивление резистора R7. Аналогично на
нижнем пределе измерений прибора (включаем SA2) и при подключенном ко входу
конденсаторе емкостью 98 пФ изменяем сопротивление резисторов R5, R6 (добиваемся
отклонения стрелки прибора на 98 делений). Практически настройка закончена. В
ряде спучаев для облегчения подборе сопротивлений (для уменьшения их количества)
можно несколько изменить сопротивление резистора R11. При этом, естественно,
изменяются настройки всех поддиапазонов прибора. Целесообразно проверить, как
влияет величина напряжения источника питания схемы на точность измерений. Как
было сказано выше, можно вместо стрелочного прибора использовать цифровой. Для
этого достаточно к выходным гнездам «РА» подключить резистор с эквивалентным
стрелочному прибору сопротивлением. В данном случае это могут быть, например,
два параллельно соединенных резистора МЛТ-0,25-1 кОм и 75 кОм. Их эквивалентное
сопротивление около 987 Ом. Цифровой тестер, например, М830В включаем в режим
измерения малых напряжений.

Печатная плата прибора показана на рис. 2, а
расположение элементов — на рис.3. При этом резисторы R3, R12 выделены
цветом, что подчеркивает их расположение со стороны печатной платы. Сама плата
разработана для размещения в пластмассовой коробке от ЗИП промышленного прибора.
Следует обратить внимание на то, что в зависимости от расстояния между входными
гнездами прибора существует небольшая паразитная входная емкость (около 10 пФ),
поэтому на пределе «100 пф» ее будет показывать прибор даже без подключения ко
входу измеряемого конденсатора.

Литература:

1. Amaterske radio. — 1988 — № 1

Е.Л. Яковлев, г. Ужгород, РАДИОАМАТОР № 12, 2001

Как определить емкость конденсатора: 4 рабочих способа

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

  • по кодовой или цветной маркировке деталей;
  • с помощью измерительных приборов;
  • с использованием формулы.

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

Рис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

Режим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

  1. Измерьте напряжение источника питания щупами контактов измерительного прибора.
  2. Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
  3. Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
  4. Замерьте напряжение образованной цепи с помощью мультиметра.
  5. Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
  6. Вычислите 95% от полученного значения. Запишите показатели измерений.
  7. Возьмите секундомер и включите его одновременно с убиранием закоротки.
  8. Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
  9. По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.

Рис. 3. Измерение с помощью тестера. Проверка

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f – частота тока, а Xc – ёмкостное сопротивление.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = U/ UC* ( 1 / 2*π*f*R ).

Рис. 4. Простая схема

Алгоритм вычисления простой:

  1. Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
  2. Измерьте амплитуды напряжений на конденсаторе и на резисторе.
  3. Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
  4. Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r/ Cx = r/ C0.

Рисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора.  Для этого используют формулу:

C = α * Cq / U , где α –  угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

  • миллифарады (mF, мФ ) = 10-3 Ф;
  • микрофарады (µF, uF, mF, мкФ) = 10-3 мФ = 10-6 Ф;
  • нанофарады (nF, нФ) = 10-3 мкФ =10-9 Ф;
  • пикофарады (pF, mmF, uuF) = 1 пФ = 10-3 нФ = 10-12 Ф.

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Рис. 6. Маркировка крупных конденсаторов

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

  1. Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
  2. Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
  3. Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 100 =1; 101 = 10; 102 = 100 и т. д. до 106.

Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10-3; 8 = 10-2; 9 = 10-1.

Пример:

  • 256 обозначает: 25× 105 = 2500 000 пФ = 2,5 мкФ;
  • 507 обозначает: 50 × 10-3 = 50 000 пФ = 0, 05 мкФ.

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 103 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

  • B = ± 0,1 пФ;
  • C = ± 0,25 пФ;
  • D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
  • F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
  • G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
  • J = ± 5%.
  • K = ± 10%.
  • M = ± 20%.
  • Z = от –20% до + 80%.

Изделия с кодовой маркировкой изображены на рис. 7.

Рис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

Рис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Видео в помощь

Прибор для измерения ёмкости конденсаторов

Из заголовка статьи понятно, что сегодня речь пойдет о приборе для измерения ёмкости конденсаторов. Не в каждом простом мультиметре есть данная функция. А ведь при изготовлении очередной самоделки мы очень часто задумываемся: будет ли она работать, исправны ли конденсаторы, которые мы применили, как их проверить.Да и просто в процессе ремонта данный прибор будет необходим. Проверить на целостность электролитический конденсатор, конечно, можно при помощи тестера. Но мы узнаем: живой он или нет, а вот определить ёмкость , насколько он сухой, мы не сможем.

В некоторых дешевых мультиметрах, которые присутствуют сейчас на рынке, имеется эта функция. Но предел измерения ограничен цифрой в 200 микрофарад. Что явно мало. Нужно хотя бы четыре тысячи микрофарад. Но такие мультиметры стоят на порядок выше. Поэтому я наконец-то решил купить измеритель ёмкости конденсаторов. Выбирал самый дешевый с приемлемыми характеристиками. Остановил свой выбор на XC6013L:

Поставляется это устройство в красивой коробке. Правда, на коробке изображение другого мультиметра:

А сверху наклейка с моделью данного прибора, наверно, у китайцев не хватает коробок:

Прибор заключён в защитный желтый кожух из мягкой пластмассы, похожей на резину. В руках чувствуется увесистость, что говорит о серьезности прибора. С нижней стороны имеется откидная подставка, которая многим может и не пригодиться:

Питается измеритель ёмкости от батарейки напряжением 9 вольт типа крона, которая поставляется в комплекте:

Характеристики прибора просто великолепны. Он может производить измерения от 200 пикофарад до 20 тысяч микрофарад. Что вполне достаточно для радиолюбительских целей:

Сверху прибора расположился большой и информативный жидкокристаллический дисплей. Под ним находятся две кнопки. Слева — красная кнопка, при помощи которой можно зафиксировать на дисплее текущее показание ёмкости. А справа — синяя кнопка, которая очень порадовала, — подсветкой экрана, что, несомненно, является плюсом данного прибора. Между кнопками имеется коннектор для измерения малогабаритных конденсаторов. Правда, проверить бушные конденсаторы, выпаянные из плат доноров, не получается, так как контактные площадки расположены достаточно глубоко. Поэтому данным коннектором можно воспользоваться, только проверяя конденсаторы с длинными выводами:

Под селектором выбора диапазонов измерений находится коннектор для подключения щупов. Кстати, щупы выполнены из такого же материала, как защитный кожух прибора, наощупь они довольно-таки мягкие:

Там же находится, несомненно, самая важная функция прибора — это установка нулевых показаний при измерении ёмкостей в разряде пикофарад. Что наглядно видно на следующих двух фотографиях. Здесь умышленно извлечен один щуп и при помощи регулятора выставлен ноль:

Здесь щуп поставлен на место. Как видите, ёмкость щупов влияет на показания. Теперь достаточно при помощи регулятора выставить ноль и произвести измерения, что будет достаточно точно:

Теперь давайте протестируем прибор в работе и посмотрим, на что он способен.

Тестируем измеритель ёмкости конденсаторов

Для начала будем проверять конденсаторы заведомо исправные, новые и извлечённые из плат доноров. Первым будет подопытный на 120 микрофарад. Это новый экземпляр. Как видите, показания слегка занижены. Кстати, таких конденсаторов у меня штуки 4, и ни один не показал 120 микрофарад. Возможна погрешность прибора. А может, сейчас делают одну некондицию:

Вот одна тысяча микрофарад, весьма точно:

Две тысячи двести микрофарад, тоже неплохо:

А вот десять  микрофарад:

Ну а теперь сто микрофарад, очень хорошо:

Давайте посмотрим на показания прибора, которые он покажет при проверке дефектных конденсаторов, которые были извлечены во время ремонта монитора samsung. Как видите, разница ощутима:

Вот такие получились результаты. Конечно, в некоторых случаях неисправность электролитического конденсатора видна визуально. Но в большинстве случаев без прибора обойтись сложно. К тому же я тестировал данный прибор на двух платах, проверяя конденсаторы, не выпаивая их. Устройство показало неплохие результаты, только в некоторых случаях нужно соблюдать полярность. Поэтому я советую купить такой прибор, и вы сможете измерять ёмкость конденсаторов своими руками.

Смотрим видеоверсию данной статьи:

.

ESR-метр, измеритель емкости и ЭПС конденсаторов, индуктивности, сопротивления, тестер транзисторов, диодов

Купить ESR meter (тестер ЭПС) или заказать по почте можно позвонив нам по телефону или оформив заказ на сайте, и мы Вам перезвоним.

Новая русифицированная прошивка!

ESR-metr — прибор, предназначенный для измерения ESR (или ЭПС — эквивалентного последовательного сопротивления). Очень нужная вещь в лаборатории радиолюбителя, так как он позволяет проверять качество достаточно слабого звена в радиотехнической аппаратуре — электролитических конденсаторов, даже без выпайки их из схемы радиоаппаратуры, которое другими методами определить не удаётся. Например, измерителем ёмкости конденсаторов можно проверить ёмкость конденсатора — она может быть в норме, но, конденсатор всё равно работает очень плохо, не выполняя свои функции. Как определить причину? Для этого и нужен этот прибор.

ESR метр позволяет выполнять такие функции как: измеритель ёмкости и эквивалентное последовательное сопротивление ЭПС (англ. ESR) конденсаторов, индуктивности катушек (LCR, RLC, LC метр), сопротивления резисторов, тестер транзисторов, диодов, стабилитронов до 4В, а также выводить информацию о подключённых компонентах.

Прибор универсален и очень прост в использовании. Для теста или измерения радиоэлемента просто подключаем его выводы к входным контактам прибора (1, 2, 3). Прибор автоматически определит и выведет на дисплей всю информацию.

Внимание! Перед замером ёмкости конденсаторов надо быть уверенным в том, что они разряжены! Для этого необходимо кратковременно перемкнуть выводы. Иначе есть большая вероятность выхода из строя микроконтроллера! Если требуется проверить элементы, установленные в схеме, то оборудование должно быть отсоединено от источника питания, и должна быть полная уверенность, что остаточное напряжение отсутствует в оборудовании! Если это всё же произошло, то не спешите выбрасывать прибор. Вы можете приобрести у нас отдельно микроконтроллер с прошивкой.

Особенности:

  • Автоматическое обнаружение электронных компонентов: NPN и PNP транзисторов, N-канальных и P-канальных МОП-транзисторов, диодов, стабилитронов Uст<4В, тиристоров, симисторов, резисторов, конденсаторов и индуктивностей
  • Отображение на дисплее символа тестируемого компонента, а также номеров выводов, к которым он подключен, и их назначение
  • Предусмотрены контактные площадки для удобного теста SMD элементов
  • Внешний кварцевый генератор
  • Перед измерением отображается напряжение батареи
  • Удобная зажимная панелька для надёжного подсоединения тестируемых элементов
  • Графический ЖК дисплей с подсветкой
  • Режим калибровки (читайте в разделе 3.3 документации)
  • Предусмотрена функция самовыключения

 
Cпецификация:

Диапазоны измерений:
Резистор: 0.1Ω-50MΩ
Конденсатор: 25пФ-100000мкФ
Индуктивность: 0.01мГн-10Гн
Напряжение питающей батареи: DС-9В
Ток в режиме ожидания: 0.02мкA
Рабочий ток потребления: 25мА

Комплектация:

ESR-metr, OEM упаковка

Скачать файлы документации: ttester.pdf, ttinfo_ru.pdf

Читайте статью о ESR в блоге

Прибор для проверки конденсаторов: схема, без выпайки

Чтобы убедиться в исправности конденсаторов, необходимо провести определение их исправности и соответствия номинальных параметров. Для этой цели можно использовать тестер конденсаторов. Существует несколько видов таких приборов. Для определения исправности этих деталей возможно использовать более простые способы.

Что такое тестер конденсаторов

Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.

Выполнение измерения емкости

Конденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности. Для проверки его нужно выпаивать.

Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства.

Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.

Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.

Высокоточное измерение

В некоторых мультиметрах имеется возможность непосредственной проверки емкости.

ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов. Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.

Существуют специальные измерители емкости.

Аналоговое устройство

ESR-метр

Такой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.

Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.

Измеритель емкости

Мультиметр

Для определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.

К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.

При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.

В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.

Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.

Протечка электролита

Принцип действия прибора для проверки конденсаторов

Перед тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.

Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.

При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.

Виды конденсаторов

Параметры приборов

У каждого конденсатора предусмотрено использование номинального напряжения. При тестировании его работы нужно, чтобы измерительный прибор был настроен именно на эту величину.

Для косвенных измерений можно использовать омметр или вольтметр. Некоторые радиолюбители собирают самодельный измерительный прибор.

Как сделать прибор для проверки конденсаторов своими руками

Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:

  • источник постоянного тока;
  • резистор;
  • конденсатор;
  • вольтметр.

Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.

Схема проверки

После подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.

При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.

Использование мультиметра

Проверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.

Как правильно использовать прибор

Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.

Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.

Мостовая схема

Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.

Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.

Измеритель емкости конденсаторов своими руками: принцип, схема

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

 Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Как измерить емкость с помощью цифрового мультиметра

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.

Предупреждение: исправный конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или провести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите резистор 20 000 Ом, 5 Вт к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
  2. Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
  3. Переведите шкалу в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
  4. 4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше.

    Примечание. Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.

  5. Подключите измерительные провода к клеммам конденсатора. Оставьте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
  6. Считайте отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора. Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Обзор измерения емкости

Устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.

Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.

Однофазные двигатели с такими проблемами и шумные однофазные двигатели с конденсаторами нуждаются в мультиметре для проверки правильного функционирования конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.

Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.

Стоит знать о некоторых дополнительных факторах, связанных с емкостью:

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
  • При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
  • Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
  • Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Связанные ресурсы

Как проверить конденсатор с помощью цифрового и аналогового мультиметра

6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)

В большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой, которая связана с как проверить и проверить конденсатор? Хорошая она, плохая (мертвая), короткая или открытая?

Здесь мы можем проверить конденсатор с помощью аналога (измеритель AVO i.е. Ампер, напряжение, омметр), а также цифровой мультиметр, либо он в хорошем состоянии, либо мы должны заменить его новым.

Примечание. Для определения значения емкости вам понадобится цифровой измеритель с функциями измерения емкости. .

Ниже приведены пять (6) методов проверки и тестирования конденсатора на исправность, неисправность, обрыв, неисправность или короткое замыкание.

Связанные сообщения:

Метод 1.

Традиционный метод тестирования и проверки конденсатора

Примечание. Не рекомендуется для всех, кроме профессионалов.Будьте осторожны, выполняя эту практику, так как это опасно. Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверяете предупреждения, прежде чем применять этот метод), и нет других вариантов проверки конденсатора, потому что во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2–6 в качестве альтернативы конденсатору.

Предположим, вы хотите проверить конденсатор (например, конденсаторы вентилятора, конденсаторы воздухоохладителя в помещении или оловянные конденсаторы на печатной плате / печатной плате и т. Д.)

Предупреждение и рекомендации по тестированию конденсатора методом 1.

Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы постоянного тока 24 В вы можете использовать 220-224 В переменного тока, но вам необходимо сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения конденсатора к источнику переменного тока 230 В. Таким образом, это уменьшит зарядный и разрядный ток. Вот пошаговое руководство по проверке конденсатора этим методом.

  1. Отключите подозрительный конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отключен.
  2. Убедитесь, что конденсатор полностью разряжен.
  3. Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
  4. Теперь безопасно подключите эти выводы к источнику переменного тока 230 В на очень короткий период (около 1-4 сек) [или на короткое время, когда напряжение поднимется до 63,2% от напряжения источника].
  5. Отсоедините предохранительные провода от источника питания 230 В переменного тока.
  6. Теперь закоротите клеммы конденсатора (сделайте это осторожно и убедитесь, что у вас есть защитные очки).
  7. Если возникает сильная искра, конденсатор исправен.
  8. Если он дает слабую искру, значит, конденсатор неисправен и немедленно замените его на новый.

Связанные сообщения:

Метод 2.

Проверка конденсатора аналоговым мультиметром

Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, омметр), выполните следующие действия.

  1. Убедитесь, что подозрительный конденсатор полностью разряжен.
  2. Возьмите измеритель AVO.
  3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
  4. Подключите выводы измерителя к клеммам конденсатора.
  5. Обратите внимание на чтение и сравните со следующими результатами.
  6. Короткие конденсаторы: закороченный конденсатор покажет очень низкое сопротивление.
  7. Открытые конденсаторы: Открытый конденсатор не будет показывать никакого движения (отклонения) на экране омметра.
  8. Хорошие конденсаторы: сначала сопротивление будет низким, а затем постепенно увеличивается до бесконечности. Это означает, что конденсатор в хорошем состоянии.

Метод 3.

Проверка конденсатора с помощью цифрового мультиметра

Чтобы проверить конденсатор с помощью цифрового мультиметра, выполните следующие действия.

  1. Убедитесь, что конденсатор разряжен.
  2. Установите измеритель на диапазон Ом (установите его на 1000 Ом = 1 кОм).
  3. Подключите выводы измерителя к клеммам конденсатора.
  4. Цифровой измеритель на секунду покажет некоторые числа. Обратите внимание на чтение.
  5. А потом сразу вернется в OL (Open Line). Каждая попытка на шаге 2 будет показывать тот же результат, что и на шагах 4 и 5.Это означает, что конденсатор в хорошем состоянии.
  6. Если изменений нет, то конденсатор неисправен.

Вы также можете проверить:

Метод 4.

Проверка конденсатора мультиметром в режиме измерения емкости

Примечание. Вы можете выполнить этот тест с помощью мультиметра, если у вас есть измеритель емкости или мультиметр с функция для проверки емкости. Кроме того, этот метод хорош и для проверки крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим измерения емкости.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Снимите конденсаторы с платы или цепи.
  3. Теперь выберите «Емкость» на мультиметре.
  4. Теперь подключите клемму конденсатора к выводам мультиметра.
  5. Если показание близко к фактическому значению конденсатора (т. Е. Значению, напечатанному на коробке контейнера конденсатора).
  6. Значит, конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше фактического значения конденсатора (значение, напечатанное на коробке контейнера конденсатора).
  7. Если вы обнаружите значительно меньшую емкость или ее отсутствие вообще, значит, конденсатор мертв, и вам следует его заменить.

Похожие сообщения:

Метод 5.

Тестирование конденсатора простым вольтметром.

  1. Обязательно отсоедините один вывод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатора от цепи (вы также можете полностью отсоединить его при необходимости)
  2. Проверьте номинальное напряжение конденсатора, указанное на нем ( Как показано в приведенном ниже примере, где напряжение = 16 В)
  3. Теперь зарядите этот конденсатор в течение нескольких секунд до номинального значения (не до точного значения, а меньше, чем это i.е. зарядите конденсатор 16В от батареи 9В) напряжением. Обязательно подключите положительный (красный) вывод источника напряжения к положительному (длинному) выводу конденсатора, а отрицательный — к отрицательному. Если вы не можете его найти или не уверены, вот руководство, как найти отрицательный и положительный вывод конденсатора.
  4. Установите значение вольтметра на постоянный ток и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора, а отрицательный — к отрицательному.
  5. Запишите начальное значение напряжения в вольтметре. Если оно близко к подаваемому на конденсатор напряжению, конденсатор находится в хорошем состоянии. Если показания очень малы, значит, конденсатор неисправен. Обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.

Связанные сообщения:

Метод 6.

Найдите значение конденсатора, измерив значение постоянной времени

Мы можем найти значение конденсатора, измерив постоянную времени (TC или τ = Tau) если известно значение емкости конденсатора в микрофарадах (обозначено мкФ), напечатанное на нем i.е. конденсатор не перегорел и не перегорел.

Вкратце, время, необходимое конденсатору для зарядки около 63,2% приложенного напряжения при заряде через резистор известного номинала, называется постоянной времени конденсатора (TC или τ = Tau) и может быть рассчитано с помощью:

τ = RxC

Где:

  • R = Известный резистор
  • C = Значение емкости
  • τ = TC или τ = Tau (постоянная времени)

Например, если напряжение питания 9 В, то 63.2% от этого составляет около 5,7 В.

Теперь давайте посмотрим, как найти значение емкости конденсатора путем измерения постоянной времени.

Обязательно отключите и разрядите конденсатор от платы.

Подключите резистор с известным значением сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.

Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.

Теперь измерьте время, необходимое для зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% от этого значения составляет около 5,7 В.

Из значения данного резистора и измеренного времени вычислите значение емкости по формуле Time Content, т.е. τ = TC или τ = Tau (постоянная времени).

Теперь сравните рассчитанное значение емкости с напечатанным на нем значением конденсатора.

Если они одинаковы или почти равны, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора заменить конденсатор, так как он не работает должным образом.

Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% пикового напряжения.

Полезно знать: можно также измерить время, необходимое конденсатору для разряда около 36,8% пикового значения приложенного напряжения. Время разряда можно использовать так же, как в формуле, чтобы найти емкость конденсатора.

Похожие сообщения:

Как проверить конденсатор?

В этом руководстве мы увидим, как проверить конденсатор и выяснить, работает ли конденсатор должным образом или он неисправен.Конденсатор — это электронный / электрический компонент, который хранит энергию в виде электрического заряда. Конденсаторы часто используются в печатных платах электроники или небольшом количестве электрических приборов и выполняют множество функций.

Зачем нам тестировать конденсатор?

Когда конденсатор помещается в активную цепь (цепь с протекающим активным током), в конденсаторе (на одной из его пластин) начинает накапливаться заряд, и как только пластина конденсатора больше не может принимать больше заряда, это означает, что конденсатор полностью заряжен.

Теперь, если схема требует этого заряда (например, байпасный конденсатор), конденсатор возвращает заряд обратно в схему, и это продолжается до тех пор, пока заряд не будет полностью снят или цепь не перестанет требовать. Эти действия называются зарядкой и разрядкой конденсатора.

В основном конденсаторы можно разделить на электролитические и неэлектролитические. Как и все электрические и электронные компоненты, конденсатор также чувствителен к скачкам напряжения, и такие колебания напряжения могут необратимо повредить конденсаторы.

Электролитический конденсатор часто выходит из строя из-за разрядки большего тока за короткий период времени или не может удерживать заряд из-за высыхания со временем. С другой стороны, неэлектролитические конденсаторы выходят из строя из-за утечек.

Существуют различные методы проверки правильности работы конденсатора. Давайте посмотрим на некоторые методы проверки конденсатора.

ПРИМЕЧАНИЕ. Некоторые из упомянутых здесь методов могут быть не лучшими способами проверки конденсатора. Но мы включили эти методы только для того, чтобы указать возможности.Будь очень осторожен.

Как разрядить конденсатор?

Прежде чем продолжить и рассмотреть различные методы тестирования конденсатора, давайте разберемся, как правильно разрядить конденсатор. Это очень важно, потому что конденсаторы могут удерживать заряд даже при отключении питания. Если конденсатор не разряжен должным образом и если вы случайно коснетесь выводов конденсатора, он разрядится через ваше тело и вызовет поражение электрическим током.

Есть несколько способов разрядить конденсатор.Будет специальное руководство о том, как разрядить конденсатор, но пока давайте очень кратко рассмотрим оба этих метода.

Использование отвертки

ПРЕДУПРЕЖДЕНИЕ. Этот метод не является предпочтительным (особенно если вы новичок), так как при разрядке будут образовываться искры, которые могут вызвать ожоги или другие повреждения. Используйте этот метод в крайнем случае.

Если конденсатор находится в цепи (на печатной плате), правильно распаяйте его и не прикасайтесь к клеммам конденсатора.Теперь возьмите изолированную отвертку (с более длинной ручкой) и возьмите ее в одну руку. Возьмите конденсатор другой рукой и прикоснитесь металлической частью отвертки к обоим выводам конденсатора.

Вы увидите искры и услышите треск, указывающий на электрический разряд. Повторите несколько раз, чтобы убедиться, что конденсатор полностью разряжен.

Использование разрядного резистора (стравливающего резистора)

Теперь мы рассмотрим безопасный способ разрядки конденсатора.Этот метод часто используется в источниках питания и других подобных схемах, где резистор, известный как Bleeder Resistor, размещается параллельно выходному конденсатору, так что при отключении питания оставшийся заряд в конденсаторе разряжается через этот резистор. .

Возьмите резистор большого номинала (обычно несколько килоомов) с высокой номинальной мощностью (например, 5 Вт) и подключите его к клеммам конденсатора. Вместо прямого подключения можно использовать провода с зажимами типа «крокодил» на обоих концах.Конденсатор будет медленно разряжаться, и вы можете контролировать напряжение на выводах конденсатора с помощью мультиметра.

Существует простой в использовании «Калькулятор безопасного разряда конденсатора» от Digi-Key. Используйте этот инструмент как отправную точку.

Например, предположим, что у нас есть конденсатор емкостью 1000 мкФ, рассчитанный на 50 В, и мы хотим разрядить этот конденсатор до 1 В. При использовании резистора 1 кОм для разряда конденсатора потребуется почти 4 секунды. Также номинальная мощность резистора должна быть не менее 2.5Вт.

ПРИМЕЧАНИЕ. Резисторы высокой мощности обычно дороги по сравнению с обычными резисторами (1/4 или 1/2 Вт).

Метод 1 Проверка конденсатора с помощью мультиметра с настройкой емкости

Это один из самых простых, быстрых и точных способов проверки конденсатора. Для этого нам понадобится цифровой мультиметр с функцией измерителя емкости. Большинство цифровых мультиметров среднего и высокого уровня имеют эту функцию.

Измеритель емкости на цифровых мультиметрах часто отображает емкость конденсатора, но несколько счетчиков отображают другие параметры, такие как ESR, утечку и т. Д.

  • Чтобы проверить конденсатор с помощью цифрового мультиметра с измерителем емкости, можно выполнить следующие шаги.
  • Отсоедините конденсатор от печатной платы и полностью разрядите его.
  • Если на его корпусе видны номиналы конденсатора, запишите это. Обычно емкость в фарадах (часто микрофарадах) печатается на корпусе вместе с номинальным напряжением.
  • В цифровом мультиметре установите ручку измерения емкости.
  • Подключите щупы мультиметра к клеммам конденсатора.В случае поляризованного конденсатора подключите красный щуп к положительному выводу конденсатора (как правило, к более длинному проводу), а черный щуп к отрицательному выводу (обычно сбоку будет маркировка). В случае неполяризованного конденсатора, подключите его в любом случае, поскольку они не имеют полярности.
  • Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.
  • Если разница между фактическим значением и измеренным показанием значительно (или иногда равна нулю), то вам следует заменить конденсатор, так как он мертв.

Используя этот метод, можно измерить емкость конденсаторов от нескольких нанофарад до нескольких сотен микрофарад.

Метод 2 Проверка конденсатора с помощью мультиметра без настройки емкости

Большинство недорогих и дешевых цифровых мультиметров не включают измеритель емкости или настройки емкости.Даже с этими мультиметрами мы можем проверить конденсатор.

  • Снимите конденсатор с схемы или платы и убедитесь, что он полностью разряжен.
  • Установите мультиметр на измерение сопротивления, т. Е. Установите ручку в положение «Ом» или «Настройки сопротивления». Если существует несколько диапазонов измерения сопротивления (на ручном мультиметре), выберите более высокий диапазон (часто от 20 кОм до 200 кОм).
  • Подключите щупы мультиметра к выводам конденсатора (красный к плюсу и черный к минусу в случае поляризованных конденсаторов).
  • Цифровой мультиметр покажет значение сопротивления на дисплее, и вскоре он отобразит сопротивление разомкнутой цепи (бесконечность). Запишите показания, отображаемые за этот короткий период.
  • Отсоедините конденсатор от мультиметра и повторите проверку несколько раз.
  • Каждая попытка теста должна показывать на дисплее аналогичный результат для исправного конденсатора.
  • Если при дальнейших испытаниях сопротивление не изменилось, конденсатор неисправен.

Этот метод тестирования конденсатора может быть неточным, но позволяет различать хорошие и плохие конденсаторы. Этот метод также не дает данных о емкости конденсатора.

Метод 3 Тестирование конденсатора путем измерения постоянной времени

Этот метод применим только в том случае, если известно значение емкости и если мы хотим проверить, исправен ли конденсатор или нет. В этом методе мы измеряем постоянную времени конденсатора и выводим емкость из измеренного времени.Если измеренная емкость и фактическая емкость одинаковы, то конденсатор исправен.

ПРИМЕЧАНИЕ. Для этого метода лучше использовать осциллограф, чем мультиметр.

Постоянная времени конденсатора — это время, необходимое конденсатору для зарядки до 63,2% приложенного напряжения при зарядке через известный резистор. Если C — емкость, R — известный резистор, то постоянная времени TC (или греческий алфавит Tau — τ) задается как τ = RC.

  • Сначала убедитесь, что конденсатор отсоединен от платы и правильно разряжен.
  • Подключите известный резистор (обычно резистор 10 кОм) последовательно с конденсатором.
  • Завершите цепь, подключив источник питания известного напряжения.
  • Включите источник питания и измерьте время, за которое конденсатор заряжается до 63,2% напряжения питания. Например, если напряжение питания составляет 12 В, то 63,2% от этого значения составляет около 7,6 В.
  • Из этого времени и сопротивления измерьте емкость и сравните ее со значением, указанным на конденсаторе.
  • Если они похожи или почти равны, конденсатор работает нормально. Если разница огромна, нам нужно заменить конденсатор.

Также можно рассчитать время разряда. В этом случае можно измерить время, необходимое конденсатору для разряда до 36,8% пикового напряжения.

Метод 4 Проверка конденсатора с помощью простого вольтметра

Все конденсаторы рассчитаны на максимальное напряжение, с которым они могут работать. Для этого метода проверки конденсатора мы будем использовать номинальное напряжение конденсатора.

  • Снимите конденсатор с платы или схемы и должным образом разрядите его. При желании можно удалить из цепи только один вывод.
  • Посмотрите номинальное напряжение на конденсаторе. Обычно он обозначается как 16 В, 25 В, 50 В и т. Д. Это максимальное напряжение, которое может выдерживать конденсатор.
  • Теперь подключите выводы конденсатора к источнику питания или батарее, но напряжение должно быть меньше максимального номинального значения. Например, на конденсаторе с максимальным номинальным напряжением 16 В вы можете использовать батарею на 9 В.
  • Если у вас настольный блок питания, вы можете установить напряжение ниже номинального напряжения конденсатора.
  • Зарядите конденсатор на короткое время, скажем, 4–5 секунд и отключите питание.
  • Установите цифровой мультиметр на настройки вольтметра постоянного тока и измерьте напряжение на конденсаторе. Подключите соответствующие клеммы вольтметра и конденсатора.
  • Начальное значение напряжения на мультиметре должно быть близко к подаваемому напряжению в исправном конденсаторе.Если разница большая, значит конденсатор неисправен.

Следует учитывать только начальные показания мультиметра, так как значение будет медленно падать. Это нормально.

Метод 5 Проверка конденсатора с помощью аналогового мультиметра (AVO Meter)

Аналоговые мультиметры, как и цифровые мультиметры, могут измерять различные величины, такие как ток (A), напряжение (V) и сопротивление (O). Чтобы проверить конденсатор с помощью аналогового мультиметра, мы собираемся использовать его функцию омметра.

  • Как обычно, отключите конденсатор и разрядите его. Вы можете разрядить конденсатор, просто закоротив провода (очень опасно — будьте осторожны), но простой способ — использовать нагрузку, такую ​​как резистор высокой мощности или светодиод.
  • Установите аналоговый мультиметр в положение омметра и, если имеется несколько диапазонов, выберите более высокий диапазон.
  • Подсоедините выводы конденсатора к щупам мультиметра и наблюдайте за показаниями мультиметра.
  • У хорошего конденсатора сопротивление вначале будет низким и постепенно будет увеличиваться.
  • Если сопротивление постоянно низкое, конденсатор закорочен, и его необходимо заменить.
  • Если стрелка не движется или сопротивление всегда показывает более высокое значение, конденсатор является открытым конденсатором.

Этот тест может применяться как к сквозным, так и к поверхностным конденсаторам.

Метод 6 Замыкание выводов конденсатора (традиционный метод — только для профессионалов)

Описанный здесь метод является одним из старейших методов тестирования конденсатора и проверки того, хороший он или плохой.

Предупреждение: этот метод очень опасен и предназначен только для профессионалов. Его следует использовать как последний вариант для проверки конденсатора.

Безопасность: Метод описан для источника переменного тока 230 В. Но из соображений безопасности можно использовать источник питания 24 В постоянного тока. Даже при 230 В переменного тока нам необходимо использовать последовательный резистор (высокой номинальной мощности) для ограничения тока.

  • Проверяемый конденсатор должен быть отключен от цепи и должным образом разряжен.
  • Подключите выводы конденсатора к клемме питания.Для 230 В переменного тока необходимо использовать только неполяризованные конденсаторы. Для 24 В постоянного тока можно использовать как поляризованные, так и неполяризованные конденсаторы, но с правильным подключением поляризованных конденсаторов.
  • Включите источник питания на очень короткое время (обычно от 1 до 5 секунд), а затем выключите его. Отсоедините выводы конденсатора от источника питания.
  • Замкните клеммы конденсатора металлическим контактом. Убедитесь, что вы хорошо изолированы.
  • Искра от конденсатора может использоваться для определения состояния конденсатора.Если искра большая и сильная, то конденсатор в хорошем состоянии.
  • Если искра малая и слабая, нужно заменить конденсатор.

Этот метод можно использовать для конденсаторов с меньшей емкостью. Этот метод может только определить, может ли конденсатор удерживать заряд или нет.

Заключение

Полное руководство для начинающих по различным способам проверки конденсатора. Узнайте, как проверить конденсатор, как правильно разрядить конденсатор перед тестированием, какие методы безопасны для использования новичками.

▷ Как использовать измеритель емкости?

В прошлый раз Насир рассказывал нам об измерении тока амперметрами, сегодня статья про емкостной измеритель…

Что такое конденсатор?

Конденсатор — это двухполюсное устройство накопления заряда, которое накапливает электрический заряд между двумя проводящими пластинами, разделенными сопротивлением. Это основное введение в конденсатор, которое кратчайшим образом описывает его работу. Прежде чем углубляться в детали измерителя емкости, необходимо знать о функционировании и работе конденсатора.

Конденсатор

накапливает энергию, но он не так эффективен, как другие устройства накопления энергии, такие как батареи и т. Д. Основная причина этого заключается в том, что он довольно быстро разряжается, и это одна из причин, по которой он весьма полезен в приложениях, где требуется быстрая энергия.

Что такое измеритель емкости?

Способность конденсатора накапливать электрические заряды известна как его емкость, и для этого используется измеритель емкости. Измеритель емкости используется для измерения емкости конденсатора.Он измеряет скорость накопления заряда и возвращает значение емкости в цифровом виде, обычно, но не всегда.

Также доступны аналоговые измерители емкости, которые показывают показания в виде стрелки, движущейся по шкале, но они довольно старые и неточные. В настоящее время широко используются цифровые измерители емкости, поскольку они просты в обращении и считываются, а также повышают точность.

Измерение емкости с помощью измерителя емкости

Измеритель емкости может быть выполнен в виде отдельного устройства или встроен в цифровой мультиметр.Он имеет два выходных пробника, которые можно легко подключить к двум ножкам конденсатора для измерения его емкости, как показано ниже:

Это можно измерить двумя способами, а именно:

  1. Путем измерения скорости нарастания напряжения
  2. Пропуская высокочастотный переменный ток

Каждый из этих процессов будет подробно описан ниже…

Измерение скорости нарастания напряжения

Когда измеритель емкости соединен с конденсатором, он заряжает его заданным значением тока.Когда конденсатор заряжается и разряжается таким образом с помощью измерителя емкости, измеритель емкости измеряет скорость, с которой напряжение на этом конденсаторе растет из-за этого тока.

Затем измеряется емкость как функция от повышения напряжения. Чем медленнее нарастает напряжение на конденсаторе, тем больше будет значение его емкости.

Пропуская переменный ток высокой частоты

Другой метод измерения емкости с помощью измерителя емкости — пропускание высокочастотного переменного тока.Когда переменный ток пропускается с очень высокой частотой, измеряется результирующее изменение напряжения и определяется емкость как функция этого результирующего напряжения.

Использование измерителя емкости

Конденсаторы

широко используются в настоящее время в приложениях, где требуется быстрый источник энергии, из-за того, что они разряжают энергию с большой скоростью. Часто конденсатор имеет неразборчивую емкость, поэтому его невозможно использовать, не зная его фактического номинала.

Измеритель емкости используется для измерения неизвестных емкостей в цепи, что важно для правильной работы схемы.

Насир.

Есть много других подобных измерительных устройств, которые чрезвычайно часто используются в повседневных электрических приложениях. Чтобы узнать о них больше, следите за обновлениями и продолжайте посещать нас.

10 лучших измерителей емкости 2021 года — обзоры эксперта!

Вы электрик? Тогда вы можете знать о важности измерителя емкости.Это устройство, используемое для измерения уровня энергии в устройствах. Электрики используют его для считывания емкости отдельных конденсаторов.

С развитием технологий появилось все больше и больше лучших измерителей емкости. Рынок наводнен сотнями из них. Некоторые из них поставляются как отдельные устройства, в то время как другие, например, мультиметр, интегрируются с другими устройствами.

Top 5 лучших измерителей емкости: выбор редакции

Но вы не можете пойти в магазин и купить измеритель емкости.Вы должны выбрать тот, который подходит для вашей работы. В противном случае вы можете не получить качественный результат. Из-за их большого количества на рынке вы можете не понять, что выбрать.

В результате мы исследовали лучший измеритель емкости, который вы можете купить сегодня на рынке. Каждый из следующих основных обзоров емкости даст вам представление об устройстве и о том, почему оно в настоящее время является одним из лучших на рынке. Но перед этим вот список;

Обзор 10 лучших измерителей емкости:

1.Signstek MESR-100 V2 Автоматический выбор диапазона в цепи Конденсатор измерителя ESR LCR

Тестер Signstek MESR-100V2 — мечта каждого электрика. Это поможет вам проверить, поврежден ли ваш конденсатор, неисправен или работает ли он правильно. Плохие электронные конденсаторы вместо фильтрации шума создают большую рябь.

Большие конденсаторы имеют сопротивление более 3 Ом. Поскольку этот измеритель ESR работает от пика до пика с хорошими конденсаторами или 15 мВ постоянного тока, он отлично подходит для тестирования схем.

Вы уменьшаете импеданс на 100 кГц, чтобы измерить истинное значение последовательного резистора.Измеритель тестирует с использованием низкого напряжения, что означает, что полупроводник внутри тестируемого устройства не подвергается риску включения. Вы также можете использовать эту программу проверки для проверки вашего телевизора, аудиоплаты, ЖК-дисплея или других устройств во время их ремонта.

Благодаря большому ЖК-дисплею вы можете легко просматривать и читать информацию. Переносить этот тестер цепей не составит труда благодаря прилагаемому к нему пластиковому корпусу изогнутой формы.

Батарея выходит за рамки батареи 9 В, что делает ее удобной в использовании в любое время.Тестер Signstek MESR-100V2 поставляется с внешним USB-источником питания, что означает, что вы можете заряжать его от компьютера или внешнего блока питания.

Двойной терминал помогает быстро и легко проверить резистор или конденсатор. Если вы не понимаете, как работает измеритель емкости, вы можете следовать инструкциям, прилагаемым к этому тестеру.

Плюсов:
  • Быстрое и удобное использование
  • Обеспечивает точные результаты
  • Помогает уменьшить высокочастотную составляющую прямоугольной волны для улучшения результатов
  • Его разрешение 0.001 Ом очень высокий
  • Имеет большой ЖК-дисплей для удобного чтения результатов
  • Поставляется в пластиковом футляре для перевозки
  • Использует батареи с длительным сроком службы
  • Использует стандартный порт micro-USB
Минусы:
  • Поставляется с короткими щупами
  • У вас могут возникнуть трудности с обнулением счетчика

Купить на Amazon

2. Цифровой тестер конденсаторов ELIKE от 0,1 пФ до 20 мФ

Цифровой тестер конденсаторов

ELIKE входит в наш список лучших на рынке благодаря своим диапазонам измерения.Их девять, начиная с 200Pf и заканчивая 20mF.

Его ЖК-дисплей полюбится любому электрику. Он большой, с подсветкой сзади и с местом для хранения данных. Информация не только достаточно большая, чтобы ее можно было прочитать, но ее можно увидеть даже в темных местах.

Измерения обычно точны, поскольку вы можете измерять, начиная с нуля, используя кнопку настройки нуля. Вам не нужно беспокоиться о качестве этого устройства, поскольку оно соответствует стандартам безопасности IEC 61010.

Это лучший измеритель электрических конденсаторов для устранения всех проблем с электричеством в вашем доме.Использовать его не составляет труда, и тестер идеально подходит для проверки конденсаторов перед использованием. Ваша печатная плата становится неисправной, если возникает проблема с конденсатором.

Благодаря небольшому размеру вы можете легко носить его с собой куда угодно. С его кнопкой удержания информация остается на дисплее. Сигнал индикатора батареи предупреждает вас, когда вам необходимо заменить батарею, делая ее надежной.

Плюсов:
  • Испытания конденсаторов и всей бытовой электротехники
  • Информация остается на ЖК-дисплее для справки благодаря функции удержания
  • Поставляется с большим ЖК-дисплеем для лучшей видимости отображаемой информации
  • Вы можете узнать, когда заменить батарею, по индикатору разряда батареи
  • Благодаря компактным размерам его можно легко носить с собой куда угодно.
  • Соответствует стандартам безопасности IEC
Минусы:
  • Не идет с носителем
  • Легко портится при неправильном обращении

Купить на Amazon

3.Honeytek A6013l Тестер конденсаторов

Благодаря девяти диапазонам измерения вы можете измерять устройства с диапазоном от 200 пФ до 20 мФ. Поскольку существует множество электронных устройств, подпадающих под этот диапазон, это удобный тестер конденсаторов. Читать отображаемую информацию не составит труда благодаря большому ЖК-дисплею. Он также подсвечивается сзади, чтобы обеспечить вам оптимальный обзор.

Если вам нужно, чтобы отображаемая информация оставалась на долгое время для справки, вам нужно только включить функцию удержания данных. Большинство пользователей не любят тратить свои кровно заработанные деньги на недолговечные устройства, но это устройство — отличное решение для ваших денег.

Тестер конденсаторов Honeytek A60131 показывает превышение дальности, чтобы увеличить срок его службы. Вам также не доставляет неудобств разряженная батарея, поскольку она предупреждает вас о низком уровне заряда. Тестер также поставляется с очень прочной и надежной LSI-схемой.

Использовать это проще простого. Вам нужно только установить его на ноль, используя настройки нуля для компенсации измерительных проводов. Вы можете легко положить его в сумку или карман и носить с собой куда угодно благодаря карманному размеру.

Плюсов:
  • Имеет девять диапазонов измерения, начиная с 200 пФ и заканчивая 20 мФ
  • Поставляется со значительным ЖК-дисплеем с подсветкой для лучшей видимости.
  • Имеет защиту от перегрузки входа
  • Можно долго держать данные на дисплее
  • Предупреждает пользователя о выходе за пределы допустимого диапазона и низком заряде батареи
  • Небольшой размер для облегчения переноски
Минусы:
  • Иногда 9-вольтовый разъем может расшататься и его необходимо подтянуть
  • Иногда показания нестабильны

Купить на Amazon

4.Тестер цепей MESR-100, тестер конденсаторов KKMOON mesr-100

Вы ищете лучший цифровой измеритель емкости? На этом ваш поиск может закончиться тестером цепей MESR-100. Благодаря двойному терминалу это высокая производительность. Тестер идеально подходит для быстрой и простой проверки любого резистора или конденсатора общего назначения. Вы также можете использовать его для проверки ремонта ЖК-дисплея, телевизора и аудиоплаты.

Проверка обычно выполняется очень быстро из-за распечатанной тестером таблицы СОЭ. Он убирает импеданс с частотой 100 кГц, где сопротивление уменьшается, что позволяет проводить измерения последовательного резистора.Используя эту теорию, тестер может определить, поврежден ли конденсатор, неисправен или находится в хорошем состоянии.

Тестер цепей

MESR-100 поставляется с автоматическим отображением полярности на большом ЖК-дисплее, который светится на заднем плане. Показания видны даже при слабом освещении. Если вы не используете его в течение 10 часов, он автоматически отключается для экономии энергии. Благодаря диапазону измерения от 0,001 до 100,0R он обладает невероятно мощной функцией тестирования.

Вы можете использовать его для выполнения внутрисхемных тестов, от пика до пика в конденсаторе ниже 15МВ и использовать синусоидальную волну 100 кГц для измерения значения ESR.Его легко использовать, так как вам нужно всего лишь нажать кнопку измерения, чтобы выбрать режим.

Безопасность этого счетчика гарантируется, так как он поставляется в нескользящем футляре. С этим устройством вы по достоинству оцените соотношение цены и качества.

Плюсов:
  • Высокая производительность
  • Измеряет исправность конденсатора.
  • Автоматический переход в спящий режим с подсветкой
  • Имеет мощную тестовую функцию
  • Поставляется с красивой защитной оболочкой
Минусы:
  • Иногда внутрисхемные показания нестабильны
  • Поставляется с короткими испытательными кабелями

Купить на Amazon

5.Цифровой измеритель емкости мультиметра, тестер конденсатора cciyu от 0.1Pf до 2000uF

Если вас беспокоит безопасность, это лучший измеритель конденсаторов, который вы можете купить сегодня на рынке. Цифровой измеритель емкости мультиметра поставляется с защитными перчатками, и вы можете легко использовать его и носить с собой.

Отлично подходит для измерения электричества различными инструментами. Если у вас есть несколько проблем с бытовой техникой и автомобилем, этот тестер устранит их все.

Имея 9 диапазонов измерения, от 200PF до 20mF, он обладает превосходным диапазоном точности.ЖК-дисплей имеет 3 1/2 дюйма, достаточно большой для хорошей видимости. Экран также имеет подсветку, которая улучшает видимость как в ярких, так и в темных областях.

Аналого-цифровое преобразование тестера и технология двойной интеграции CMOS автоматически выбирают и сбрасывают полярность. Вы можете рассчитывать на этот измеритель во всех ваших энергетических испытаниях.

Плюсов:
  • Поставляется с защитными перчатками
  • Точно измеряет
  • Сбрасывает и автоматически выбирает полярность
  • Приходит в бой, поэтому его легко носить с собой
  • Простота использования
  • Точно устраняет различную бытовую технику и автомобильные проблемы
  • Поставляется с большим ЖК-дисплеем с подсветкой для четкой видимости.
  • Гарантия 1 год — отличное соотношение цены и качества.
Минусы:
  • Измерительный переключатель расположен сбоку, поэтому считывание показаний затруднено, так как вы должны держать прибор.
  • Некоторые аксессуары нельзя завинтить

Купить на Amazon

6.Цифровой измеритель емкости Excelvan M6013, тестер конденсатора

Привлекательный цвет и дизайн тестера могут вас заинтересовать, но что может вас поразить, так это его диапазон измерения. Excelvan измеряет от 0,01 пФ до 470 мФ у v2. Вам потребуется ~ 0.2S только для чтения 2200Uf. Для получения оптимальных результатов вам необходимо сначала разрядить конденсатор перед тестированием.

Цифровой тестер автоматического определения дальности Excelvan M6013 может измерять большой диапазон, но расстояние и длина проводов могут повлиять на его точность.Но вам понравится тот факт, что его показания более стабильны по сравнению с большинством тестеров. ЖК-экран большой, поэтому вы четко видите все цифры.

На ЖК-дисплее можно прочитать не более пяти цифр. Благодаря средней функции бега, которая выполняется автоматически, это повышает удобство. Зарядить его легко, так как он оснащен разъемом micro-USB для подключения внешнего источника питания. Тот факт, что производитель предлагает 1-летнюю гарантию, гарантирует, что вам понравится соотношение цены и качества.

Плюсов:
  • Поставляется со значительным ЖК-дисплеем для лучшей видимости
  • Измеряет большой диапазон
  • Поставляется со стабильными показаниями
  • Работа автоматическая
  • Можно заряжать извне
  • Поставляется с годовой гарантией
Минусы:
  • Длина провода может повлиять на его точность
  • Перед зарядкой необходимо разрядить конденсатор

Купить на Amazon

7.Цифровой измеритель емкости профессиональный конденсатор 0.1Pf — 20000Uf

Производитель разработал этот измеритель для профессионалов, что делает его лучшим тестером конденсаторов на сегодняшний день. Качество не подвергается риску, поскольку оно сертифицировано CE. Вы можете питать его от мощной батареи 9 В, но она не входит в комплект поставки.

Батареи потребляют мало энергии, поэтому вам не нужно беспокоиться о счетах за электроэнергию. Вы также можете легко просматривать результаты благодаря большому ЖК-дисплею.Некоторые тестеры сложны в использовании, но не этот. Вы также можете с комфортом переносить его куда хотите, благодаря его легкости и компактности.

С этим тестером безопасность на высшем уровне. В упаковке есть защитная куртка. Если вы хотите, чтобы информация оставалась надолго, вам нужно только нажать функцию удержания. Он поставляется с ручкой, с помощью которой вы можете вручную установить нулевое значение.

Вам не нужно беспокоиться при покупке этого тестера, так как продавцы проверяют его перед отправкой.Это реальная сделка за ваши деньги.

Плюсов:
  • Сертифицирован CE и идеально подходит для профессионалов
  • Простота эксплуатации и переноски
  • Бескомпромиссная безопасность благодаря защитной куртке.
  • Поставляется с функцией удержания для более длительного хранения данных
  • Имеет ручку ручной регулировки, которая поможет вам обнулить его
  • Отображаемые цифры большие для облегчения видимости
  • Аппарат проходит испытания перед отгрузкой
Минусы:
  • Батареи надо ставить отдельно
  • Легко портится при неправильном обращении

Купить на Amazon

8.KKmoon M6013 Цифровой высокоточный измеритель конденсатора

Диапазон измерения этого тестера цепей впечатляет. Тестер конденсаторов сопротивления измеряет от 0,01 пФ до 470 мФ для V2. Вы будете использовать 0,2 с, чтобы считать емкость 2200 мкФ. Вам понравятся показания этого тестера. Они не ошибаются, но всегда стабильны, что отличает его от остальных.

Функция усреднения тестера работает в автоматическом режиме, что позволяет более точно считывать пФ. Вы можете четко видеть показания, поскольку они большие и содержат пять цифр.Точечно-матричный ЖК-дисплей также большой, что улучшает читаемость. Благодаря микро-USB вы также можете заряжать его от внешнего источника питания, например, от внешнего аккумулятора.

Но перед тестированием нужно разрядить конденсатор. Расстояние и длина провода могут повлиять на его точность. Из-за простоты использования этот тестер могут использовать как профессионалы, так и домашние мастера.

Плюсов:
  • Имеет большой диапазон измерения
  • Отображает пять крупных единиц на большом матричном ЖК-дисплее
  • Показания обычно стабильные
  • Кто угодно может использовать этот тестер
Минусы:
  • Расстояние и длина кабеля тестера могут повлиять на получение точных результатов.
  • Конденсатор должен быть разряжен перед испытанием

Купить на Amazon

9.Цифровой измеритель емкости Elenco CM1555

Elenco CM1555 — это прибор, который вам нужен, когда вам нужны точные результаты и четкость считывания. Благодаря большому диапазону измерения и ЖК-дисплею. Вы можете измерять конденсаторы от 0,1 пФ до 20000 мкФ. Подразумевается, что вы можете использовать его для тестирования различных устройств.

Благодаря компактным размерам и легкому весу вы можете легко носить его с собой на различных устройствах для тестирования. Его ЖК-экран имеет 3 ½ дюйма и отображает большие цифры. Он также поставляется с ручкой регулировки нуля, чтобы установить его для тестирования.

В комплект поставки входят такие аксессуары, как измерительные провода, специальный и банановый разъем. Он также поставляется с мощными батареями на 9 В. Что может вас заинтересовать, так это небольшая цена, несмотря на удивительные возможности тестера. Подчеркивается качество, благодаря чему вы будете служить вам долго.

Не ждите разочарований, потому что он не противоречит тому, для чего был создан, что делает его любимым для многих пользователей. Но будьте осторожны при обращении с ним, так как на экране могут появиться царапины.У него также нет футляра для его хранения, а это значит, что вам придется покупать его отдельно.

Из-за его известной точности и других возможностей этот тестер стоит купить!

Плюсов:
  • Обеспечивает точные результаты
  • Длится дольше
  • Имеет большой диапазон измерения
  • Идеально подходит для тестирования различных устройств
  • Простота использования и переноски
  • Имеет ручную ручку регулировки нуля для установки нуля для тестирования
  • Поставляется с большим ЖК-дисплеем
  • Отображает пять больших цифр для лучшей читаемости
Минусы:
  • Может поцарапать экран при неправильном обращении
  • Без футляра

10.Цифровой измеритель емкости UYIGAO UA6013L

Если вы профессиональный электрик, этот тестер конденсаторов создан для вас. Его широкий диапазон измерения от 0,1 пФ до 20 000 мкФ впечатляет. Цифровой измеритель емкости поставляется с девятью измерительными секциями, что объясняет, почему он дает точные результаты.

Вы без труда увидите показания благодаря большим цифрам, которые отображаются без ошибок. Отображение происходит на большом ЖК-дисплее тестера. Что вам понравится в этом тестере, так это его простота в эксплуатации.Он поставляется с ручным регулятором для установки нуля и готов к тестированию.

Вам не нужно беспокоиться о счетах за электроэнергию при использовании цифрового измерителя емкости UYIGAO UA6013L. Его энергопотребление очень низкое. Универсальность этого устройства поразит вас. Цифровой измеритель емкости также можно использовать для выбора конденсаторов, проверки ошибок, согласования емкостей, проведения численного анализа и измерения кабелей, печатных схем и емкостей переключателей.

Благодаря своей небольшой и менее громоздкой конструкции вы можете легко носить его с собой в любое место.Безопасность этого устройства оптимальна благодаря защитной рубашке, входящей в комплект.

Плюсов:
  • Идеально для профессионалов
  • Простота использования
  • Обеспечивает точные показания
  • Четкие показания в виде больших цифр на значительном ЖК-дисплее
  • Потребляет меньше энергии
  • Поставляется с большим диапазоном измерения в девяти секциях
  • Выполняет другие задачи
  • Поставляется в защитной куртке
  • Легко носить с собой
  • Доступный
Минусы:
  • Может дать небольшую погрешность в результате ручного измерения
  • Мониторы откалиброваны иначе, чем отображаемое устройство

Купить на Amazon

Возможно, каждый из приведенных выше обзоров измерителя емкости мог побудить вас купить его для вашей работы.Но вам не нужно покупать что-либо в сети магазина или в Интернете. Тот факт, что измеритель емкости занимает первое место в нашем списке или лучше всего подходит для вашего друга, не означает, что он идеален для вас.

Конденсаторы

имеют разные характеристики для удовлетворения определенных потребностей. Если вы хотите приобрести емкость, которая будет соответствовать вашим потребностям и бюджету, вам нужно учесть некоторые моменты перед покупкой. Вот что вам следует сделать в первую очередь;

Руководство по покупке: что следует учитывать при выборе измерителя емкости

а) Характеристики

Чем лучше характеристики измерителя емкости, тем он лучше! От характеристик устройства зависит его производительность.Его переменный и постоянный ток, сопротивление, переменное и постоянное напряжение должны иметь высокие характеристики. Измеритель с более высоким напряжением, чем устройства, которые вы хотите проверить, отлично подойдет. Но убедитесь, что текущий диапазон не превышает допустимого для тестируемого устройства. Убедитесь, что измеритель емкости высокого класса показывает истинное среднеквадратичное значение.

b) Разрешение цифрового мультиметра

Разрешение цифрового мультиметра — это количество цифр, которое измеряет уровень сигнала устройства. Это измерение изменения выходного сигнала в результате любого колебания входного сигнала.Цифровые мультиметры требуют, чтобы вы больше времени наблюдали за крайним правым значением. У вас может не быть времени, что делает это недостатком.

c) Измерение частоты

Подумайте, хотите ли вы измерять частоту и в то же время контролировать ток и напряжение в заданном частотном диапазоне. Некоторые цифровые мультиметры могут справиться со всем сразу. Устройство должно поддерживать правильную частоту, если оно питается от переменного напряжения.

г. Измерение температуры

Емкость с функцией двойного перепада температур идеальна для покупки, если вы хотите ее контролировать.С помощью такого прибора можно одновременно измерять две температуры.

д) Точность

Избегайте измерителей емкости, которые показывают ошибки. Выбирайте те, которые показывают точные и стабильные результаты. Исследования могут помочь вам выбрать наиболее точный измеритель, который вы можете купить в любое время. Попросите отзывы пользователей или профессионалов.

f) Входное сопротивление

Высокий входной импеданс поможет вам получить точные измерения даже с помощью самой чувствительной электроники.

г) Энергетическая емкость

Учитывайте энергоемкость устройств, с которыми вы хотите работать.Кроме того, знайте, что оптимальный измеритель переходного напряжения может работать без повреждений.

Заключение

Измерители емкости необходимы для тестирования наших электронных устройств. Некоторые также имеют другие функции, такие как анализ, сопоставление и выбор. Как показано выше, лучший измеритель емкости — это тот, который удовлетворяет все ваши потребности и вписывается в ваш бюджет. Но перед покупкой нужно учесть некоторые факторы, описанные выше.

Ссылка на источник:

  1. https: // en.wikipedia.org/wiki/Capacitance_meter

Как проверить конденсатор без демонтажа [в цепи]

Эй! надеюсь, у вас все хорошо.

Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты. Часто эти компоненты перегорают и требуют замены.

Компоненты, которые имеют более высокую вероятность сгорания, — это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что в основном резисторы и конденсаторы находятся на передней панели любой платы.А иногда перенапряжение их выгорает.

Что касается резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате. Сгоревшая микросхема или резистор вскрыты, и вы можете найти их на плате за секунды.

Однако это не относится к конденсатору.

В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.

Но что, если тебе не повезло?

Настоящая проблема, с которой вы столкнетесь, — нормально выглядящий конденсатор может оказаться плохим.Таким образом, вам нужно снять весь конденсатор с платы, проверить каждый, найти плохого парня и перепаять всех без исключения на плате. Это не лучший способ, и никто не хочет этого делать.

Не волнуйтесь.

В этом посте мы определенно найдем способ проверить конденсатор, не снимая его с корпуса.

Надеюсь, вам понравится эта статья.

Проверить конденсатор, не снимая его

Давай посмотрим правде в глаза.

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.

Почему?

  • Причина в том, что когда конденсатор находится внутри печатной платы, есть много других компонентов, включенных последовательно или параллельно с ним.Таким образом, вы получаете эквивалентное значение, а не фактическое.
  • Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.

Несомненно, для измерения емкости используются мультиметр или емкостной измеритель. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне или внутри печатной платы.

Итак, как я могу проверить эту суку?

Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).

Таким образом, лучшим решением для проверки конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета. Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.

В оставшейся части статьи я подробно расскажу, что это за устройства, и как они проверяют внутрисхемные конденсаторы.

Измеритель СОЭ

Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.

Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.

У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.

Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.

Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший ли конденсатор или плохой.

Как проверить конденсатор с помощью измерителя ESR?

Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.

  • Сначала разрядите проверяемый конденсатор. Это настолько важно и важно, что если вы случайно забудете этот шаг, вы можете в конечном итоге разрушить свой измеритель СОЭ. Для получения дополнительной информации всегда разряжайте конденсатор перед измерением любого его параметра.
  • Разряд конденсатора может производиться закорачивая его ноги любыми доступными способами. Но не просто закорачивайте ножки вместе с проводом с низким сопротивлением, рекомендуется использовать материал с высоким сопротивлением.
  • Включите измеритель СОЭ и закоротите его провода, пока на экране не появится 0. Если на экране уже отображается 0 показаний, то закорачивать провода нет необходимости.
  • Подсоедините красный провод измерителя ESR к положительному, а черный — к отрицательному выводу тестируемого конденсатора.
  • Запишите показания измерителя СОЭ.
  • Сравните показание с таблицей на корпусе измерителя СОЭ. Если значение ESR находится в заданном диапазоне, конденсатор исправен и не требует изменений, если нет, то конденсатор плох и нуждается в замене.
  • Если тело ESR не дает никакой таблицы, используйте техническое описание конденсатора, чтобы прочитать его значение ESR.

В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение.Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор. Обычно ESR неисправного конденсатора увеличивается.

Кроме того, хороший конденсатор будет измерять почти как короткое замыкание, а все другие части, соединенные параллельно с ним, будут иметь минимальное влияние на конечное измерение. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.

Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в своих устройствах, вам понадобится приличный измеритель ESR.Хорошее СОЭ можно найти где угодно.

Просто найдите это.

Я рекомендую и люблю этот измеритель СОЭ (ссылка на Amazon). Прелесть этого счетчика в том, что он надежен и продается по очень приемлемой цене. Если вам нравится этот, купите его. Теперь, если вы не хотите платить высокую прибыль на Amazon при покупке счетчика с опцией зажимов (Amazon продает счетчик с двумя вариантами, один с зажимами и один без зажимов), вы можете напрямую купить тот же измеритель с двумя типами зажимов (один для SMD и один для компонентов со сквозным отверстием) по низкой цене и с бесплатной доставкой от Yaman Electronics (ESR Meter Link).Бесплатная доставка доступна только в этот священный месяц Рамадан для всех.

Просто дополнительный обмен для настоящих любителей электроники и любителей: если вы любитель или новичок и думаете о создании собственного недорогого измерителя ESR, альтернативного вышеуказанному, то вы должны попробовать этот тестер компонентов (ссылка на продукт). Вы знаете, это устройство помогает вам идентифицировать компоненты электроники и выдает значения за считанные секунды, включая конденсатор, а также измеряет его емкость и значения ESR.Было бы здорово заставить это устройство работать как измеритель ESR, припаяв зажимы к его плате. Это был бы классный проект для вас. Но эй! покупайте только если вы знаете, что делаете.

Интеллектуальный пинцет

Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет. Если вы решите использовать ESR, все будет в порядке, но, на мой взгляд, умный пинцет (ссылка на Amazon) — это весело и замечательный инструмент для вашей лаборатории.

Настоящая проблема умных пинцетов в том, что они дорогие. Когда я в последний раз проверял, его цена была около 300 долларов. Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.

Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.

Визуально неисправный конденсатор

Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.

Плохой электролитический конденсатор проглатывает верхнюю часть, вы видите такой в ​​цепи; просто замените его, не теряя времени на тестирование.

Значение емкости может быть в хорошем диапазоне, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.

Заключение

Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.

Единственное решение для проверки конденсаторов без демонтажа припайки — это измерение их эквивалентного последовательного сопротивления (ESR).Это значение измеряется измерителем СОЭ.

Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.

Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.

Ну вот и все. Теперь, если такой читатель, как я, сначала прочитает заключение. Вы это читаете. Пора перейти к началу.Но вы читатель, зашедший так далеко. Надеюсь, вам понравилось.

Спасибо и хорошо проводите время.

Другие полезные посты

Проверка конденсатора с помощью аналогового и цифрового мультиметра

Устройства накопления напряжения, такие как конденсаторы, используются в различных схемах, таких как компрессоры, нагреватели, электродвигатели вентилятора переменного тока и т. Д. Они доступны в двух типах, таких как электролитические и неэлектролитические. Электролитический тип используется с вакуумной трубкой, а также с источниками питания транзистора, тогда как неэлектролитический тип используется для управления скачками постоянного тока.Электролитический тип может быть поврежден из-за короткого замыкания из-за разрядки дополнительного тока. Неэлектролитические типы чаще всего выходят из строя из-за утечки накопленного заряда. Существуют разные методы проверки конденсатора, поэтому в этой статье обсуждается обзор конденсатора и способы его проверки.

Что такое конденсатор?

Определение: Конденсатор — это один из видов электрических компонентов, используемых для хранения энергии в форме электрического заряда. Они используются в различных электрических и электронных схемах для выполнения различных функций.Заряд конденсатора можно выполнить, подключив конденсатор к активной цепи. Как только он будет подключен, электрический заряд начнет протекать через конденсатор. Когда первичная обкладка конденсатора не удерживает электрический заряд, он возвращается в цепь через вторичную обкладку. Итак, этот процесс в конденсаторе известен как зарядка и разрядка.

Конденсатор

Как проверить конденсатор?

На рынке доступны различные типы электрических и электронных компонентов.Некоторые из них очень чувствительны к скачкам напряжения. Точно так же конденсатор также чувствителен к колебаниям напряжения, поэтому существует вероятность необратимого повреждения. Таким образом, чтобы преодолеть это, испытание конденсатора играет важную роль для проверки функциональности конденсатора.

Как измерить емкость?

Мультиметр используется для определения емкости через зарядный конденсатор с известным током для измерения результирующего напряжения, после чего можно рассчитать емкость. Здесь мы обсудили, как проверить конденсатор мультиметром.

Для этого возьмите цифровой мультиметр, чтобы убедиться, что питание схемы отключено. Например, в цепи переменного тока, если используется конденсатор, установите мультиметр для расчета напряжения переменного тока. Аналогичным образом, если в цепи постоянного тока используется конденсатор, установите цифровой мультиметр для расчета постоянного напряжения.

Проверьте конденсатор один раз, если он протекает, имеет трещины или повреждения, замените конденсатор. Установите шкалу на символ емкости, который известен как режим измерения емкости. Этот символ часто имеет отметку на циферблате с помощью дополнительной функции.Обычно для смены шкалы нажимают функциональную кнопку, чтобы включить измерение.

Для точного измерения конденсатор следует отсоединить от электрической цепи. Некоторые мультиметры поддерживают режим REL (относительный). Этот режим используется для отключения измерительных проводов от емкости всякий раз, когда измеряются значения низкой емкости. Когда мультиметр используется в относительном режиме для расчета емкости, измерительные провода должны быть разомкнуты и нажмите кнопку REL. Так что тест приводит к удалению остаточной емкости.

Прикрепите клеммы конденсатора к измерительным проводам на несколько секунд, чтобы мультиметр мог выбрать правильный диапазон. Изучите измерение, отображаемое на цифровом мультиметре. Если значение емкости находится в диапазоне измерения, то мультиметр покажет значение конденсатора.

Некоторые факторы, влияющие на емкость, включают следующее.

  • Срок службы конденсаторов меньше, и они часто вызывают неисправности.
  • Конденсаторы могут быть повреждены из-за короткого замыкания.
  • Когда конденсатор получает короткое замыкание, предохранитель или другие компоненты, используемые в цепи, могут быть повреждены.
  • Когда конденсатор открывается, компоненты в цепи не могут работать должным образом.
  • Значение емкости также может быть изменено из-за износа.

Методы тестирования конденсаторов

В большинстве случаев устранения неисправностей в электротехнике и электронике существует множество проблем, которые могут возникнуть при тестировании конденсатора. Здесь конденсатор можно проверить с помощью аналоговых и цифровых мультиметров. Так что этот конденсатор можно проверить, в хорошем ли он состоянии или поврежден.

Проверка конденсатора

Значение емкости можно проверить с помощью цифрового мультиметра, используя такую ​​функцию, как измерение емкости. Как правило, для проверки конденсатора доступны различные типы методов, такие как аналоговый, цифровой, вольтметр, мультиметр с двумя режимами, такими как режим емкости, режим омметра и традиционный метод искрения. Эти методы играют важную роль при тестировании конденсатора, чтобы узнать, исправен ли конденсатор, открыт, неисправен, замкнут или неисправен.

Проверка конденсатора с помощью аналогового мультиметра

Чтобы проверить конденсатор через AVO, например, ампер, напряжение, омметр, выполните следующие действия.

  • Убедитесь, что конденсатор полностью заряжен или разряжен.
  • Используйте ампер, напряжение, омметр.
  • Выбирайте аналоговый измеритель сопротивления и всегда выбирайте высокий диапазон сопротивления.
  • Подключите два провода счетчика к клеммам конденсатора.
  • Считывание и оценка по следующим результатам.
  • Короткий конденсатор покажет чрезвычайно меньшее сопротивление
  • Открытый конденсатор не покажет никакого отклонения на дисплее омметра
  • Хороший конденсатор покажет низкое сопротивление после того, как оно будет медленно увеличиваться в направлении бесконечности.Итак, конденсатор в отличном состоянии.

Проверка конденсатора с помощью цифрового мультиметра

Чтобы проверить конденсатор с помощью цифрового мультиметра, выполните следующие действия.

  • Убедитесь, что конденсатор заряжен / разряжен.
  • Найдите цифровой мультиметр на 1к.
  • Подключите выводы этого измерителя к клеммам конденсатора.
  • Этот счетчик будет отображать некоторые числа, запишите их.
  • После этого он вернется в Открытую Линию.Каждый раз он показывает один и тот же результат, поэтому мы можем сделать вывод, что конденсатор в хорошем состоянии.