Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Управление мощной нагрузкой постоянного тока. Часть 3.

Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).

У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
Тут вариантов три:

  • На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
  • применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Типичные примеры драйверов это, например, IR2117.

    Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.

  • Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.

Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.

Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.

При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.

Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).

А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.

Как работают транзисторы MOSFET | hardware

Мощные транзисторы MOSFET хорошо известны своей исключительной скоростью переключения при весьма малой мощности управления, которую нужно прикладывать к затвору. Основная причина в том, что затвор изолирован, поэтому требуется мощность только на перезаряд емкости затвор-исток, и в статическом режиме цепь затвора практически не потребляет тока. В этом отношении мощные MOSFET по своим характеристикам приближаются к «идеальному переключателю». Основные недостатки, которые не дают MOSFET стать «идеальным», это сопротивление открытого канала RDS(on), и значительная величина положительного температурного коэффициента (чем выше температура, тем выше сопротивление открытого канала). В этом апноуте обсуждаются эти и другие основные особенности высоковольтных N-канальных мощных MOSFET, и предоставляется полезная информация по выбору транзисторов и их применению (перевод статьи [1]).


Для того, чтобы было проще понять работу полевого N-канального транзистора MOSFET, его стоит сравнить с широко распространенным биполярным кремниевым транзистором структуры NPN. Электроды у биполярного транзистора называются база, коллектор, эмиттер, а у полевого транзистора затвор, сток, исток.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.


База выполняет те же функции, что и затвор, коллектор соответствует стоку, а эмиттер соответствует истоку.

Давайте рассмотрим простейшую схему включения транзистора NPN:

Когда входной ключ разомкнут, то через эмиттерный переход транзистора T1 ток не течет, и канал коллектор-эмиттер имеет высокое сопротивление. Говорят, что транзистор закрыт, через его канал коллектор-эмиттер ток практически не течет. Когда замыкается входной ключ, то от батарейки B1 через резистор R1 и эмиттерный переход транзистора течет открывающий ток. Когда транзистор открыт, то его сопротивление канала коллектор-эмиттер уменьшается, и почти все напряжение батареи B2 оказывается приложенным к нагрузке R3. Т. е. когда во входной цепи течет ток (через R1), то в выходной цепи тоже течет ток (через R3), но в выходной цепи ток и напряжение (т. е. действующая мощность) в несколько раз больше. Здесь как раз и проявляются усиливающие свойства транзистора — маленькая мощность на входе позволяет управлять большой мощностью на выходе.

А так будет в этой схеме работать транзистор MOSFET:

На первый взгляд все то же самое — когда на входе есть управляющая мощность, она также появляется и на выходе (обычно усиленная во много раз). В этом смысле биполярный транзистор и MOSFET-транзистор очень похожи. Но есть два самых важных различия:

• Биполярный транзистор управляется током, а полевой транзистор напряжением.

Примечание: отсюда, кстати и пошло название полевого транзистора: его канал управляется не током, а электрическим полем затвор-исток.

Это означает, что входное сопротивление биполярного транзистора мало, а входное сопротивление MOSFET-транзистора очень велико. Обратите внимание на входной ток биполярного транзистора — 0.3 мА, этот ток в основном определяется сопротивлением резистора R1. Причина проста: на входе у биполярного транзистора имеется эмиттерный переход, который по сути обыкновенный диод, смещенный в прямом направлении.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Если ток через этот диод есть, то транзистор открывается, если нет, то закрывается. Открытый диод имеет малое сопротивление, и максимальное падение напряжения на нем составляет около 0.7V. Поэтому практически все напряжение B1 (если быть точным, то 3.7 — 0.7 = 3V) оказывается приложенным к резистору R1. Этот резистор играет роль ограничителя входного тока биполярного транзистора.

У полевого транзистора MOSFET в этом отношении все по-другому. Входной ток определяется главным образом сопротивлением резистора R2, поэтому входной ток очень мал. Практически все входное напряжение оказывается приложенным к R2 и к переходу затвор — исток полевого транзистора. Причина проста: затвор и исток изолированы друг от друга слоем оксида кремния, по сути это конденсатор, поэтому ток через затвор практически не течет.

По этой причине на низких частотах, когда входная емкость не шунтирует источник сигнала, полевой транзистор имеет гораздо большее усиление по мощности в сравнении с биполярным транзистором. И действительно, в нашем примере входная мощность у биполярного транзистора составляет 0.3 мА * 3.7V = 1.11 мВт, а у полевого транзистора входная мощность составит всего лишь 0.00366 мА * 3.7V = 0.0135 мВт, т. е. в 82 раза меньше! Это соотношение могло бы быть еще больше не в пользу биполярного транзистора, если увеличить сопротивление резистора R2.

• Падение напряжения на выходном канале у полевого транзистора намного меньше, чем у биполярного.

Для данного примера падение напряжения коллектор-эмиттер биполярного транзистора составит примерно 0.3V, а у полевого 0.1V и даже меньше. Обычно выходное сопротивление у полевого транзистора намного меньше, чем у биполярного.

В исходном состоянии, когда на затворе относительно истока нулевое положительное напряжение, сопротивление канала определяется количеством неосновных носителей в полупроводнике, и очень велико. Когда к затвору прикладывается положительное напряжение относительно истока, то появляется проводящий ток канал сток-исток.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Поэтому MOSFET иногда называют полевым транзистором с индуцированным каналом.

[Структура мощного транзистора MOSFET]

На рис. 1 показан срез структуры N-канального транзистора MOSFET компании Advanced Power Technology (APT). (Здесь рассматриваются MOSFET только N-структуры, как самые популярные.) Положительное напряжение, приложенное от вывода истока (source) к выводу затвора (gate), заставляет электроны притянуться ближе к выводу затвора в области подложки. Если напряжение исток-затвор равно или больше определенного порогового напряжения, достаточного для накапливания нужного количества электронов для достижения инверсии слоя n-типа, то сформируется проводящий канал через подложку (говорят, что канал MOSFET расширен). Электроны могут перетекать в любом направлении через канал между стоком и истоком. Положительный (или прямой) ток стока втекает в сток, в то время как электроны перемещаются от истока к стоку. Прямой ток стока будет заблокирован, как только канал будет выключен, и предоставленное напряжение сток-исток будет прикладываться в обратном направлении к p-n переходу подложка-сток. В N-канальных MOSFET только электроны формируют проводимость, здесь нет никаких не основных носителей заряда. Скорость переключения канала ограничена только длительностью перезаряда паразитных емкостей между электродами MOSFET. Поэтому переключение может быть очень быстрым, приводя к низким потерям при переключении. Этот фактор делает мощные MOSFET такими эффективными для работы на высокой частоте переключения.

Рис. 1. Срез рабочей структуры транзистора MOSFET.

RDS(on). Основные составляющие, которые входят в сопротивление открытого канала RDS(on), включают сам канал, JFET (аккумулирующий слой), область дрейфа Rdrift, паразитные сопротивления (металлизация, соединительные провода, выводы корпуса). При напряжениях приблизительно выше 150V в сопротивлении открытого канала доминирует область дрейфа.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Эффект RDS(on) относительно невелик на высоковольтных транзисторах MOSFET. Если посмотреть на рис. 2, удвоение тока канала увеличивает RDS(on) только на 6%.

Рис. 2. Зависимость RDS(on) от тока через канал.

Температура, с другой стороны, сильно влияет на RDS(on). Как можно увидеть на рис. 3, сопротивление приблизительно удваивается при возрастании температуры от 25°C до 125°C. Температурный коэффициент RDS(on) определяется наклоном кривой графика рис. 3, и он всегда положителен для большинства поставщиков транзисторов MOSFET. Большой положительный температурный коэффициент RDS(on) определяется потерями на соединении I2R, которые увеличиваются с ростом температуры.

Рис. 3. Зависимость RDS(on) от температуры.

Положительный температурный коэффициент RDS(on) очень полезен, когда нужно параллельно включать транзисторы MOSFET, поскольку это обеспечивает их температурную стабильность и равномерное распределение рассеиваемой мощности между транзисторами. Этим MOSFET выгодно отличаются от традиционных биполярных транзисторов. Но это не гарантирует, что параллельно соединенные транзисторы будут равномерно распределять между собой общий ток. Это широко распространенное заблуждение [2]. То, что действительно делает MOSFET простыми для параллельного включения — это их относительно малый разброс по параметрам между отдельными экземплярами в пределах серии, в частности по параметру RDS(on), в комбинации с более безопасными свойствами канала в контексте перегрузки по току, когда благодаря положительному температурному коэффициенту RDS(on) сопротивление канала растет при повышении температуры.

Для любого заданного размера кристалла RDS(on) также увеличивается с увеличением допустимого напряжения V(BR)DSS, как это показано на рис. 4.

Рис.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 4. Зависимость нормализированного RDS(on) от V(BR)DSS.

Кривая нормализированного RDS(on) в зависимости от V(BR)DSS для Power MOS V и Power MOS 7 MOSFET показывает, что RDS(on) растет пропорционально квадрату V(BR)DSS. Эта нелинейная зависимость между RDS(on) и V(BR)DSS является побудительным стимулом для исследования технологий с целью уменьшить потери проводимости мощных транзисторов [3].

[Внутренние и паразитные элементы]

JFET. В структуре MOSFET Вы можете представить себе встроенный JFET, как это показано на рис. 1. JFET оказывает значительное влияние на RDS(on), и является частью нормального функционирования MOSFET.


Внутренний диод на подложке (Intrinsic body diode). Переход p-n между подложкой и стоком формирует внутренний диод, так называемый body diode (см. рис. 1), или паразитный диод. Обратный ток стока не может быть блокирован, потому что подложка замкнута на исток, предоставляя мощный путь для тока через body diode. Расширение канала транзистора (при положительном напряжении на затворе относительно истока) уменьшает потери на прохождение обратного тока стока, потому что электроны проходят через канал в дополнение к электронам и неосновным носителям, проходящим через  body diode.

Наличие внутреннего диода на подложке удобно в схемах, для которых требуется путь для обратного тока стока (часто называемого как ток свободного хода), таких как схемах мостов. Для таких схем предлагаются транзисторы FREDFET, имеющие улучшенные восстановительные характеристики (FREDFET это просто торговое имя компании Advanced Power Technology, используемое для выделения серий MOSFET с дополнительными шагами в производстве, направленными на ускорение восстановления intrinsic body diode). В FREDFET нет отдельного диода; это тот же MOSFET intrinsic body diode. Для управления временем жизни неосновных носителей во внутреннем диоде применяется либо облучение электронами (наиболее часто используемый вариант) или легирование платиной, что значительно уменьшает заряд обратно смещенного перехода и время восстановления.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Побочный эффект от обработки FREDFET — повышенный ток утечки, особенно на высоких температурах. Однако, если учесть, что MOSFET имеет очень малый начальный ток утечки, то добавленный через FREDFET ток утечки остается допустимым до температур перехода ниже 150°C. В зависимости от дозы облучения FREDFET может иметь RDS(on) больше, чем у соответствующего MOSFET. Прямое напряжение для паразитного диода для FREDFET также немного больше. Заряд затвора и скорость переключения у MOSFET и FREDFET идентичны. Поэтому термин MOSFET здесь будет использоваться всегда для обоих типов MOSFET и FREDFET, если специально не оговорено что-то другое.

Скорость восстановления для паразитного диода у MOSFET или даже у FREDFET намного хуже в сравнении со скоростью быстрого дискретного диода. В приложениях, где жесткие рабочие условия с температурой порядка 125°C, потери на включение из-за восстановления из обратного смещения примерно в 5 раз выше, чем у быстрых дискретных диодов. НА это есть 2 причины:

1. Рабочая область паразитного диода совпадает с рабочей областью MOSFET или FREDFET, и рабочая область у дискретного диода для той же функции намного меньше, поэтому у дискретного диода намного меньше заряд восстановления.

2. Паразитный диод MOSFET или даже FREDFET не оптимизирован под обратное восстановление, как это сделано для дискретного диода.

Как и любой стандартный кремниевый диод, у паразитного диода заряд восстановления и время зависит от температуры, di/dt (скорости изменения тока), и величины тока. Прямое напряжение паразитного диода, VSD, уменьшается с ростом температуры по коэффициенту примерно 2.5 mV/°C.

Паразитный биполярный транзистор. Разделенная на слои структура MOSFET также формирует паразитный биполярный транзистор (BJT) структуры NPN, и его включение на является частью нормального функционирования. Если BJT откроется и войдет в насыщение, то это может вызвать самоблокировку, при которой MOSFET не может быть выключен кроме как через внешний разрыв цепи тока стока.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Высокая мощность рассеивания (например, при возникновении сквозного тока в плече моста) при самоблокировке может вывести MOSFET из строя.


База паразитного BJT замкнута на исток, чтобы предотвратить самоблокировку, и потому что напряжение пробоя (breakdown voltage) было бы значительно уменьшено (для того же самого значения RDS(on)), если бы база была оставлена плавающей. Существует теоретическая возможность самоблокировки при очень большой скорости dv/dt в момент выключения. Однако для современных стандартных мощных транзисторов очень трудно создать схему, где будет достигнута такое высокое dv/dt.

Есть риск включения паразитного BJT, если внутренний диод проводит, и затем выключается с чрезмерно высоким изменением dv/dt. Мощная коммутация dv/dt вызывает высокую плотность неосновных носителей заряда (положительные носители, или дырки) в подложке, что может создать напряжение на подложке, достаточное для включения паразитного BJT. По этой причине в даташите указано ограничение пиковой коммутации (восстановление встроенного диода) dv/dt. Пиковая коммутация dv/dt для FREDFET выше в сравнении с MOSFET, потому что у FREDFET снижено время жизни неосновных носителей заряда.

[На что влияет температура]

Скорость переключения. Температура практически не влияет на скорость переключения и потери, потому что (паразитные) емкости мало зависят от температуры. Однако ток обратного восстановления в диоде увеличивается с температурой, так что температурные эффекты внешнего диода (это может быть дискретный диод, или внутренний диод в MOSFET или FREDFET) влияют на потери включения мощных схем.

Пороговое напряжение, или напряжение отсечки (Threshold voltage). Напряжение отсечки затвора, обозначаемое как VGS(th), является важным стандартным параметром. Оно говорит, насколько много миллиампер через сток будет течь при пороговом напряжении на затворе, когда транзистор в основном выключен, но находится на пороге включения.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. У напряжения отсечки есть отрицательный температурный коэффициент; это означает, что напряжение отсечки уменьшается с ростом температуры. Температурный коэффициент влияет на время задержки включения и выключения, и следовательно влияет на выбор «мертвого времени» в мостовых схемах.

Переходная характеристика (Transfer characteristic). На рис. 5 показана переходная характеристика MOSFET-транзистора APT50M75B2LL.

Рис. 5. Пример переходной характеристики MOSFET.

Переходная характеристика зависит как от температуры, так и от тока стока. На рис. 5 при токе ниже 100 A напряжение затвор-исток имеет отрицательный температурный коэффициент (при заданном токе стока уменьшается напряжение затвор-исток при повышении температуры). При токе выше 100 A температурный коэффициент становится положительным. Температурный коэффициент напряжения затвор-исток и ток стока в том месте, где коэффициент меняет знак, важен для проектирования работы схем в линейном режиме [4].

Напряжение пробоя (Breakdown voltage). Напряжение пробоя имеет положительный температурный коэффициент, этот будет обсуждаться в секции Walkthrough.

Устойчивость к перегрузке по току (Short circuit capability). Возможность противостояния коротким замыканиям не всегда встречается в даташите. Причина понятна — MOSFET стандартной мощности не подходят для устойчивой работы в режиме перегрузки по току в сравнению с IGBT или другими транзисторами, работающими с высокой плотностью тока. Само собой разумеется, что MOSFET и FREDFET (в некотором смысле) устойчивы к перегрузке по току.

[Обзор параметров даташита. Максимальные предельные значения]

Назначение даташитов, предоставляемых APT, состоит в предоставлении соответствующей информации, которая полезна и удобна для выбора подходящего устройства в конкретном приложении. Предоставляются графики, чтобы можно было экстраполировать от одного набора рабочих условий к другому. Следует отметить, что графики предоставляют типичную производительность, но не минимумы или максимумы.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Производительность также зависит кое в чем от схемы; различные тестовые схемы приведут к отличающимся результатам.

VDSS, напряжение сток-исток. Это оценка максимального напряжения сток-исток не вызывая лавинного пробоя (avalanche breakdown) с затвором, замкнутым на исток при температуре 25°C. В зависимости от температуры напряжение лавинного пробоя могло бы быть фактически меньше, чем параметр VDSS. См. описание V(BR)DSS в разделе «Статические электрические характеристики».

VGS, напряжение затвор-исток. Это предельное напряжение между выводами затвора и истока. Назначение этого параметра — предотвратить повреждение изолирующего оксидного слоя затвора (например, от статического электричества). Фактическая устойчивость оксидной пленки затвора намного выше, чем заявленный параметр VGS, но он варьируется в зависимости от производственных процессов, так что если укладываться в предел VGS, то это гарантирует надежную работу приложения.

ID, непрерывный ток стока. ID определяет максимальный уровень продолжающегося постоянного тока, когда транзистор выходит из строя при максимальной температуре перехода TJ(max), для случая 25°C, и иногда для более высокой температуры. Он основан на термосопротивлении между корпусом и переходом RӨJC, и для случая температуры TC может быть вычислен по формуле:

Это выражение просто говорит о том, какая максимальная мощность может рассеиваться

при максимальной генерируемой теплоте из-за потерь в соединении I2D X RDS(on)@TJ(max), где RDS(on)@TJ (max) сопротивление открытого канала при максимальной температуре перехода. Отсюда можно вывести ID:

Обратите внимание, что в ID не входят никакие потери на переключение, и случай с температурой 25°C на практике встречается редко.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. По этой причине в приложениях, где MOSFET часто переключается, фактический коммутируемый ток обычно меньше половины ID @ TC = 25°C; обычно между 1/4 до 1/3.

Зависимость ID от TC. Этот график просто отражает формулу 2 для диапазона температур. Здесь также не учтены потери на переключение. На рис. 6 приведен пример такого графика. Обратите внимание, что в некоторых случаях выводы корпуса транзистора ограничивают максимально допустимый продолжительный ток (переключаемый ток может быть больше): 100 A для корпусов TO-247 и TO-264, 75 A для TO-220 и 220 A для SOT-227.

Рис. 6. Максимальный ток стока в зависимости от температуры.

IDM, импульсный ток стока. Этот параметр показывает, какой импульс тока может выдержать устройство. Этот ток может значительно превышать максимально допустимый постоянный ток. Назначение этого параметра IDM состоит в том, чтобы удержать рабочий омический регион в пределе выходных характеристик. Посмотрите на рис. 7:

Рис. 7. Выходная характеристика MOSFET.

На этом графике есть максимальный ток стока для соответствующего напряжения затвор-исток, когда транзистор MOSFET открыт. Если рабочая точка при данном напряжении затвор-исток переходит выше омического региона «колена» рис. 7, то любое дальнейшее увеличение тока через сток приведет к значительному увеличению напряжения сток-исток (транзистор переходит из режима насыщения в линейный режим) и последующей потере проводимости. Если мощность рассеивания станет слишком велика, и это будет продолжаться довольно долго, то устройство может выйти из строя. Параметр IDM нужен для того, чтобы установить рабочую точку ниже «колена» для типичных применений транзистора в ключевом режиме.

Нужно ограничить плотность тока, чтобы предотвратить опасный нагрев, что иначе может привести к необратимому перегоранию MOSFET.

Чтобы избежать проблем с превышением тока через соединительные провода иногда применяют плавкие предохранители.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. В случае перегрузки по току выгорят именно они вместо транзистора.

Относительно температурных ограничений на IDM, рост температуры зависит от длительности импульса тока, интервала времени между импульсами, интенсивности рассеивания тепла, сопротивления открытого канала RDS(on), а также и от формы и амплитуды импульса тока. Если просто удержаться в пределах IDM, то это еще не означает, что температура перехода не будет превышена. См. обсуждение переходного теплового сопротивления в разделе «Температурные и механические характеристики», чтобы узнать способ оценки температуры перехода во время импульса тока.

PD, общая мощность рассеивания. Этот параметр определяет максимальную мощность, которую может рассеивать устройство, и он основан на максимально допустимой температуре перехода и термосопротивлении RӨJC для случая температуры 25°C.

Линейный коэффициент снижения мощности это просто инверсия RӨJC.

TJ, TSTG: рабочий и складской диапазон температур перехода. Этот параметр ограничивает допустимую температуру кристалла устройства во время работы и во время хранения. Установленные пределы гарантируют, что будут соблюдены гарантийные эксплуатационные сроки устройства. Работа в пределах этого диапазона может значительно увеличить срок службы.

EAS, лавинная энергия одиночного импульса. Если импульс напряжения (возникающий обычно из-за утечки и случайной индуктивности) не превышает напряжение пробоя, то не будет лавинного пробоя устройства, так что нет необходимости рассеивать энергию пробоя. Параметр максимальной лавинной энергии оценивает устройство в плане рассеивания мощности режима лавинного пробоя при переходных процессах с повышенным напряжением.

Все устройства, которые оценены по лавинной энергии, имеют параметр EAS. Лавинная энергия связана с параметром разблокированного индуктивного переключения (unclamped inductive switching, UIS).Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. EAS показывает, сколько лавинной энергии устройство может поглотить. Условия для схемы тестирования Вы можете найти в документации по ссылкам, и EAS вычисляется по формуле:

Здесь L величина индуктивности, из которой поступает импульс тока iD, случайно поступающий в на закрытый переход транзистора через сток при тесте. Индуцируемое напряжение превышает напряжение пробоя MOSFET, что вызывает лавинный пробой. Лавинный пробой позволяет импульсу тока от индуктивности течь через MOSFET, даже если он закрыт. Энергия, запасенная в индуктивности, аналогична энергии, сохраненной в утечке и/или случайной индуктивности, и она должна быть рассеяна в MOSFET.

Когда транзисторы MOSFET соединены параллельно, это совершенно не означает, что у них одинаковое напряжение пробоя. Обычно пробьется только один транзистор, и только на него поступит вся энергия тока лавинного пробоя.

EAR, повторная лавинная энергия. Этот параметр стал «промышленным стандартом», но он не имеет смысла без информации о частоте, других потерях и эффективности охлаждения. Рассеивание тепла (охлаждение) часто ограничивает значение повторной рассеиваемой энергии. Также трудно предсказать, сколько энергии находится в лавинном событии. То, о чем говорит EAR в действительности, означает, что устройство может выдерживать повторяющиеся лавинные пробои без какого-либо ограничения по частоте, если устройство не перегрето, что в принципе верно для любого устройства, которое может испытать лавинный пробой. Во время анализа проекта хорошей практикой является измерение температуры устройства или его радиатора во время работы — чтобы увидеть, что MOSFET не перегрет, особенно если возможны условия лавинного пробоя.

IAR, ток лавинного пробоя. Для некоторых устройств, которые могут выйти из строя во время лавинного пробоя, этот параметр дает лимит на максимальный ток пробоя. Так что это как бы «точный отпечаток» спецификаций лавинной энергии, показывающий реальные возможности устройства.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

[Статические электрические характеристики]

V(BR)DSS, Drain-source breakdown voltage, напряжение пробоя сток-исток. Параметр V(BR)DSS (иногда его называют BVDSS) определяет максимальное напряжение сток-исток, при котором через канал сток-исток будет течь ток не больше допустимого при заданной температуре и нулевом напряжении между затвором и истоком. Фактически этот параметр соответствует напряжению лавинного пробоя канала сток-исток закрытого транзистора.

Как показано на рис. 8, у параметра V(BR)DSS есть положительный температурный коэффициент. Таким образом, MOSFET может выдержать больше напряжение, если он нагрет, по сравнению с холодным состоянием. Фактически в охлажденном состоянии V(BR)DSS будет меньше, чем предельно допустимое напряжение сток-исток VDSS, указанное для температуры 25°C. В примере, показанном на рис. 8 при -50°C, напряжение V(BR)DSS будет составлять 90% от максимально допустимого VDSS, указанного для температуры 25°C.

Рис. 8. Нормализованная зависимость напряжения пробоя от температуры.

VGS(th), Gate threshold voltage, напряжение отсечки затвора. Это пороговое напряжение затвор-исток, при превышении которого транзистор начнет открываться. Т. е. при напряжении на затворе выше VGS(th) транзистор MOSFET начинает проводить ток через канал сток-исток. Для параметра VGS(th) также указываются условия проверки (ток стока, напряжение сток-исток и температура кристалла). Все транзисторы MOSFET допускают некоторый разброс порогового напряжения отсечки затвора от устройства к устройству, что вполне нормально. Таким образом, для VGS(th) указывается диапазон (минимум и максимум), в который должны попасть все устройства указанного типа. Как уже обсуждалось ранее в разделе «На что влияет температура», VGS(th) имеет отрицательный температурный коэффициент.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Это значит, что с увеличением нагрева MOSFET откроется при более низком напряжении затвор-исток.

RDS(on), ON resistance, сопротивление в открытом состоянии. Этот параметр определяет сопротивление открытого канала сток-исток при указанном токе (обычно половина от тока ID), напряжении затвор-исток (обычно 10V) и температуре 25°C, если не указано что-либо другое.

IDSS, Zero gate voltage drain current, ток утечки канала. Это ток, который может течь через закрытый канал сток-исток, когда напряжение на затвор-исток равно нулю. Поскольку ток утечки увеличивается с температурой, то IDSS указывается для комнатной температуры и для нагретого состояния. Потери мощности из-за тока утечки IDSS через канал сток-исток обычно незначительны.

IGSS, Gate-source leakage current, ток утечки затвора. Это ток, который может через затвор при указанном напряжении затвор-исток.

[Динамические характеристики]

Рис. 9 показывает месторасположения внутренних емкостей транзистора MOSFET. Величина этих емкостей определяется структурой MOSFET, используемыми материалами и приложенными напряжениями. Эти емкости не зависят от температуры, так что температура не влияет на скорость переключения MOSFET (за исключением незначительного эффекта, связанного с пороговым напряжением, которое зависит от температуры).

Рис. 9. Паразитные емкости транзистора MOSFET в структуре кристалла.

Емкости Cgs и Cgd меняются в зависимости от приложенного к ним напряжений, потому что они затрагивают обедненные слои в устройстве [8]. Однако на Cgs намного меньше меняется напряжение в сравнении с Cgd, так что емкость Cgs изменяется меньше. Изменение Cgd при изменении напряжения сток-затвор может быть больше, потому что напряжение может меняться в 100 раз или больше.

На рис. 10 показаны внутренние емкости MOSFET с точки зрения схемотехники.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Емкости затвор-сток и затвор-исток могут повлиять на схему управления, и вызвать нежелательные эффекты при быстрых переключениях в мостовых схемах.

Рис. 10. Паразитные емкости транзистора MOSFET в рабочей схеме.

Если кратко, то чем меньше Cgd, тем будет меньше влияние на схему управления при перепаде напряжения при включении транзистора. Также емкости Cgs и Cgd формируют емкостный делитель напряжения, и при большом соотношении Cgs к Cgd желательно защитить схему управления от паразитных помех от перепадов напряжения, возникающих при переключении. Это соотношение, умноженное на пороговое напряжение, определяет качество защиты схемы управления от переключений в выходной цепи, и силовые транзисторы MOSFET компании APT лидируют в индустрии по этому показателю.

Ciss, Input capacitance, входная емкость. Это емкости, измеренная между выводами затвора истока, когда по переменному напряжению сток замкнут на исток. Ciss состоит из параллельно соединенных емкостей Cgd (емкость затвор-сток) и Cgs (емкость затвор-исток):



Входная емкость должна быть заряжена до порогового напряжения перед тем, как транзистор начнет открываться, и разряжена до напряжения общего провода перед тем, как транзистор выключится. Таким образом, сопротивление управляющей схемы и емкость Ciss образуют интегрирующую цепь, которая напрямую влияет на задержки включения и выключения.

Coss — Output capacitance, выходная емкость. Это емкость, измеренная между стоком и истоком, когда затвор замкнут по переменному току на сток. Coss состоит из параллельно соединенных емкостей Cds (емкость сток-исток) и Cgd (емкость затвор-сток):



Для приложений с мягким переключением параметр Coss важен, потому что влияет на резонанс схемы.

Crss, Reverse transfer capacitance, обратная переходная емкость.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Это емкость, измеренная между стоком и затвором, когда исток соединен с землей. Обратная переходная емкость эквивалентна емкости затвор-сток.



Обратная переходная емкость часто упоминается как емкость Миллера. Это один из главных параметров, влияющих на время нарастания и спада напряжения во время переключения. Он также влияет на эффекты времени задержки выключения.

На рис. 11 показан пример зависимости типичных значений емкости от напряжения сток-исток.

Рис. 11. Зависимость емкости от напряжения.

Емкости уменьшаются при увеличении напряжения сток-исток, особенно это влияет на выходную и обратную переходную емкости.

Qgs, Qgd и Qg, Gate charge, заряд затвора. Значения заряда отражают заряд, сохраненный на внутренних емкостях, описанных ранее. Заряд затвора используется для разработки схемы управления, поскольку нужно учитывать изменения емкости при изменении напряжения на переходах переключения [9, 10].

На рис. 12 показано, что Qgs заряжается от начала координат до первого перегиба и далее заряжается до второго перегиба кривой (этот заряд известен как заряд Миллера), и Qg является зарядом от начала координат до точки, где VGS равно указанному управляющему напряжению затвора.

Рис. 12. VGS как функция заряда затвора.

Заряд затвора незначительно изменяется с током стока и напряжением сток-исток, но не зависит от температуры. Для этого параметра указываются условия тестирования. График заряда затвора, обычно приведенный в даташите, показывает кривые заряда затвора для фиксированного тока стока и различных напряжений сток-исток. Напряжение горизонтального участка VGS(pl), «плато», показанное на рис. 12, незначительно увеличивается с ростом тока (и соответственно уменьшается при снижении тока). Напряжение  также имеет прямо пропорциональную зависимость от порогового напряжения, так что изменения порогового напряжения коррелирует и изменением напряжения плато.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

[Резистивные параметры времени переключения (данные resistive switching)]

Эти параметры имеются в даташите по чисто историческим причинам.

td(on), Turn-on delay time, время задержки включения. Это время от момента, когда напряжение затвор-исток на 10% превысит напряжение отсечки затвора до момента времени, когда ток стока вырастет больше 10% от указанного выходного тока. Это показывает задержку начала поступления тока в нагрузку.

td(off), Turn-off delay Time, время задержки выключения. Это время от момента, когда напряжение затвор-исток упадет ниже 90% напряжения отсечки затвора до момента, когда ток стока упадет ниже 90% от указанного выходного тока. Это показывает задержку отключения тока в нагрузке.

tr, Rise time, время нарастания. Это время, за которое ток стока вырастет от 10% до 90% (значение тока указывается).

tf, Fall time, время спада. Это время, за которое ток стока спадет от 90% до 10% (значение тока указывается).

[Энергии переключения в индуктивностях]

Из-за того, что данные resistive switching трудно использовать для предсказания потерь на переключение в реальных рабочих условиях мощных преобразователей, компания Advanced Power Technology включает во многие даташиты транзисторов MOSFET и FREDFET данные энергии переключения в индуктивностях. Это предоставляет разработчику ключевых блоков питания удобный способ сравнения быстродействия транзисторов MOSFET или FREDFET с другими транзисторами, даже если они выполнены по другой технологии наподобие IGBT. Поэтому можно использовать для разработки самый подходящий по качеству мощный транзистор.

На рис. 13 показана схема тестирования переключения транзистора с учетом потерь в индуктивностях. Это импульсный тест, где применяется очень короткий по длительности цикл открытого состояния транзистора, так что энергия, запасенная в индуктивности, успеет рассеяться намного раньше поступления последующих импульсов, и саморазогрев можно не учитывать.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Температура транзистора и фиксирующего диода во время теста регулируется принудительно от внешнего термостата.

Рис. 13. Схема тестирования потерь на индуктивности.

В таблице динамических характеристик указываются следующие условия тестирования: VDD на рис. 13, ток теста, напряжение управления для затвора, сопротивление затвора и температура кристалла. Обратите внимание, то сопротивление затвора может включать сопротивление выхода микросхемы драйвера. Поскольку время переключения и энергии меняются с температурой (главным образом из-за диода в тестовой схеме), то данные предоставляются как для комнатной температуры, так и для разогретого состояния диода и тестируемого транзистора. Также предоставляется график зависимости между временем переключения и энергиями тока стока, и сопротивлением затвора. Определения времени задержки (включения) и времени нарастания и спада тока совпадают с аналогичными временами для данных resistive switching.

Фактические формы сигнала при переключениях используются в даташите для определения различных измеренных параметров. Рис. 14 показывает форму сигнала включения и определения, связанные с ним. Энергия переключения может быть масштабирована напрямую для изменений между напряжением в приложении и энергией при тестовом напряжении, указанном в даташите. Так что, к примеру, если тесты в даташите были проведены при напряжении 330V, и в приложении применяется напряжение 400, то для масштабирования нужно просто умножить энергию переключения из даташита на коэффициент 400/330.

Рис. 14. Формы сигналов включения и соответствующие определения.

Времена переключения и энергии очень зависят от других компонентов и случайных (паразитных) индуктивностей в схеме. Диод сильно влияет на энергию включения. Паразитная индуктивность, включенная последовательно с истоком, является частью пути возвратного управляющего тока, и поэтому значительно влияет на времена переключения и энергии.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Таким образом, время переключения и значения энергии, представленные в даташите, могут отличаться от того, что наблюдается в реальном приложении силового узла блока питания или ключа управления мотором.

Eon, Turn-on switching energy with diode, энергия включения с диодом. Это зафиксированная индуктивная энергия включения, которая включает индуктивный коммутирующий реверсивный ток восстановления диода в тестируемом транзисторе, и она учитывает потери при включении. Обратите внимание, что транзисторы FREDFET в схемах мостов получают жесткие условия переключения, где паразитный диод сложно коммутируется, и энергия включения примерно в 5 раз выше, чем если бы использовался дискретный диод с быстрым восстановлением, наподобие того как показано в схеме рис. 13.

Энергия включения является интегралом результата от тока стока и напряжения сток-исток на интервале от момента, когда ток стока вырастет больше 5% или 10% от тестового тока, то момента, когда напряжение спадет ниже 5% от тестового напряжения, как это показано на рис. 14.

Eoff, Turn-off switching energy, энергия выключения. Это параметр, характеризующий фиксацию потерь на индуктивности при выключении. На рис. 13 показана схема тестирования, и рис. 15 показывает форму сигнала и определения. Eoff является интегралом результата от тока стока и напряжением сток-исток на интервале времени от момента, когда напряжение затвор-исток упадет ниже 90% до момента, когда ток стока станет нулевым. Это соответствует измерениям энергии выключения по JEDEC-стандарту 24-1.

Рис. 15. Формы сигналов выключения и соответствующие определения.

[Температурные и механические характеристики]

RƟJC, Junction to case thermal resistance, тепловое сопротивления между подложкой и корпусом. Этот параметр характеризует эффективность передачи тепла от кристалла к внешнему корпусу транзистора. Выделяющееся тепло является результатом потерь мощности в самом транзисторе.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Обратите внимание, что тесты компании APT показывают температуры пластмассы, совпадающую с металлической частью корпуса дискретного компонента.

Максимальное значение RƟJC включает допуск, учитывающий погрешности изменения для обычного процесса производства. Из-за улучшений производственного процесса в индустрии есть тенденция сокращения разницы между максимальным значением RƟJC и его реальным значением.

ZƟJC, Junction to case transient thermal impedance, переходной термический импеданс между подложкой и корпусом. Этот параметр учитывает теплоемкость устройства, так что он может использоваться для оценки мгновенных температур из-за потерь мощности.

В условиях проведения теста на термоимпеданс на тестируемый транзистор прикладываются импульсы мощности различной длительности, и при этом ждут спада температуры между каждым импульсом. Это дает измерение переходного термосопротивления для «одиночного импульса». Из этого строится модель резистор-емкость (RC) по кривой изменения температуры. Рис. 16 показывает такую RC-модель переходного термосопротивления. Некоторые даташиты могут показывать конденсаторы и резисторы, включенные параллельно, но это будет ошибкой. Конденсаторы «заземлены», как это показано на рис 16, и значения компонента остаются такими же. Нет никакого физического значения для промежуточных узлов в модели. Разное количество пар резистор-конденсатор используется просто для того, чтобы создать хорошую подгонку к фактическим измененным данным термосопротивления.

Рис. 16. RC-модель переходного термосопротивления.

Чтобы симулировать возрастание температуры с помощью RC-модели, Вы прикладываете источник тока с магнитудой, соответствующей рассеиваемой мощности в MOSFET. Таким образом, Вы можете использовать систему PSPICE или другой программный симулятор электронных схем, чтобы применить ввод произвольных потерь мощности. Из этого Вы можете оценить повышение температуры участка подложка-корпус как напряжение на ступеньках лестницы, установив ZEXT в ноль, как это показано на рис.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 16. Вы можете расширить модель, чтобы включить теплоотвод, добавив дополнительные конденсаторы и/или резисторы.

Переходное термосопротивление в виде семейства кривых, опубликованное в даташите, это просто симуляция прямоугольного импульса, основанная на RC-модели термосопротивления. Рис. 17 показывает пример. Вы можете использовать семейство кривых для оценки пикового нарастания температуры для прямоугольных импульсов мощности, которые являются обычными в источниках питания. Однако из за того, что минимальная длительность импульса 10 мкс, график имеет значение только для частот ниже 100 кГц. На более высоких частотах Вы будете просто использовать термосопротивление RƟJC.

Рис. 17. Семейство кривых термосопротивления.

[Пример анализа даташита]

Предположим, что в реальном приложении ключевого блока питания Вы хотите применить жесткое переключение тока 15A на частоте 200 кГц при напряжении 400V, при средней скважности 35%. Напряжение управления затвора 15V, и сопротивление цепи управления затвора составляет 15Ω для включения и 5Ω для выключения. Также предположим, что Вы хотите позволить максимальную температуру перехода 112°C, с удержанием температуры корпуса транзистора 75°C. С транзистором, рассчитанным на 500V, есть запас только в 100V между напряжением в приложении и VDSS. С учетом скачков напряжения на шине питания 400V узкий запас по напряжению все равно достаточен, потому что у транзистора MOSFET есть эффект лавинного пробоя, который дает «безопасную цепь». Это конфигурация с продолжительной проводимостью, так что быстро восстанавливающийся диод FREDFET не нужен, MOSFET будет работать достаточно хорошо. Такой транзистор Вам следует выбрать?

Поскольку это приложение с довольно высокой частотой переключения, то лучшим выбором будет серия Power MOS 7. Посмотрим на транзистор APT50M75B2LL. Его расчетный ток 57A, что больше чем в 3 раза переключаемого тока — хорошая стартовая точка, учитывая высокую частоту и жесткое переключение.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Давайте оценим потери проводимости, потери переключения, и посмотрим, будет ли тепло рассеиваться достаточно быстро. Общая мощность, которую можно рассеять:

При 112°C сопротивление RDS(on) примерно в 1.8 раз больше, чем при комнатной температуре (см. рис. 3). Так что потери на проводимость составят:

Pconduction = (1.8*0.075Ω * 15A) * 15A = 30.4 Вт

Для оценки потерь на включение мы можем посмотреть на график зависимости потерь переключения от тока при температуре 125°C, показанный на рис. 18. Даже при том, что наше приложение требует максимальную температуру перехода 112°C, этот график будет достаточно точен, потому что энергия переключения MOSFET не чувствительна к температуре, за исключением изменений температуры, связанных с диодом в схеме. Поэтому не будет больших изменений при переходе от 112°C к 125°C. В любом случае, наша оценка будет консервативной.

Рис. 18. Индуктивные потери переключения.

По рис. 18 на токе 15A значение Eon будет около 300 μJ, и Eoff около 100 μJ. Значения были измерены при 330V, а в нашем приложении на шине питания 400V. Так что мы можем просто сделать масштабирование энергий переключения по напряжению:

Данные на рис. 18 были также измерены при сопротивлении затвора 5Ω, и мы будем использовать 15Ω при включении. Поэтому мы можем использовать график зависимости энергии переключения от данных сопротивления затвора, показанный на рис. 19, чтобы снова сделать масштабирование энергии.

Рис. 19. Зависимость энергии переключения от сопротивления затвора.

Даже при том, что тестовый ток на рис. 19 больше, чем в нашем приложении, разумно учесть соотношение в изменении энергии переключения между рис. 19 и нашим случаем. От 5Ω до 15Ω значение Eon поменяется с коэффициентом около 1.2 (1500μJ / 1250μJ, см. рис. 19). Применим это с данным, скорректированным по напряжению, которые мы видим на рис.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 18, и получим Eon = 1.2*364μJ = 437μJ.

Потери на переключение составят:

Pswitch = fswitch — ( Eon + Eoff) = 200kHz — (437μJ +121μJ) = 112 Вт

Pconduction + Pswitch = 142.4 Вт, что дает возможность сохранить температуру перехода ниже 112°C в случае корпуса, охлажденного до 75°C. Так что APT50M70B2LL будет удовлетворять требованиям этого примера применения. Такая же техника может использоваться для менее мощных транзисторов MOSFET. На практике потери часто больше всего бывают на переключении. Чтобы поместить транзистор на радиатор и поддерживать температуру корпуса 75°C вероятно потребуется керамическая прокладка (для электрической изоляции) между корпусом и теплоемким радиатором. Преимущество MOSFET состоит в том, что могут применяться демпферы и/или техники резонанса для уменьшения потерь на переключение, причем с транзисторами MOSFET не нужно беспокоиться о влиянии на переключение эффектов зависимости от напряжения или температуры.

[UPD160207. Figure-of-merit]

Для оценки транзисторов FET применяют так называемый показатель качества, Figure of merit (FOM) [11]. Он учитывает одновременно потери на включенном транзисторе и потери на переключение. Обычно FOM вычисляется как произведение сопротивления канала сток-исток открытого транзистора R(DS)ON на заряд затвора QG. QG это заряд, который надо поместить на затвор транзистора MOSFET, чтобы он полностью открылся. С точки зрения рационального дизайна трудно одновременно снизить оба параметра, так что они хороши для оценки качества разработки ключа на полевом транзисторе.

Конечно, сравнение имеет смысл делать только в неком стандартном наборе условий. Это означает, что не только напряжение между затвором и истоком VGS поставляет заряд, также и напряжение сток-исток VDS влияет на сопротивление R(DS). (Это означает, что не просто канал полностью открыт, а то, что сопротивление R(DS) изменяется вверх и вниз.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. ) Усложненный анализ учитывает, что R(DS)ON немного меняется с током стока, так что при сравнении переключающихся транзисторов рабочий ток стока ID также должен быть определен.

Иногда Вы увидите незначительно отличающийся показатель качества FOM: FOMSW, который будет произведением от which R(DS)ON и Q. Он характеризует заряд переключения, который немного меньше QG.

[Ссылки]

1. Power MOSFET tutorial site:eetimes.com.
2. R. Severns, E. Oxner; «Parallel Operation of Power MOSFETs», technical article TA 84-5, Siliconix Inc. 
3. J. Dodge; «Latest Technology PT IGBTs vs. Power MOSFETs», application note, Advanced Power Technology.
4. R. Frey, D. Grafham — APT, T. Mackewicz — TDIDynaload; «New 500V Linear MOSFETs for a 120 kW Active Load», application note APT0002, Advanced Power Technology.
5. Реле и транзисторы: как они работают в качестве электронных переключателей.
6. JFET site:wikipedia.org.
7. Bipolar junction transistor site:wikipedia.org.
8. N. Mohan, T. Undeland, W. Robbins; «Power Electronics » Converters Applications, and Design», text book published by Wiley.
9. K. Dierberger, «Gate Drive Design for Large Die MOSFETs», application note APT9302, Advanced Power Technology.
10. R. McArthur, «Making Use of Gate Charge Information in MOSFET and IGBT Datasheets», application note APT0103, Advanced Power Technology.
11. Оценка качества транзисторов MOSFET.

Шпаргалка в картинках по использованию MOSFET’ов

Не знаю, как вы, а я лично постоянно забываю, где у полевых МОП-транзисторов (a.k.a MOSFET) находится сток и исток, а также как их использовать в зависимости от того, имеет ли данный МОП-транзистор N-канал или P-канал. Поэтому я решил сделать себе небольшую шпаргалку, ну и заодно поделиться ею с вами. Я также подготовил упрощенную PDF-версию этого поста, которую можно распечатать на половине листа A4 и повесить на стену.

Итак, у МОП-транзисторов три ноги, называемые затвором (gate), истоком (source) и стоком (drain):

Такое расположение верно для большинства полевых МОП-транзисторов в корпуске TO-220, в частности IRF3205 и IRF4905.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. При использовании незнакомого полевика, естественно, следует свериться с его даташитом.

Типичное использование:

Транзистор с N-каналом подключается, что называется, в нижнем плече (low-side), а с P-каналом — в верхнем плече (high-side). По такой схеме полевые транзисторы используются для нагрева паяльника, управления двигателями, и так далее.

Fun fact! На самом деле, полевые транзисторы разделяют еще на две категории: enhancement mode и depletion mode. Последние встречаются существенно реже и обычно являются N-канальными. Поэтому в данном посте речь идет об enhancement mode MOSFET’ах. Для depletion mode справедливо все тоже самое, только на картинке нужно поменять ON и OFF местами. При работе с незнакомым полевым транзистором, стоит проверить, к какому типу он относится.

Также МОП-транзисторы могут быть использованы для защиты от переполюсовки:

В приведенной схеме падение напряжения практически нулевое, чего нельзя достичь при помощи обычных блокирующих диодов. Это может быть особенно важно в проектах, питающихся от аккумулятора. Заметьте, что сток и исток располагаются с точностью до наоборот по сравнению с тем, как их хочется расположить, исходя из предыдущей схемы.

Стоит также отметить еще одно интересное свойство MOSFET’ов. Допустим, вам нужно управлять большим током, чем тот, на который рассчитан имеющийся у вас MOSFET. В этом случае ничто не мешает взять несколько штук и соединить их параллельно. Тогда ток будет автоматически распределен между ними поровну.

Дополнительные материалы:

Такая вот получилась шпаргалка. Если вам есть, что к ней добавить, не стесняйтесь оставлять комментарии.

Дополнение: Еще вас могут заинтересовать схемы переключения RX/TX на полевых транзисторах и усилителя 5 Вт на основе IRF510.

Метки: Электроника.

Полевой транзистор МОП (MOSFET) | Принцип работы и параметры

Что такое полевой транзистор MOS, MOSFET, МОП транзистор?

Как часто вы слышали название полевой транзистор МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Это все слова синонимы и относятся к одному и тому же радиоэлементу: полевому МОП-транзистору.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор. Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором.

Откуда пошло название “МОП”

Если “разрезать” МОП-транзистор, то можно увидеть вот такую картину.

С точки зрения еды на вашем столе, МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий слой колбасы, слой металла – тонкая пластинку сыра. В результате у нас получается вот такой бутерброд.

А как  будет строение транзистора сверху-вниз? Сыр – металлическая пластинка, колбаса – диэлектрик, хлеб – полупроводник. Следовательно, получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором. А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места).

Далее по тексту МОП-транзистор условимся называть просто полевой транзистор. Так будет проще.

Строение полевого транзистора

Давайте еще раз рассмотрим структуру полевого транзистора.

Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому, их концентрация намного больше, чем электронов. Но электроны также есть и в P-полупроводнике. Как вы помните, электроны в P-полупроводнике – это неосновные носители и их концентрация очень мала, по сравнению с дырками.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. “Кирпич” P-полупроводника носит название Подложки. От подложки выходит вывод с таким же названием: подложка.

[quads id=1]

Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От  полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод. Называется этот вывод Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.

Мы видим, что полевой транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор и Подложка), а реальный транзистор имеет только 3 вывода.

В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:

Поэтому, следует соблюдать цоколевку при подключении МОП-транзистора в схему.

Виды полевых транзисторов

В семействе МОП полевых транзисторов в основном выделяют 4 вида:

1) N-канальный с индуцированным каналом

2) P-канальный с индуцированным каналом

3) N-канальный со встроенным каналом

4) P-канальный со встроенным каналом

Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом – сплошной.

В современном мире полевой транзистор со встроенным каналом используется все реже и реже, поэтому, в наших статьям мы их не будем рассматривать. Будем изучать только N и P – канальные полевые транзисторы с индуцированным каналом.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Принцип работы полевого транзистора

Принцип работы почти такой же, как и в полевом транзисторе с управляющим PN-переходом (JFET-транзисторе). Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движение электронов через Исток-Сток, нам потребуется источник питания Bat:

Если рассмотреть наш транзистор с точки зрения PN-переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-Исток

П-Подложка

С-Сток

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме

никакого движения электрического тока пока что не намечается.

Индуцирование канала в МОП-транзисторе

Если подать некоторое напряжение на Затвор, то в Подложке начнутся волшебные превращения. В ней будет индуцироваться канал. Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через магнитное или электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.

Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в  морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:

На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить, и создали гениальный радиоэлемент.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле.

Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов, так как в данный момент подложка P-типа. А раз и на Затворе положительный потенциал, а дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные  – притягиваются.

Картина будет выглядеть следующим образом.

Дырки обращаются в бегство подальше от Затвора, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому, электронам ничего другого не остается, как просто создать “вавилонское столпотворение” около слоя диэлектрика, что мы и видим на рисунке ниже.

Но смотрите, что произошло !? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.

Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А такой транзистор уже будет называться N-канальным МОП-транзистором. Вы наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно, этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.

Значит, если сейчас подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину.

Как вы видите, цепь стает замкнутой, и в цепи может спокойно течь электрический ток.

Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал, следовательно, тем меньше сопротивление канала!  А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор! Подавая бОльшее напряжение на Затвор с помощью источника питания Bat2, мы увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Ну гениальнее некуда!

Работа P-канального полевого транзистора

Выше мы разобрали N-канальный транзистор с индуцированным каналом. Также есть еще и P-канальный транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора. Честно говоря, P-канальные полевые транзисторы используются реже, чем N-канальные.

Принцип работы показан на рисунке ниже.

Режимы работы полевого транзистора

Работа полевого транзистора в режиме отсечки

Давайте познакомимся с нашим героем. У нас в гостях N-канальный полевой транзистор с индуцированным каналом. Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.

Как мы уже с вами разобрали, Затвор служит для управлением ширины канала между Стоком и Истоком. Для того, чтобы показать принцип работы, мы с вами соберем простейшую схему, которая будет управлять интенсивностью свечения лампы накаливания. Так как в данный момент нет никакого напряжения на Затворе полевого транзистора, следовательно, он будет находится в закрытом состоянии. То есть электрический ток через лампу накаливания течь не будет.

По идее, для того, чтобы управлять свечением лампы, нам достаточно менять напряжение на Затворе относительно Истока. Так как наш полевой транзистор является N-канальным, следовательно, на Затвор мы будем подавать положительное напряжение. Окончательная схема примет вот такой вид.

Вопрос в другом. Какое напряжение надо подать на Затвор, чтобы в цепи Сток-Исток побежал минимальный электрический ток?

Мой блок питания Bat2 выглядит следующим образом.

С помощью этого блока питания мы будем регулировать напряжение. Так как он стрелочный, более правильным будет измерение напряжения с помощью мультиметра.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Собираем все как по схеме и подаем на Затвор напряжение номиналом в 1 Вольт.

Лампочка не горит. На другом блоке питания (Bat1) есть встроенный амперметр, который показывает, что в цепи лампы накаливания электрический ток не течет, следовательно, транзистор не открылся. Ну ладно, будем добавлять напряжение.

И только уже при 3,5 Вольт амперметр на Bat1 показал, что в цепи лампы накаливания появился ток, хотя сама лампа при этом не горела.

Такого слабого тока ей просто недостаточно, чтобы накалить вольфрамовую нить. Режим, при котором в цепи Сток-Исток не протекает электрический ток, называется режимом отсечки.

Активный режим работы полевого транзистора

В нашем случае при напряжении около 3,5 Вольт наш транзистор начинает немного приоткрываться. Это значение у различных видов полевых транзисторов разное и колеблется в диапазоне от 0,5 и до 5 Вольт. В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз.  –  пороговое напряжение Затвора. Указывается как VGS(th), а в некоторых даташитах как VGS(to) .

Как вы видите в таблице, на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions). В условиях прописано, что открытие транзистора считается при токе в 250 мкА и при условии, что напряжение на Стоке-Истоке будет такое же как и напряжение на Затворе-Стоке.

С этого момента мы можем плавно регулировать ширину канала нашего полевого транзистора, увеличивая напряжение на Затворе. Если чуть-чуть добавить напряжение, то мы можем увидеть, что нить лампы накаливания начинает накаляться. Меняя напряжение туда-сюда, мы можем добиваться нужного нам свечения лампочки накаливания. Такой режим работы полевого транзистора называется активным режимом.

В этом режиме полевой транзистор может менять сопротивление индуцируемого канала в зависимости от напряжения на Затворе. Для того, чтобы понять, как усиливает полевой транзистор, вам надо прочитать статью про принцип работы биполярного транзистора, где все это описано, иначе ничего не поймете.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Читать по этой ссылке.

Активный режим работы транзистора чреват тем, что в этом режиме транзистор может очень сильно греться. Поэтому, всегда следует позаботиться об охлаждающем радиаторе, который бы рассеивал тепло от транзистора в окружающее пространство. Почему же греется транзистор? В чем дело? Да все оказывается до боли просто. Сопротивление Сток-Исток зависит от того, какое напряжение будет на Затворе. То есть схематически это можно показать вот так.

Если напряжения на Затворе нет или оно меньше, чем напряжение открытия транзистора, то сопротивление в этом случае будет бесконечно большое. Лампочка – это нагрузка, которая обладает каким-либо сопротивлением. Не спорю, что сопротивление нити горящей лампочки будет совсем другое, чем холодной, но пока пусть будет так, что лампочка – это какое-то постоянное сопротивление. Перерисуем нашу схему вот так.

Получился типичный делитель напряжения. Как я уже говорил, если нет напряжения на Затворе, то сопротивление Сток-Истока будет бесконечно большим.  Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке помноженной на силу тока через Сток-Истока: P=Ic Uси . Если выразить эту формулу через сопротивление, то получаем

P= I2R 

где R – это сопротивление канала Сток-Исток, Ом

I– сила тока, проходящая через канал (ток Стока) , А

А что такое мощность, рассеиваемая на каком-либо радиоэлементе? Это и есть тепло.

Теперь представьте, что мы приоткрыли транзистор наполовину. Пусть в нашей цепи ток через лампу будет 1 Ампер, а сопротивление перехода Сток-Исток будет равно 10 Ом. Согласно формуле P= I2R  получим, что рассеиваемая мощность на транзисторе в этот момент будет 10 Ватт! Да это маленький, черт его возьми, нагреватель!

Режим насыщения полевого транзистора

Для того, чтобы полностью открыть полевой транзистор, нам достаточно подавать напряжение до тех пор, пока лампа не будет гореть во весь накал.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. В моем случае это напряжение более чем 4,2 Вольта.

В режиме насыщение сопротивление канала Сток-Исток минимально и почти не оказывает сопротивление электрическому току. Лампа ест свои честные 20,4 Ватта (12х1,7=20,4).

На самой лампе мы видим ее мощность 21 Ватт. Спишем небольшую погрешность на наши приборы.

Самое интересное то, что транзистор в этом случае остается холодным и ни капли не греется, хотя через него проходит 1,7 Ампер! Для того, чтобы понять этот феномен, нам опять надо рассмотреть формулу P= I2R . Если сопротивление Стока-Истока составляет какие-то сотые доли Ома в режиме насыщения, то с чего будет греться транзистор?

Поэтому, самые щадящие режимы для полевого МОП-транзистора – это когда канал полностью открыт или когда канал полностью закрыт. При закрытом транзисторе сопротивление канала будет бесконечно большое, а ток через это сопротивление будет бесконечно мал, так как в этой цепи будет работать закон Ома. Подставляя эти значение в формулу P= I2R, мы увидим, что мощность рассеивания на таком транзисторе будет равна практически нулю. В режиме насыщения у нас сопротивление будет достигать сотые доли Ома, а сила тока будет зависеть от нагрузку в цепи. Следовательно, в этом режиме транзистор также будет рассеивать какие-то сотые доли Ватта.

Ключевой режим работы полевого транзистора

В этом режиме полевой транзистор работает только в режиме отсечки и насыщения.

Давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1.

Для наглядности вместо переключателя я использовал проводок от макетной платы. В данном случае лампочка не горит. А с чего ей гореть-то? На Затворе то у нас полный ноль, поэтому, канал закрыт.

Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Даже не надо ни о чем заморачиваться! Просто подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Для нашего транзистора это +-20 Вольт. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет ну очень маленькая (микроамперы).

Как вы видите, лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал такой же, как и на Истоке, то есть ноль, поэтому весь ток побежал от плюса питания к Стоку, “захватив” по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой  рабочий стол.

Но наблюдается также и интересный феномен, в отличие от ключа на биполярном транзисторе. Даже если откинуть проводок от Затвора, все равно лампочка продолжает гореть как ни в чем не бывало!

Почему так происходит? Здесь надо вспомнить внутреннее строение самого полевого транзистора. Вот эта часть вам ничего не напоминает?

Так это же конденсатор! А раз мы его зарядили, то с чего он будет разряжаться? Разрядиться-то ему некуда, поэтому он и держит заряд электронов в канале, пока мы не разрядим вывод Затвора. Для того, чтобы убрать потенциал с Затвора и “заткнуть” канал, нам опять же надо уравнять его с нулем. Сделать это достаточно просто, замкнув Затвор на Исток. Лампочка сразу же потухнет.

Как вы видели в опыте выше, если мы отключаем напряжение на Затворе, то обязательно должны притянуть Затвор к минусу, иначе канал так и останется открытым. Поэтому обязательное условие в схемах – Затвор должен всегда чем-то управляться и с чем-то соединяться. Ему нельзя висеть в воздухе.

А почему бы Затвор автоматически не притягивать к нулю при отключении подачи напряжения на Затвор? Поэтому, эту схему можно доработать и сделать самый простейший ключ на МОП-транзисторе:

При включении выключателя S цепь стает замкнутой и лампочка загорается

Как только я убираю красный проводок от Затвора (разомкну выключатель),  лампочка сразу тухнет:

Красота! То есть как только я убрал напряжение от Затвора, Затвор притянуло к минусу через резистор и на нем стал нулевой потенциал.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. А раз на Затворе ноль, то и канал Сток-Исток закрыт. Если я снова подам напряжение на Затвор, то у нас на мегаомном резисторе упадет напряжение питания, которое будет все оседать на Затворе и транзистор снова откроется. На бОльшем сопротивлении падает бОльшее напряжение ;-). Не забываем золотое правило делителя напряжения. Резистор в основном берут от 100 КилоОм и до 1 МегаОма (можно и больше). Так как МОП-транзисторы с индуцированным каналом в основном используются в цифровой и импульсной технике, из них получаются отличные транзисторные ключи, в отличие от ключа на биполярном транзисторе.

Характеристики полевого МОП транзистора

Для того, чтобы узнать характеристики транзистора, нам надо открыть на него даташит и рассмотреть небольшую табличку на первой странице даташита. Будем рассматривать транзистор, который мы использовали в своих опытах: IRFZ44N.

Напряжение VGS   – это напряжение между Затвором и Истоком. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать на Затвор это +-20 Вольт. Более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, и транзистор придет в негодное состояние.

Максимальная сила тока ID , которая может течь через канал Сток-Исток.

Как мы видим, транзистор в легкую может протащить через себя 49 Ампер!!!

Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуре кристалла 100 градусов, что чаще всего и происходит на практике.

RDS(on) – сопротивление полностью открытого канала Стока-Истока. В режиме насыщения, сопротивление канала транзистора достигает ну очень малого значения. Как вы видите, у нашего подопечного сопротивление канала достигает 17,5 мОм (при условии, что напряжение на Затворе = 10 Вольт, а ток Стока  = 25 Ампер).

Максимальная рассеиваемая мощность P – это мощность, которую транзистор может рассеять на себе, превращая эту мощность в тепло.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. В нашем случае это 94 Ватта. Но здесь также должны быть соблюдены различные условия – это температура окружающей среды, а также есть ли у транзистора радиатор.

Также различные зависимости одних параметров от других можно увидеть в даташите на последних страницах.

Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:

Также есть интересная зависимость сопротивления канала  полностью открытого транзистора от температуры кристалла:

Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.

Как проверить полевой транзистор

Для того, чтобы проверить полевой транзистор, мы должны определить, где какие у него выводы. У нас подопытным кроликом будет тот же самый транзистор: IRFZ44N.

Для этого вбиваем в любой поисковик название нашего транзистора и рядом прописываем слово “даташит”. Чаще всего на первой странице даташита мы можем увидеть цоколевку транзистора.

Хотя, интернет переполнен уже готовыми распиновками и иногда все-таки бывает проще набрать”распиновка (цоколевка) *название транзистора* “. Итак, я вбил ” IRFZ44N цоколевка”  в Яндекс и нажал на вкладку “картинки”.  Яндекс мне выдал  уйму картинок с распиновкой этого транзистора:

Ну а дальше дело за малым.
Устройство и принцип работы в видео:

Проверка полевого транзистора с помощью мультиметра

Теперь, зная цоколевку и принцип работы транзистора, мы можем проверить его на работоспособность. Первым делом мы без проблем можем проверить эквивалентный диод VD2 между Стоком и Истоком.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. В схемотехническом обозначении его тоже часто указывают.

Как проверить диод мультиметром, я писал еще в этой статье.

Но не спешите брать мультиметр в руки и прозванивать диод! Ведь первым делом надо снять с себя статическое напряжение. Это можно сделать, если задеть метализированный слой водонагревательных труб, либо коснуться заземляющего провода. При работе с радиоэлементами, чувствительными к статическому напряжению, желательно использовать антистатический браслет, один конец которого закрепляется к заземляющему проводнику, например, к батарее отопления, а другой конец в виде ремешка надевается на запястье.

Далее замыкаем все выводы транзистора  каким-нибудь металлическим предметом. В моем случае это металлический пинцет. Для чего мы это делаем? А вдруг кто-то зарядил Затвор до нас или он уже где-то успел “хапнуть” потенциал на Затворе? Поэтому, чтобы все было честно, мы уравняем потенциал на Затворе до нуля с помощью этой нехитрой манипуляции.

Ну а теперь со спокойной совестью можно проверить диод, который образуется в полевом транзисторе между Стоком и Истоком. Так как у нас транзистор N-канальный, следовательно, его схемотехническое обозначение будет выглядеть вот так:

Беремся положительным (красным) щупом мультиметра за Исток, так-как там находится анод диода, а отрицательным (черным)  – за Сток
(там у нас катод диода). На мультиметре должно высветиться падение напряжения на диоде 0,5-0,7 Вольт. В моем случае, как видите, 0,56 Вольт.

Далее меняем щупы местами. Мультиметр покажет единичку, что нам говорит о том, что диод в полевом транзисторе жив и здоров.

Проверяем сопротивление канала. Мы с вами уже знаем, что в N-канальном транзисторе ток у нас будет бежать от Стока к Истоку, следовательно, встаем красным положительным щупом на Сток, а отрицательным –  на Исток, и меряем сопротивление. Оно должно быть ну о-о-о-очень большое. В моем случае даже на Мегаомах показывает единичку, что говорит о том, что сопротивление даже больше, чем 200 Мегаом.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Это очень хорошо.

Так как у нас транзистор N-канальный, следовательно, чтобы его приоткрыть, нам достаточно будет подать напряжение на Затвор, относительно Истока. Чаще всего в режиме прозвонки диодов на щупах мультиметра бывает напряжение в 3-4 Вольта. Все зависит от марки мультиметра. Этого напряжения будет вполне достаточно, чтобы подать его на Затвор и приоткрыть транзистор.

Так и сделаем. Ставим черный щуп на Исток, а красный на Затвор на доли секунды. На показания мультиметра не обращаем внимания, так как мы сейчас используем его в качестве источника питания, чтобы подать потенциал на Затвор. Этим простым действием мы приоткрыли наш транзистор.

Раз мы приоткрыли транзистор, значит, сопротивление Сток-Исток должно уменьшится. Проверяем, так ли это? Ставим мультиметр в режим измерения сопротивления и смотрим, уменьшилось ли сопротивление между Стоком-Истоком? Как видите, мультиметр показал значение в 2,45 КОм.

Это говорит о том, что наш полевой транзистор полностью работоспособен.

Конечно, бывает и такое, что малого напряжения на мультиметре не хватает, чтобы приоткрыть транзистор. Здесь можно прибегнуть к источникам питания, которые выдают более-менее нормальное напряжение, например, блок питания или батарейка Крона в 9 Вольт. Так как рядом не оказалось Кроны, то мы просто выставим напряжение в 10 Вольт. Напряжение на Затвор именно этого транзистора не должно превышать 20 Вольт, иначе произойдет пробой диэлектрика, и транзистор выйдет из строя.

Итак, выставляем 10 Вольт.

Подаем это напряжение на Затвор транзистора на доли секунды.

Теперь по идее сопротивление между Стоком и Истоком должно равняться нулю. Для чистоты эксперимента замеряем сопротивление щупов самого мультиметра. Эх, дешевые китайские щупы. 2,1 Ом).

А теперь и замеряем сопротивление самого перехода. Практически 0 Ом!

Хотя, если верить даташиту, должно быть 17,5 миллиОм.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Теперь можно утверждать со 146% вероятностью, что наш транзистор полностью жив и здоров.

Как проверить полевой транзистор с помощью транзисторметра

На рабочем столе каждого электронщика должен быть этот замечательный китайский прибор, благо он стоит недорого. Про него я писал обзор здесь.

Здесь все просто, как дважды два. Вставляем транзистор в кроватку и нажимаем большую зеленую кнопку. В результате прибор сразу же определил, что это полевой МОП транзистор с каналом N-типа, определил расположение выводов транзистора, а также емкость затвора и пороговое напряжение открытия, о котором мы говорили выше в статье. Ну не прибор, а чудо!

Меры безопасности при работе с полевыми транзисторами

Все полевые транзисторы, будь это полевой транзистор с управляющим PN-переходом, либо МОП-транзистор, очень чувствительны к электрическим перегрузкам на Затворе. Особенно это касается электростатического заряда, который накапливается на теле человека и на измерительных приборах. Опасные значения электростатического заряда для МОП-транзисторов составляют 50-100 Вольт, а для транзисторов с управляющим PN переходом – 250 Вольт. Поэтому, самое важное правило при работе с такими транзисторами – это заземлить себя через антистатический браслет, или взяться за голую батарею ДО касания полевых транзисторов.

Также в некоторых экземплярах полевых транзисторов встраивают защитные стабилитроны между Истоком и Затвором, которые вроде бы спасают от электростатики, но лучше все-таки перестраховаться лишний раз и не испытывать судьбу транзистор на прочность. Также не помешало бы заземлить всю паяльную и измерительную аппаратуру. В настоящее время это все делается уже автоматически через евро розетки, у которых имеются в наличии заземляющий проводник.

Похожие статьи по теме “полевой транзистор”

Транзистор биполярный

Полевой транзистор с управляющим PN-переходом (JFET-транзистор)

Транзисторметр Mega328

Читаем электрические схемы с транзистором

Мультивибратор на транзисторах

Сторожевое устройство на одном транзисторе

Базовая схема источника стабилизированного тока на MOSFET транзисторах

Добавлено 4 января 2020 в 22:18

Сохранить или поделиться

Рассмотрим простую версию схемы, которая имеет важное значение в разработке аналоговых интегральных микросхем.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Вспомогательная информация

Что за источник тока?

Источники стабилизированного тока занимают видное место в заданиях по анализу цепей и теориях цепей, а затем, кажется, они более или менее исчезают… если вы не разработчик микросхем. Хотя источники тока редко встречаются в типовых проектах печатных плат, они широко распространены в мире аналоговых микросхем. Это потому, что они используются 1) для смещения и 2) в качестве активных нагрузок.

  1. Смещение: транзисторы, работающие как усилители в линейном режиме, должны быть смещены так, чтобы они работали в нужной части своей передаточной характеристики. Лучший способ реализовать это в контексте разработки микросхем – это заставить заданный ток течь через сток транзистора (для MOSFET) или коллектора (для биполярного транзистора). Этот заранее определенный ток должен быть стабильным и независимым от напряжения на компоненте источника тока. Конечно, ни одна реальная схема никогда не будет абсолютно стабильной или абсолютно невосприимчивой к изменениям напряжения, но, как это обычно бывает в инженерном деле, совершенство не совсем необходимо.
  2. Активные нагрузки: В схемах усилителей вместо коллекторных/стоковых резисторов могут использоваться источники тока. Эти «активные нагрузки» обеспечивают более высокий коэффициент усиления по напряжению и позволяют цепи работать должным образом при более низком напряжении питания. Кроме того, технология изготовления микросхем отдает предпочтение транзисторам по сравнению с резисторами.

В данной статье я буду ссылаться на выход источника тока как на «ток смещения» или Iсмещ, потому что я считаю, что использование в качестве смещения является более простым средством для изучения основных функций этой схемы.

Схема источника стабилизированного тока на MOSFET транзисторах

Ниже показана базовая схема источника стабилизированного тока на MOSFET транзисторах:

Рисунок 1 – Базовая схема источника стабилизированного тока на MOSFET транзисторах

На мой взгляд, она удивительно проста – два NMOS-транзистора и один резистор.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 2\]

На данный момент мы игнорируем модуляцию длины канала; следовательно, как показывает формула, ток стока не зависит от напряжения сток-исток. Теперь обратите внимание, что истоки у обоих полевых транзисторов подключены к земле, и что их затворы замкнуты вместе – иными словами, оба имеют одинаковое напряжение затвор-исток. Таким образом, если предположить, что оба устройства имеют одинаковые размеры канала, их токи стока будут одинаковыми, независимо от напряжения на стоке Q2. Это напряжение обозначено как Vит, что означает напряжение на компоненте источника тока; это помогает напомнить нам, что Q2, как и любой хорошо работающий источник тока, генерирует ток смещения, который не зависит от напряжения на его клеммах. Еще один способ сказать это – Q2 имеет бесконечное выходное сопротивление:

Рисунок 2 – Q2 имеет бесконечное выходное сопротивление

В этих условиях ток никогда не протекает через выходное сопротивление Rвых, даже если Vит очень велико. Это означает, что ток смещения всегда в точности равен опорному току.

Распространенным названием для этой схемы является «токовое зеркало». Вы, вероятно, можете понять, почему – ток, генерируемый правым транзистором является зеркальным отражением (т.е. равным) опорному току, протекающему через левый транзистор. Это название особенно подходит, когда вы принимаете во внимание визуальную симметрию, демонстрируемую представлением типовой схемы.

Кстати, для старых микросхем часто требовался внешний резистор для Rнастр. Однако в настоящее время производители используют встроенные резисторы, которые обрезаются при производстве для достижения достаточной точности.

Важность пребывания транзистора в режиме насыщения

Первым серьезным вызовом этому идеализированному анализу данной схемы является тот факт, что всё разваливается, когда транзистор не находится в режиме насыщения. Если Q2 находится в области триода (т.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. е. в линейной), ток стока будет сильно зависеть от Vсток-исток (VDS). Другими словами, у нас больше нет источника тока, потому что на ток смещения влияет Vит. Мы знаем, что напряжение затвор-сток Q2, чтобы поддерживать насыщение, должно быть меньше порогового напряжения.

Другой способ сказать это: Q2 покинет область насыщения, когда напряжение стока станет на Vпорог вольт ниже, чем напряжение затвора. Мы не можем указать точное число, потому что и напряжение на затворе, и пороговое напряжение будут варьироваться от одной реализации к другой.

Пример: напряжение затвора, необходимое для генерации требуемого тока смещения, составляет около 0,9 В, а пороговое напряжение составляет 0,6 В; это означает, что мы можем поддерживать насыщение до тех пор, пока Vит остается выше ~ 0,3 В.

Модуляция длины канала

К сожалению, даже когда проект нашей итоговой схемы гарантирует, что Q2 всегда будет в насыщении, наш источник тока на MOSFET транзисторах будет не совсем идеален. Виновником является модуляция длины канала.

Суть области насыщения заключается в «отсечке» канала, который существует, когда напряжение затвор-сток не превышает пороговое напряжение.

Рисунок 3 – Отсечка канала

Идея состоит в том, что ток стока становится независимым от Vит после того, как канал отсекается, потому что дальнейшее увеличение напряжения стока не влияет на форму канала. Однако в действительности увеличение Vит заставляет «точку отсечки» перемещаться к истоку, и это позволяет напряжению стока оказывать небольшое влияние на ток стока, даже когда полевой транзистор находится в насыщении. Результат можно представить следующим образом:

Рисунок 4 – Влияние перемещения «точки отсечки»

Iсмещ теперь является суммой Iопор (определяется Rнастр) и Iошибки (ток, протекающий через выходное сопротивление). Iошибки подчиняется закону Ома: более высокое Vит означает больший Iошибки и, следовательно, больший Iсмещ, и, таким образом, источник тока больше не независим от напряжения на его клеммах.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 2\]

Ток стока прямо пропорционален отношению ширины к длине, и, таким образом, мы можем увеличить или уменьшить Iсмещ, просто сделав отношение W/L в Q2 выше или ниже, чем в Q1. Например, если мы хотим, чтобы ток смещения был в два раза больше опорного тока, все, что нам нужно сделать, это сохранить длины каналов одинаковыми и увеличить ширину канала в Q2 в два раза. (Это может показаться не таким простым, если вы привыкли работать с дискретными полевыми транзисторами, но указание размеров канала является стандартной практикой при проектировании микросхем).

Также очень просто использовать эту схему для «токового управления». Следующая схема иллюстрирует концепцию токового управления:

Рисунок 5 – Токовое управление

Это включение MOSFET транзисторов позволяет генерировать множество токов смещения от одного опорного тока. Более того, каждый из этих токов может быть разным – их можно индивидуально изменять, просто регулируя соотношения ширины канала к его длине.

Заключение

Мы рассмотрели работу и возможности базовой схемы источника стабилизированного тока на MOSFET транзисторах, а также обсудили ее ограничения. Как следует из прилагательного «базовый», существуют лучшие схемы. Но базовая схема – хорошая отправная точка, потому что двухтранзисторное токовое зеркало остается основным ядром схем с более высокой производительностью.

Оригинал статьи:

Теги

MOSFET / МОП транзисторИсточник токаМодуляция длины каналаСтабилизатор токаТоковое зеркало

Сохранить или поделиться

Советы по управлению затвором мощного полевого транзистора

Непосредственное управление от контроллера ШИМ

В большинство современных микросхем контроллеров встроен выходной управляющий каскад. Обычно он содержит двухтактную схему на двух транзисторах. Этот выход можно использовать для непосредственного управления затвором мощного полевого транзистора, как показано на рис. 1.

Рис. 1. Мощный ПТ управляется непосредственно от выхода контроллера ШИМ

Непосредственное подключение можно использовать в тех случаях, когда управляющая схема подключена к той же самой «земле», что и силовая часть, и уровень мощности относительно невелик.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Судя по справочным данным, ток в несколько ампер можно получить прямо с выхода контроллера ШИМ. Этого вполне достаточно для управления маломощными устройствами. Однако вход полевого транзистора имеет большую емкость. Кроме того, пытаться полностью использовать весь выходной ток контроллера, как правило, — плохая идея. Это может привести к увеличению электромагнитных помех из–за быстрого включения и выключения, непомерным потерям на обратное восстановление в выпрямителе и шумам в самом контроллере ШИМ. В результате могут возникать случайные сбои в работе и дрожание тактовой частоты.

Лучшее решение — ограничить выходной ток контроллера ШИМ при помощи схемы, показанной на рис. 2. В ней используются два резистора: один для управления временем включения, а другой — для управления временем выключения. (Обычно мы выключаем устройство быстрее, чем включаем, для защиты от коротких импульсов тока.) Диод служит для разделения этих двух функций, но в некоторых случаях, когда критично быстродействие схемы, можно обходиться без него.

Рис. 2. Схема, с помощью которой можно ограничить выходной ток контроллера ШИМ

В маломощных преобразователях мы обычно включаем ПТ медленно. Не надо бояться экспериментов с величиной сопротивления резистора Ron. Автор использует в своих проектах значения от 1 Ом до 1 кОм. Сформулированное им правило разработки заключается в том, чтобы увеличивать сопротивление, одновременно наблюдая за осциллограммами переключения и рассеиваемой мощностью ПТ. Если температура начинает заметно возрастать, нужно уменьшить величину сопротивления вдвое. Вы будете удивлены, увидев, как медленно можно включать ПТ в обратноходовом преобразователе, работающем в режиме прерывистых токов, без значительных потерь на переключение.

Выключение должно быть быстрым, чтобы обеспечить быстрый спад импульса тока. Экспериментируйте с разными значениями сопротивления, вместо того, чтобы просто использовать величины, приведенные в руководствах по применению.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Более подробную информацию о том, насколько быстро можно управлять ПТ, можно найти в работе[3].

Специализированные драйверы затворов

При увеличении мощности преобразователя становится ясно, что сопротивления резисторов в затворе ПТ необходимо уменьшить, чтобы минимизировать потери на переключение. Для схем большой мощности в промышленности, как правило, используют микросхемы драйверов с большими выходными токами. При этом уменьшается влияние помех на контроллер ШИМ, и, кроме того, получается более удачная разводка печатной платы. В продаже имеется множество хороших драйверов. Можно даже создать собственный мощный двухтактный драйвер, если необходимо увеличить производительность при снижении цены. Для устройств большой мощности используют отдельную схему драйвера затвора для достижения быстрого переключения (рис. 3). Резисторы в затворе также имеются.

Рис. 3. Отдельная схема драйвера затвора для быстрого переключения

Изолированные драйверы затворов

Для получения очень высоких мощностей разработчики начинают использовать такие топологии, как двухключевой прямоходовый преобразователь, полумостовой или мостовой преобразователи. Во всех этих топологиях необходимо применять плавающий ключ.

Существуют решения этой задачи с использованием полупроводниковых компонентов, но только для низковольтных применений. Интегральные драйверы верхнего плеча не предоставляют разработчику достаточной гибкости, а также не обеспечивают такого уровня защиты, изоляции, устойчивости к переходным процессам и подавления синфазных помех, который дает хорошо спроектированный и изготовленный трансформатор для управления затвором.

На рис. 4 показан самый примитивный способ получения плавающего управления затвором. Выход микросхемы драйвера подключен через разделительный конденсатор к небольшому трансформатору (обычно тороидальному для лучшей производительности). Вторичная обмотка подключена непосредственно к затвору ПТ, и любые замедляющие резисторы должны располагаться со стороны первичной обмотки трансформатора.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Обратите внимание на стабилитроны в затворе для защиты от переходных процессов. На выходе драйвера необходимо использовать ограничительные диоды, ими нельзя пренебрегать, даже если при первых испытаниях не возникли проблемы с реактивными токами в трансформаторе.

Рис. 4. Простейшая изолированная схема для управления затвором

В простейшей изолированной схеме для управления затвором используется трансформатор, как показано на рис. 4. Ограничительные диоды необходимы для защиты от реактивных токов, а разделительный конденсатор предотвращает насыщение трансформатора. Конденсатор дает сдвиг уровня выходного напряжения драйвера, который зависит от относительной длительности управляющих импульсов.

Схема, представленная на рис. 4, обеспечивает отрицательное напряжение на вторичной обмотке на интервалах времени, когда ПТ выключен. Это значительно увеличивает устойчивость к синфазным помехам, что особенно важно для мостовых схем.

Однако недостаток отрицательного смещения — это уменьшение положительного напряжения, открывающего ПТ. При небольшой относительной длительности импульсов положительный импульс большой. При относительной длительности, равной 50%, половина имеющегося напряжения драйвера теряется. При большой относительной длительности положительного напряжения может не хватить для полного открывания ПТ.

Схемы с трансформаторной развязкой наиболее эффективны при относительной длительности от 0 до 50%. К счастью, именно это и нужно для прямоходовых, мостовых и полумостовых преобразователей.

Обратите внимание: на рис. 5 показано, как напряжение на разделительном конденсаторе смещается под действием низкочастотных колебаний, наложенных на выходные импульсы драйвера. Эти колебания должны тщательно подавляться для обеспечения безопасной работы. Обычно для борьбы с этим явлением увеличивают емкость конденсатора, что уменьшает Q для низкочастотных составляющих. Необходимо проверить работу схемы при всех возможных переходных процессах, особенно при старте, когда конденсатор разряжен.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

Рис. 5. Колебания, возникающие в разделительном конденсаторе и влияющие на работу трансформатора

Осторожно: схема восстановления постоянной составляющей!

Иногда разработчик может столкнуться с высоковольтной схемой, в которой требуется изолированное управление затвором при относительной длительности импульсов около 100%. Раньше для таких применений рекомендовали схему, показанную на рис. 6. Но ее применение может приводить к повреждению источника питания при выключении.

Рис. 6. Высоковольтная схема с восстановлением постоянной составляющей

Диод и конденсатор на стороне вторичной обмотки восстанавливают постоянную составляющую на затворе и обеспечивают управление затвором при значениях относительной длительности до 90% и более. Однако у этой схемы есть серьезный недостаток, и использовать ее без очень тщательного анализа не рекомендуется.

Эта схема хорошо работает в установившемся режиме (рекомендуется нагрузочный резистор в затворе), но когда контроллер ШИМ выключается, разделительный конденсатор остается подключенным через трансформатор на неопределенный период времени. Это может привести к насыщению трансформатора, как показано на рис. 6б. Когда трансформатор насыщается, вторичная обмотка замыкается накоротко, и конденсатор на стороне вторичной обмотки может включить ПТ. Насыщение можно предотвратить, если использовать сердечник с зазором и конденсатор небольшой емкости, но при этом увеличится реактивный ток, необходимый для управления затвором, а это вызывает другие проблемы.

Изолированное управление затвором для мостовых преобразователей

Мостовые и полумостовые преобразователи — это устройства, в которых требуется очень надежная изолированная схема управления. В то время как один из ключей закрыт, ключ на другой стороне моста будет открыт. В результате на выключенном устройстве будет присутствовать большое синфазное напряжение.

На рис. 7 показана схема, рекомендуемая для полумостового преобразователя.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. В ней управлять затворами должны два трансформатора. Не пытайтесь использовать только один трансформатор и схему с тремя состояниями, как советуют в некоторых руководствах по применению!

Рис. 7. Для управления затворами в полумостовых преобразователях рекомендуются два отдельных трансформатора

В мостовом преобразователе, показанном на рис. 8, также требуются два трансформатора для управления затворами. Двойные вторичные обмотки в каждом трансформаторе используются для управления парами ПТ в диагонально противоположных плечах моста. Для обоих типов мостов схемы управления затворами должны тщательно тестироваться во время переходного процесса при включении, когда возникают большие пиковые токи, и отрицательные напряжения на затворах невелики.

Рис. 8. Схема мостового преобразователя с двумя трансформаторами для повышения надежности

В схеме моста с фазовым сдвигом (рис. 9) для управления затворами также используются два трансформатора. Но обратите внимание на отличие: каждая сторона моста работает с фиксированной относительной длительностью 50%, что позволяет использовать один трансформатор с двумя вторичными обмотками противоположной полярности. Это одна из немногих схем, где можно применять биполярную схему управления затвором без снижения надежности. Но выбросы, возникающие во время переходных процессов при выключении, не должны приводить к открытию транзисторов. Обратите внимание на полярность вторичных обмоток.

Рис. 9. Мост с фазовым сдвигом с двунаправленными трансформаторами в каждом плече

Заключение

Схема управления затвором — критически важная часть проекта преобразователя. Убедитесь в том, что вы используете правильную схему, и не копируйте вслепую схемы из руководства по применению. Трансформаторы в цепях управления затворами придают вашему проекту такую степень надежности, которую невозможно получить при использовании полупроводниковых решений. Если вы разрабатываете очень мощное устройство, то это важнейшая составляющая.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Добавление активных элементов для того, чтобы, согласно общепринятому мнению, увеличить скорость переключения, обычно не дает улучшения общей производительности, но вносит новые возможности для потенциальных отказов. Делайте вашу схему управления затвором как можно более простой.

Литература

  1. Balogh L. Design and Application Guide for High Speed MOSFET Gate Drive Circuits. Texas Instruments Application Note.
  2. Ridley R. Six Reasons for Power Supply Instability. www.switchingpowermagazine.com
  3. Ridley R. Power Supply Stress Testing. www.switchingpowermagazine.com
  4. www.ridleyengineering.com

Базовая схема дифференциальной пары на MOSFET транзисторах

Добавлено 30 января 2020 в 19:34

Сохранить или поделиться

В данной статье мы рассмотрим наиболее простую версию этой базовой схемы усилителя, применяемой в интегральных микросхемах.

Вспомогательная информация

Дифференциальный или несимметричный?

В начале изучения активных цепей обычно значительное время уделяется стандартным несимметричным схемам усилителей (например, с общим истоком, общим затвором, эмиттерный повторитель и пр.). Они, безусловно, заслуживают внимания в контексте знакомства с работой транзисторов, анализом в режиме малого сигнала и характеристиками усилителей. Но практическая ценность схем несимметричных усилителей – это совсем другая история. Дело в том, что в современных аналоговых микросхемах преобладают дифференциальные усилители. Для этого есть несколько причин:

  • Дифференциальные усилители применяют усиление не к одному входному сигналу, а к разности между двумя входными сигналами. Это означает, что дифференциальный усилитель естественным образом устраняет шум и помехи, присутствующие в обоих входных сигналах.
  • Дифференциальное усиление также подавляет синфазные сигналы – иными словами, смещение по постоянному напряжению, присутствующее на обоих входных сигналах, будет удалено, а усиление будет применено только к сигналу, представляющему интерес (при условии, конечно, что сигнал, представляющий интерес не представлен в обоих входах).Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Это особенно полезно в контексте проектирования микросхем, поскольку устраняет необходимость в громоздких конденсаторах, служащих для развязки по постоянному току.
  • Вычитание, которое происходит в дифференциальной паре, облегчает включение схемы в усилитель с отрицательной обратной связью, и если вы читали серию статей про отрицательную обратную связь, вы знаете, что отрицательная обратная связь – это лучшее, что могло бы случиться со схемой усилителя.

Разумно ожидать, что эти преимущества будут сопровождаться существенными недостатками, но технология производства микросхем сделала схему дифференциальной пары почти идеальной. Но есть две проблемы: 1) большее количество компонентов и 2) важность симметричности характеристик компонентов. О первой проблеме вы можете забыть, потому что стоимость добавления в микросхему еще нескольких транзисторов незначительна. Что касается второй проблемы, оказывается, что технология производства микросхем очень преуспела в достижении повторяемости характеристик компонентов внутри чипа (эта повторяемость приводит к «согласованию» характеристик).

В данной статье мы рассмотрим базовую схему дифференциального усилителя на MOSFET транзисторах с помощью обсуждения общей идеи и моделирования (то есть, не слишком много математики или сложного анализа схемы). Поскольку эта тема имеет отношение в первую очередь к реализации микросхем, мы будем использовать модель NMOS транзистора, которая специфична для технологии CMOS 0,35 мкм.

Пара MOSFET транзисторов

Принципиальная схема:

Рисунок 1 – Дифференциальная пара на MOSFET транзисторах

Обратите внимание на следующее:

  • В реальной жизни условное обозначение источника тока может быть заменено схемой, которая генерирует стабилизированный ток (для дополнительной информации смотрите статью «Базовая схема источника стабилизированного тока на MOSFET транзисторах»). Однако мы хотим, чтобы в этом вводном анализе всё оставалось простым и понятным, и поэтому в наших моделированиях вместо схемы стабилизации тока мы будем использовать идеальный источник тока.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 2\]

    (В этой статье мы будем игнорировать модуляцию длины канала.) Ток стока уже установлен (источником тока), а затворы привязаны к узлу земли; это означает, что напряжение истока будет устанавливаться в любое значение, создающее напряжение затвор-исток (Vзи), соответствующее току стока Iсмещ/2. Посмотрим на результаты моделирования. С выходными напряжениями проще: рассчитайте падение напряжения на резисторе как (Iсмещ/2) × Rс, затем вычтите это падение напряжения из напряжения положительного источника питания. Вот пример:

    Рисунок 3 – Анализ по постоянному току в LTspice

    Выходные напряжения соответствуют ожидаемым. Напряжение истока кажется подходящим, учитывая, что пороговое напряжение (Vпорог) для этой модели SPICE составляет около 0,5 В; Моделирование говорит нам, что Vзи, соответствующее току стока 250 мкА, составляет около 0 В – (–725 мВ) = 725 мВ, что примерно на 225 мВ выше Vпорог.

    Давайте вернемся к нашему предположению о насыщении транзисторов (так называемый «активный режим»). Усилитель на MOSFET транзисторе должен оставаться в области насыщения на своей передаточной характеристике, потому что в области насыщения коэффициент усиления выше и более стабилен по сравнению с триодной областью. Для обеспечения насыщения напряжение стока всегда должно быть выше, чем напряжение затвора минус пороговое напряжение:

    \[V_{си}\geq V_{зи}-V_{порог}\ \ \Rightarrow \ \ V_{зс}\leq V_{порог}\]

    В этом примере напряжение стока (также называемое Vвых) установлено на уровне 2,05 В. Это означает, что у нас есть ограничение по Vвх: синфазное входное напряжение не может превышать 2,05 В + 0,5 В = 2,55 В, поскольку при достижении входного напряжения уровня на Vпорог вольт выше напряжения стока MOSFET транзистор входит в триодную область.

    Подавление синфазных сигналов

    Давайте проведем быстрое моделирование, чтобы доказать себе, что дифференциальная пара не будет усиливать синфазные напряжения.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. Вот схема:

    Рисунок 4 – Анализ подавления синфазных сигналов в LTspice

    Как вы можете видеть, даже при 1 вольте синфазного входного напряжения выходное напряжение по-прежнему находится на уровне напряжения смещения = 2,05 В. Простое объяснение этого режима подавления синфазных сигналов заключается в следующем: величина выходного напряжения регулируется током стока, а не входным напряжением. Пока два входных напряжения одинаковы, фиксированный ток смещения равномерно распределяется между двумя транзисторами, и, таким образом, Vвых1 и Vвых2 не изменяются.

    Также обратите внимание, что напряжение затвор-исток примерно такое же (поскольку ток стока не изменился), хотя напряжение истока увеличилось, чтобы компенсировать тот факт, что на затворе теперь напряжение 1 В вместо уровня земли.

    Дифференциальное усиление

    Вы можете понять дифференциальную работу данной схемы, если вспомните следующее:

    • Iс1 + Iс2 = Iсмещ
    • Vи1 = Vи2

    Если напряжение на затворе Q1 выше, чем напряжение на затворе Q2, Vзи1 также должно быть выше, чем Vзи2, поскольку оба транзистора имеют одинаковый потенциал на выводе истока. Более высокое напряжение затвор-исток означает больший ток стока, но сумма токов стока остается неизменной – таким образом, Iс1 увеличивается, а Iс2 уменьшается, и это вызывает соответствующее уменьшение Vвых1 и соответствующее увеличение Vвых2. Например:

    Рисунок 5 – Анализ дифференциального усиления в LTspice

    Мы закончим этот вводный анализ, промоделировав отклик схемы на малый дифференциальный сигнал и сравнив коэффициент усиления, полученный при моделировании, с теоретическим коэффициентом усиления. Давайте вернем синфазное напряжение обратно на уровень 0 В и затем подадим на затвор Q1 синусоидальный сигнал 1 мВ:

    Рисунок 6 – Анализ дифференциального усиления в режиме малых сигналов в LTspice

    Мы определим выходное напряжение как разницу, Vвых1 – Vвых2; это удваивает коэффициент усиления относительно использования отдельно Vвых1 или Vвых2, а также устраняет смещение по постоянному напряжению, связанное с напряжениями смещения.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 2}\times\left(\frac{35\ мкм}{0.35\ мкм}\right)\times500\ мкА}=0.00182\ \frac{А}{В}\]

    Всё:

    \[A_{дифф}=0.00182\ \frac{А}{В}\times5\ кОм=9.1\]

    Расчетное значение = 9,1, промоделированное значение = 10: я бы сказал, что это довольно близко.

    Заключение

    Базовая схема дифференциальной пары на MOSFET транзисторах важна для всех, кто хочет углубиться в проектирование аналоговых микросхем. Мы можем рассказать об этой схеме гораздо больше, но пока оставим всё, как есть. В следующей статье мы рассмотрим увеличение производительности, которое может быть достигнуто при использовании активной нагрузки вместо резисторов стока.

    Оригинал статьи:

    Теги

    LTspiceMOSFET / МОП транзисторSPICESPICE модельДифференциальная параДифференциальный усилительМоделированиеПолевой транзистор

    Сохранить или поделиться

    (a) Схема сенсорной установки EG-MOSFET, показывающая затвор MOSFET …

    Контекст 1

    … Биосенсоры на основе полевых транзисторов представляют два основных ограничения для будущего коммерческого использования: (1) единственная цель виды могут быть обнаружены; (2) датчик на полевых транзисторах является одноразовым, если не реализованы методы регенерации. Эти ограничения можно преодолеть, подключив электрод затвора полевого транзистора к внешней одноразовой чувствительной области (расширенный затвор, EG; рис. 1a). Затем потенциал ворот регулируется высвобождением заряда, происходящим при селективном захвате биомаркера (антигена) комплементарным партнером (антителом), иммобилизованным на поверхности EG [4,5]….

    Контекст 2

    … в этом контексте мы разработали иммуносенсор на основе EG-FET для быстрого и чувствительного обнаружения онкосупрессорного белка p53 и его мутированной формы p53R175H, которые являются ценными биомаркерами рака [6 ]. Датчик основан на точном измерении изменения тока исток-сток промышленного полевого металлооксидного полупроводникового транзистора n-типа (MOSFET), подходящим образом соединенного с микроизготовленным EG (рис.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. 1b). Также реализована микроэлектронная система, сочетающая высокое разрешение по току (т.е.е., высокая чувствительность биомаркера) при компактных размерах конечного сенсорного устройства. …

    Контекст 3

    … Биосенсоры на основе полевых транзисторов имеют два основных ограничения для будущего коммерческого использования: (1) может быть обнаружен единственный вид-мишень; (2) датчик на полевых транзисторах является одноразовым, если не реализованы методы регенерации. Эти ограничения можно преодолеть, подключив электрод затвора полевого транзистора к внешней одноразовой чувствительной области (расширенный затвор, EG; рис. 1a). Затем потенциал ворот регулируется высвобождением заряда, происходящим при селективном захвате биомаркера (антигена) комплементарным партнером (антителом), иммобилизованным на поверхности EG [4,5]….

    Контекст 4

    … в этом контексте мы разработали иммуносенсор на основе EG-FET для быстрого и чувствительного обнаружения онкосупрессорного белка p53 и его мутантной формы p53R175H, которые являются ценными биомаркерами рака [6 ]. Датчик основан на точном измерении изменения тока исток-сток промышленного полевого металлооксидного полупроводникового транзистора n-типа (MOSFET), подходящим образом соединенного с микроизготовленным EG (рис. 1b). Также реализована микроэлектронная система, сочетающая высокое разрешение по току (т.е.е., высокая чувствительность биомаркера) при компактных размерах конечного сенсорного устройства. …

    Силовой полевой МОП-транзистор — Infineon Technologies

    Хорошо продуманный выбор MOSFET определяет общую производительность. Благодаря своей простоте и надежности революционная технология Infineon является лучшим выбором, поскольку она обеспечивает улучшенные форм-факторы и способствует общему снижению стоимости системы. Еще один положительный побочный эффект — общее снижение энергопотребления.Это помогает минимизировать выбросы CO 2 и, следовательно, снижает затраты, а также выгодно для конечного потребителя.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. MOSFET-транзистор CoolMOS ™ от Infineon предлагает обширные возможности для потребительских, промышленных и автомобильных приложений, таких как освещение, телевидение, аудио, серверы / телекоммуникации, солнечная энергия, зарядка электромобилей, преобразователь постоянного тока в постоянный, бортовые зарядные устройства и многое другое.

    Приложения

    DC-DC можно классифицировать по их потребности в чрезвычайно быстром переключении с низкими потерями или более надежном переключении на умеренных частотах.

    Разработчики извлекают выгоду из сверхмалых коммутационных потерь технологии силовых полевых МОП-транзисторов Infineon OptiMOS ™ в источниках питания с частотой выше 100 кГц. Низковольтный полевой МОП-транзистор OptiMOS ™ от Infineon предлагает высокую эффективность и новые возможности в приложениях с жестким переключением. Это помогает разработчикам систем увеличить удельную мощность и снизить затраты при высочайшем уровне надежности.

    В приложениях, где требуется высокая лавинная защита, таких как управление двигателем, разработчики извлекают выгоду из высоконадежного силового полевого МОП-транзистора StrongIRFET ™.МОП-транзисторы могут обеспечить высочайшую энергоэффективность для таких конечных приложений, как силовые и садовые инструменты, легкие электромобили, дроны и электронные велосипеды, которые требуют высокого уровня энергоэффективности, но ограничены в доступном пространстве. Инновационные полевые МОП-транзисторы
    Infineon обеспечивают отличные характеристики и дополнительно снижают затраты. Эти устройства — лучший выбор для высокопроизводительных преобразователей постоянного тока в постоянный.

    Конструкции, требующие высочайшего качества и улучшенных функций защиты, выигрывают от сертифицированных для автомобильной промышленности n-канальных и p-канальных МОП-транзисторов Infineon, которые выходят за рамки отраслевых стандартов AEC-Q101, обеспечивая самые надежные МОП-транзисторы в отрасли.

    Infineon предлагает полный спектр n-канальных и p-канальных силовых полевых МОП-транзисторов и систем, обеспечивающих инновации и повышение производительности в ваших приложениях, включая импульсные источники питания (SMPS), вычисления, управление двигателями и приводы, потребительские, мобильные устройства, решения для освещения, более.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

    Коды нумерации транзисторов и диодов

    »Электроника

    Pro-Electron, JEDEC и JIS — это отраслевые схемы для нумерации полупроводниковых устройств: диодов, биполярных транзисторов и полевых транзисторов — они позволяют приобретать устройства от разных производителей.


    Transistor Tutorial:
    Основы работы с транзисторами
    Усиление: Hfe, hfe и бета
    Характеристики транзистора
    Коды нумерации транзисторов и диодов
    Выбор транзисторов на замену


    Существует много тысяч различных типов диодов, биполярных транзисторов и полевых транзисторов. Эти полупроводниковые устройства имеют разные характеристики в зависимости от того, как они спроектированы и изготовлены.

    В результате важно, чтобы разные полупроводниковые устройства имели разные номера деталей, чтобы отличать их друг от друга.

    Изначально производители должны были присваивать устройствам свои собственные номера, но вскоре для полупроводниковых устройств стали использоваться стандартные схемы нумерации деталей, включая диоды, биполярные транзисторы и полевые транзисторы — как JFET, так и MOSFET.

    Наличие стандартных отраслевых схем нумерации для полупроводниковых устройств имеет много преимуществ не только для крупных производителей электронного оборудования, но и для любителей и студентов.

    Транзистор BC547 — BC в номере детали указывает, что это кремниевый транзистор малой мощности звуковой частоты

    Схемы нумерации / кодирования полупроводниковых устройств

    Существует множество различных способов организации схемы нумерации.На заре производства термоэмиссионных клапанов (вакуумных трубок) каждый производитель давал номер производимому типу. Таким образом, у устройств было огромное количество разных номеров, многие из которых были практически идентичны. Вскоре стало очевидно, что требуется более структурированный подход, чтобы одно и то же устройство можно было купить независимо от производителя.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

    То же самое верно и для полупроводниковых устройств, и схемы нумерации, не зависящие от производителя, используются для диодов, биполярных транзисторов и полевых транзисторов.Фактически используется несколько схем нумерации полупроводников:

    1. Проэлектронная схема нумерации Эта схема нумерации диодов, биполярных транзисторов и полевых транзисторов была создана в Европе и широко используется для транзисторов, разрабатываемых и производимых здесь.
    2. Схема нумерации JEDEC Эта схема нумерации диодов и транзисторов была создана в США и широко используется для диодов и транзисторов, произведенных в Северной Америке.
    3. Схема нумерации JIS Эта система нумерации полупроводниковых устройств была разработана в Японии и используется на диодах, транзисторах и полевых транзисторах, которые производятся в Японии.
    4. Схемы, принадлежащие производителю: Существуют некоторые устройства, в частности специализированные биполярные транзисторы и некоторые полевые транзисторы, на которые отдельные производители могут пожелать сохранить все права на производство. Возможно, они не захотят раскрывать спецификации и методы производства другим, если они используют разработанную ими технику. В этих и подобных случаях производители будут использовать свои собственные схемы нумерации деталей, которые не соответствуют схемам отраслевого стандарта
    5. .

    Целью отраслевых стандартных схем нумерации является обеспечение возможности идентификации и описания электронных компонентов и в данном случае полупроводниковых устройств, включая диоды, биполярные транзисторы и полевые транзисторы, чтобы иметь общие электронные компоненты и нумерацию компонентов у нескольких производителей.Для этого производители регистрируют определение новых электронных компонентов в соответствующем агентстве, а затем получают новый номер детали.

    Этот подход позволяет компаниям, производящим электронное оборудование, иметь дополнительные источники для своих компонентов и, таким образом, обеспечивать поставки для крупномасштабного производства, а также уменьшать эффект устаревания.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3.

    В той или иной степени эти схемы нумерации позволяют подробно описать функции диода, транзистора или полевого транзистора.Схема Pro-Electron предоставляет гораздо больше информации, чем другие.

    Pro-Electron или Система нумерации EECA

    Схема нумерации Pro-Electron для обеспечения стандартизированной схемы нумерации полупроводников, в частности диодов, транзисторов и транзисторов с полевыми эффектами, была создана в 1966 году на встрече в Брюсселе, Бельгия.

    Схема нумерации полупроводниковых диодов, биполярных транзисторов и полевых транзисторов была основана на формате системы, разработанной Маллардом и Филипсом для нумерации термоэмиссионных клапанов или электронных ламп, которая существовала с начала 1930-х годов.В нем первая буква обозначает напряжение и ток нагревателя, вторая и последующие буквы обозначают отдельные функции внутри стеклянной оболочки, а остальные цифры обозначают основание клапана и серийный номер для типа.

    Схема Pro-Electron взяла это и использовала буквы, которые редко использовались в описаниях нагревателей для обозначения типа полупроводника, а затем использовала вторую букву для определения функции. Сходство существовало между обозначениями клапана / трубки и обозначениями, используемыми для полупроводниковых устройств.Например, «А» использовалось для диода и т. Д.

    Схема получила широкое распространение, и в 1983 году управление ею перешло к Европейской ассоциации производителей электронных компонентов (EECA).

    Первое письмо

    • A = Германий
    • B = кремний
    • C = арсенид галлия
    • R = Составные материалы

    Вторая буква

    • A = Диод — маломощный или сигнальный
    • B = Диод — переменная емкость
    • C = Транзистор — звуковая частота, малой мощности
    • D = Транзистор — звуковая частота, мощность
    • E = туннельный диод
    • F = Транзистор — высокочастотный, маломощный
    • G = Разные устройства
    • H = Диод — чувствительный к магнетизму
    • L = Транзистор — высокочастотный, мощность
    • N = оптрон
    • P = Детектор света
    • Q = излучатель света
    • R = Коммутационное устройство малой мощности, e.Схема мосфета: Управление мощной нагрузкой постоянного тока. Часть 3. грамм. тиристор, диак, однопереходный
    • S = Транзистор — импульсный маломощный
    • T = коммутационное устройство малой мощности, например тиристор, симистор
    • U = Транзистор — импульсный, силовой
    • W = Устройство для обработки поверхностных акустических волн
    • X = диодный умножитель
    • Y = диод выпрямительный
    • Z = Диод — опорное напряжение

    Последующие символы

    Символы, следующие за первыми двумя буквами, образуют серийный номер устройства.Те, которые предназначены для домашнего использования, имеют три цифры, но те, которые предназначены для коммерческого или промышленного использования, имеют букву, за которой следуют две цифры, например, A10 — Z99.

    Суффикс

    В некоторых случаях может быть добавлена ​​буква суффикса:

    • A = низкое усиление
    • B = среднее усиление
    • C = высокое усиление
    • Без суффикса = неклассифицированное усиление

    Это полезно как для производителей, так и для пользователей, поскольку при производстве транзисторов существует большой разброс уровней усиления.Затем их можно отсортировать по группам и пометить в соответствии с их выигрышем.

    Используя схему нумерации, можно увидеть, что транзистор с номером детали BC107 представляет собой кремниевый аудиотранзистор малой мощности, а BBY10 — кремниевый диод переменной емкости для промышленного или коммерческого использования. BC109C, например, кремниевый аудиотранзистор малой мощности с высоким коэффициентом усиления

    .

    Система нумерации или кодирования JEDEC

    JEDEC, Объединенный совет по проектированию электронных устройств, является независимой отраслевой организацией по торговле полупроводниковой техникой и органом по стандартизации.Он обеспечивает множество функций, одной из которых является стандартизация полупроводников, и в данном случае нумерация деталей диода, биполярного транзистора и полевого транзистора.

    Самые ранние истоки JEDEC можно проследить до 1924 года, когда была создана Ассоциация производителей радиооборудования — много лет спустя она превратилась в Ассоциацию электронной промышленности, EIA. В 1944 году Ассоциация производителей радиооборудования и Национальная ассоциация производителей электроники учредили объединенный совет по разработке электронных ламп, JETEC.Это было создано с целью присвоения и согласования типов электронных ламп (термоэмиссионных клапанов).

    С ростом использования полупроводниковых устройств сфера применения JETEC была расширена, и в 1958 году он был переименован в JEDEC, Объединенный инженерный совет по электронным устройствам.

    Первоначальная нумерация полупроводниковых приборов соответствовала общим очертаниям схемы нумерации ламп и вентилей, которая была разработана: «1» означало «без нити накала / нагревателя», а «N» — «кристаллический выпрямитель».

    Первая цифра нумерации полупроводникового прибора была изменена с обозначения отсутствия нити накала на количество PN-переходов в полупроводниковом приборе, а система нумерации была описана в EIA / JEDEC EIA-370.

    • Первое число =
      • 1 = диод
      • 2 = биполярный транзистор или полевой транзистор с одним затвором
      • 3 = полевой транзистор с двойным затвором

      Число соответствует количеству переходов, хотя для полевых МОП-транзисторов это нужно интерпретировать немного.

    • Вторая буква = N
    • Последующие цифры = Серийный номер
    • .

    Таким образом, устройство с кодом 1N4148 является диодом, а 2N706 — биполярным транзистором.

    Иногда к номеру детали добавляют дополнительные буквы, которые часто относятся к производителю. M означает, что производитель Motorola, а TI означает Texas Instruments, хотя добавление A к номеру детали часто означает пересмотр спецификации, например Транзисторы 2N2222A широко доступны, и это обновленная версия 2N2222.Иногда для интерпретации этих чисел требуются некоторые базовые знания.

    Схема нумерации полупроводниковых приборов JIS

    Японские промышленные стандарты, схема нумерации деталей JIS для полупроводниковых устройств стандартизирована в соответствии с JIS-C-7012.

    В этой схеме используется типовой номер, состоящий из числа, за которым следуют два символа, а затем — серийный номер.

    Первый номер

    Первое число указывает количество переходов в полупроводниковом приборе.

    • 1 = диод
    • 2 = биполярный транзистор или полевой транзистор с одним затвором
    • 3 = полевой транзистор с двойным затвором

    Буквы в позициях 2 и 3

    • SA = высокочастотный биполярный транзистор PNP
    • SB = биполярный транзистор звуковой частоты PNP
    • SC = высокочастотный биполярный транзистор NPN
    • SD = биполярный транзистор звуковой частоты NPN
    • SE = диоды
    • SF = тиристор (SCR)
    • SG = устройства Ганна
    • SH = UJT (однопереходный транзистор)
    • SJ = P-канальный JFET / MOSFET
    • SK = N-канальный JFET / MOSFET
    • SM = симистор
    • SQ = светодиод
    • SR = выпрямитель
    • SS = сигнальный диод
    • ST = лавинный диод
    • SV = варакторный диод / варикопорный диод
    • С.З. = диод Зенер / опорное напряжение диод

    Серийный номер

    Серийный номер следует за первой цифрой и двумя буквами типа полупроводникового прибора.Числа от 10 до 9999.

    Суффикс

    После серийного номера может использоваться суффикс для обозначения того, что устройство было одобрено, т. Е. Есть гарантия, что оно было изготовлено в надлежащих условиях для производства требуемого полупроводникового устройства.

    Номера производителей

    Несмотря на то, что существуют отраслевые организации для генерации номеров устройств, некоторые производители хотели производить устройства, которые были бы уникальными для них.В некоторых областях это могло бы предоставить устройству уникальную возможность продажи, которую другие производители не могли бы скопировать.

    Эти номера полупроводниковых устройств уникальны для производителя, поэтому их можно использовать для идентификации источника.

    Некоторые общие примеры приведены ниже:

    • MJ = Motorola power, металлический корпус
    • MJE = Motorola power, пластиковый корпус
    • MPS = Motorola малой мощности, пластиковый корпус
    • MRF = RF-транзистор Motorola
    • TIP = силовой транзистор Texas Instruments (пластиковый корпус)
    • TIPL = планарный силовой транзистор TI
    • TIS = TI малосигнальный транзистор (пластиковый корпус)
    • ZT = Ферранти
    • ZTX = Ферранти

    Система нумерации или кодирования транзисторов и диодов Pro-electronic предоставляет больше информации об устройстве, чем система JEDEC.Однако обе эти схемы нумерации диодов и транзисторов широко используются и позволяют производить одни и те же типы устройств рядом производителей. Это позволяет производителям оборудования покупать свои полупроводники у разных производителей и знать, что они покупают устройства с одинаковыми характеристиками.

    Другие электронные компоненты:
    Резисторы
    Конденсаторы
    Индукторы
    Кристаллы кварца
    Диоды
    Транзистор
    Фототранзистор
    Полевой транзистор
    Типы памяти
    Тиристор
    Разъемы
    Разъемы RF
    Клапаны / трубки
    Аккумуляторы
    Переключатели
    Реле

    Вернуться в меню «Компоненты».. .

    Метод защиты от короткого замыкания для SiC MOSFET среднего напряжения на основе обнаружения напряжения затвор-исток

  • 1.

    Чен, М., Сюй, Д., Чжан, X., Чжу, Н., Ву, Дж., Раджашекара, К .: Улучшенный метод защиты от короткого замыкания IGBT с самоадаптирующейся схемой гашения на основе измерения V CE . IEEE Trans. Power Electron. 33 (7), 6126–6136 (2018)

    Артикул

    Google Scholar

  • 2.

    Ши, Ю., Се, Р., Ван, Л., Ши, Ю., Ли, Х .: Характеристики и защита от короткого замыкания модуля SiC MOSFET T-типа на 1200 В в фотоэлектрических инверторах. IEEE Trans. Ind. Electron. 64 (11), 9135–9143 (2017)

    Артикул

    Google Scholar

  • 3.

    Wang, Z., Shi, X., Xue, Y., Tolbert, L.-M., Wang, F., Blalock, BJ: Дизайн и оценка характеристик схем защиты от сверхтоков для карбида кремния ( SiC) силовые полевые МОП-транзисторы.IEEE Trans. Ind. Electron. 61 (10), 5570–5581 (2014)

    Артикул

    Google Scholar

  • 4.

    Ван, З., Тонг, К., Чжан, Ю.: Исследование схем защиты в зависимости от температуры для SiC MOSFET. В: Материалы международной конференции по электрическим машинам и системам, стр. 822–826 (2018)

  • 5.

    Хоригути, Т., Киноути, С.И., Накаяма, Ю., Акаги, Х .: Быстрая защита от короткого замыкания. метод с использованием характеристик заряда затвора SiC MOSFET.В: Материалы конгресса и выставки IEEE по преобразованию энергии, стр. 4756–4764 (2015)

  • 6.

    Лай, Р., Ван, Ф., Бургос, Р., Бороевич, Д., Чжан, Д., Нин , П .: Схема защиты от сквозного прохода для преобразователей, построенных на SiC JFET. IEEE Trans. Ind. Appl. 46 (6), 2495–2500 (2010)

    Артикул

    Google Scholar

  • 7.

    Ротмунд Д., Бортис Д., Колар У. Дж .: Компактный изолированный драйвер затвора со сверхбыстрой защитой от перегрузки по току для SiC MOSFET на 10 кВ.CPSS Tran. Power Electron. Прил. 3 (7), 278–291 (2018)

    Статья

    Google Scholar

  • 8.

    Мифтахутдинов Р., Ли, X., Мухопадхяй, Р., Ван, Г.: Как защитить SiC полевые транзисторы от короткого замыкания — обзор. В: Proceedings of IEEE European Conference on Power Electronics and Applications, pp 1–10 (2018)

  • 9.

    Ji, S., Laitinen, M., Huang, X., Sun, J., Giewont, B. , Леон, М., Толберт, М.Л., Ван, Ф.: Характеристики короткого замыкания и защита SiC MOSFET 10 кВ. IEEE Trans. Power Electron. 34 (2), 1755–1764 (2019)

    Статья

    Google Scholar

  • 10.

    Садик Д.П., Кломенарес Дж., Толстой Г., Пефитицис Д., Баковски М., Рабковски Дж .: Схема защиты от короткого замыкания для силовых транзисторов из карбида кремния. IEEE Trans. Ind. Electron. 63 (4), 1995–2004 (2016)

    Статья

    Google Scholar

  • 11.

    Сухатме Ю., Кришна Ю., Ганесан В. М., Хатуа М .: Технология защиты от короткого замыкания на основе тока стока для SiC MOSFET. В: Материалы международного симпозиума по устройствам, схемам и системам (2018)

  • 12.

    Сан, К., Ван, Дж., Бургос, Р., Бороевич, Д., Канг, Ю., Чой, Э. : Анализ и разработка схемы максимальной токовой защиты на основе паразитной индуктивности силового модуля SiC MOSFET. В: Материалы конференции и выставки IEEE по прикладной силовой электронике, стр.2086–2812 (2018)

  • 13.

    Юн, Х., Чо, Й .: Применение датчика тока с катушкой Роговского для обнаружения и блокировки перегрузки по току в системах преобразования энергии. В: Материалы международной конференции по силовой электронике и ECCE Asia (2019)

  • 14.

    Wang, J., Shen, Z., Dimarino, C., Burgos, R., Boroyevich, D .: Разработка драйвера затвора для Модуль SiC MOSFET 1,7 кВ с датчиком тока Роговского для защиты от короткого замыкания. В: Материалы конференции и выставки IEEE по прикладной силовой электронике, стр.516–523 (2016)

  • 15.

    Чжан, В., Ван, Ф., Чжан, З., Хольцингер, Б.: Быстрая максимальная токовая защита широкозонного устройства с измерением постоянного тока. В: Материалы международной конференции по силовой электронике и ECCE Asia (2019)

  • 16.

    Цуй, Ю., Чжан, З., Йи, П., Вэй, Л .: Исследование токовой защиты от сверхтоков на основе зеркала для 1200 Модули SiC MOSFET высокой мощности V 800A. В: Материалы конгресса и выставки IEEE по преобразованию энергии, стр.6161–6165 (2019)

  • 17.

    Лю, Дж., Ван, Ю., Чжэн, З., Пэн, З., Ли, Я .: Сравнение двух драйверов затвора для SiC MOSFET по производительности переключения и выше текущая защита. В: Материалы международной конференции по электрическим машинам и системам (2017)

  • 18.

    Ван, Х., Чжао, Дж., Чжэн, З., Сунь, Х .: Схема силового МОП-транзистора из карбида кремния с быстрым коротким замыканием. защита цепи. В: Труды семинара по устройствам и приложениям питания с широкой запрещенной зоной в Азии, стр.260–265 (2018)

  • 19.

    Чжан, X., Шен, Г., Гант, Л., Банерджи, С.: Углубленное исследование устойчивости к короткому замыканию и защиты SiC MOSFET на 1200 В. В: Материалы международной выставки и конференции по силовой электронике, интеллектуальному движению, возобновляемым источникам энергии и управлению энергопотреблением, стр. 866–872 (2018)

  • 20.

    Кумар А., Равичандран А., Сингх С., Шах, С., Бхаттачарья, С.: Интеллектуальный драйвер затвора среднего напряжения с улучшенной схемой защиты от короткого замыкания для полевых МОП-транзисторов 4H-SiC на 10 кВ.В: Протоколы конгресса и выставки IEEE по преобразованию энергии, стр. 2560–2566 (2017)

  • 21.

    Райс, Дж., Муккен, Дж .: Соображения по конструкции привода затвора SiC MOSFET. В: Протоколы международного семинара IEEE по интегрированной силовой упаковке, стр. 24–27 (2015)

  • 22.

    Ибарра, Л., Понсе, П., Молина, А.: Регулируемая бессенсорная защита от сквозного прохода для H -мосты. В: Материалы ежегодной конференции общества промышленной электроники IEEE, стр. 379–384 (2018)

  • 23.

    Anurag, A., Acharya, S., Prabowo, Y., Gohil, G., Bhattacharya, S .: Конструктивные соображения и разработка инновационного драйвера затвора для силовых устройств среднего напряжения с высоким dv / dt. IEEE Trans. Power Electron. 34 (6), 5256–5267 (2019)

    Артикул

    Google Scholar

  • 24.

    Лутц, Дж., Баслер, Т .: Устойчивость к короткому замыканию высоковольтных IGBT. В: Материалы международной конференции по микроэлектронике, с.243–250 (2012)

  • 25.

    Чохавала, Р., Кэтт, Дж., Кирали, Л .: Обсуждение поведения IGBT при коротком замыкании и схем защиты от короткого замыкания. IEEE Trans. Ind. Appl. 31 (2), 256–263 (1995)

    Артикул

    Google Scholar

  • В чем разница между MOSFET и BJT?

    ОСНОВНЫЕ ЗНАНИЯ — MOSFET VS. BJT В чем разница между MOSFET и BJT?

    Автор /
    Редактор:
    Люк Джеймс
    / Erika Granath

    Полевой транзистор металл-оксид-полупроводник (MOSFET) и биполярный переходный транзистор (BJT) — это два типа транзисторов, которые выпускаются в различных корпусах, и тем, кто не знаком с электроникой, часто сложно решить, какой из них следует использовать. в своих проектах.

    Связанные компании

    Хотя и MOSFET, и BJT являются транзисторами, они работают по-разному и ведут себя по-разному.

    (Источник: Юрий Захачевский)

    Хотя и MOSFET, и BJT являются транзисторами, они работают по-разному и ведут себя по-разному, поэтому используются по-разному.

    Что такое полевой МОП-транзистор?

    Рисунок 1: Структура полевого МОП-транзистора.

    (Источник: Electronic Tutorials)

    Полевой транзистор металл-оксид-полупроводник (MOSFET) — это разновидность полевого транзистора (FET) , который состоит из трех выводов — затвора, истока и стока.В полевом МОП-транзисторе сток управляется напряжением на выводе затвора, поэтому полевой МОП-транзистор является устройством, управляемым напряжением. Напряжение, приложенное к затвору, определяет, сколько тока течет в сток. MOSFET доступны двух типов: « p-channel » и « n-channel ». Оба эти типа могут быть либо в режиме увеличения, либо в режиме истощения (см. Рисунок 1). Это означает, что всего существует четыре различных типа полевых МОП-транзисторов.

    В полевых МОП-транзисторах с каналом p-типа выводы истока и стока выполнены из полупроводника p-типа.Точно так же в n-канальных полевых МОП-транзисторах выводы истока и стока сделаны из полупроводника n-типа. Сам вывод затвора сделан из металла и отделяется от выводов истока и стока с помощью оксида металла. Такой уровень изоляции обеспечивает низкое энергопотребление и является основным преимуществом транзисторов этого типа. Часто полевые МОП-транзисторы используются в маломощных устройствах или в качестве строительных блоков для снижения энергопотребления.

    Режим истощения: Когда напряжение на клемме затвора низкое, канал демонстрирует максимальную проводимость.Поскольку напряжение на зажимах затвора является положительным или отрицательным, проводимость канала снижается.

    Режим улучшения: , когда напряжение на клемме затвора низкое, устройство не проводит ток, если на клемму затвора не подается большее напряжение.

    Что такое BJT?

    Биполярный переходной транзистор (BJT) — это устройство, управляемое током (в отличие от MOSFET, управляемое напряжением), которое, среди прочего, широко используется в качестве усилителя, генератора или переключателя. Биполярный транзистор имеет три контакта — базу, коллектор и эмиттер — и два перехода: p-переход и n-переход.

    Существует два типа BJT — PNP и NPN . Каждый тип имеет большой коллекторный элемент и большой эмиттерный элемент, которые легированы одинаковым образом. Между этими структурами находится небольшой слой другого легирующего агента, называемого «основой». Ток течет в коллекторе PNP и выходит из эмиттера. В NPN полярность противоположная, и ток течет в эмиттере и выходит из коллектора. В любом случае направление тока в базе такое же, как и на коллекторе.

    Рисунок 2: Принцип работы BJT.

    (Источник: Electronic Tutorials)

    По сути, работа BJT-транзистора определяется током на его базовом выводе. Например, небольшой базовый ток равен небольшому току коллектора. Выходной ток BJT всегда равен входному току, умноженному на коэффициент, известный как «усиление», обычно в 10-20 раз превышающий базовый ток.

    MOSFET vs BJT: в чем разница?

    Рисунок 3: Разница между BJT и MOSFET.

    (Источник: Electronic Tutorials)

    Между MOSFET и BJT есть много различий.

    • MOSFET (управляемый напряжением) представляет собой металлооксидный полупроводник, тогда как BJT (управляемый током) представляет собой транзистор с биполярным переходом.
    • Хотя оба терминала имеют по три терминала, они отличаются. MOSFET имеет исток, сток и затвор, тогда как BJT имеет базу, эмиттер и коллектор.
    • MOSFET идеально подходят для приложений большой мощности, тогда как BJT чаще используются в приложениях с низким током.
    • BJT зависит от тока на его базовом выводе, тогда как MOSFET зависит от напряжения на электроде затвора с оксидной изоляцией.
    • Структура MOSFET по своей природе более сложна, чем структура BJT.

    Что лучше?

    И MOSFET, и BJT имеют уникальные характеристики, а также свои плюсы и минусы. К сожалению, мы не можем сказать, что «лучше», потому что вопрос очень субъективен. На этот вопрос нет однозначного и однозначного ответа.

    При выборе того, что использовать в проекте, необходимо учитывать множество различных факторов, чтобы прийти к решению. К ним относятся уровень мощности , напряжение привода, эффективность, стоимость и скорость переключения, среди прочего — вот где действительно полезно знать ваш проект!

    Как правило, полевые МОП-транзисторы более эффективны в источниках питания. В устройстве с батарейным питанием, где нагрузка переменная, а источник питания ограничен, например, использование BJT было бы плохой идеей. Однако, если BJT используется для питания чего-то с предсказуемым потреблением тока (например, светодиодов), тогда это будет хорошо, потому что ток база-эмиттер может быть установлен на долю тока светодиода для повышения эффективности.

    (ID: 46385462)

    Как использовать MOSFET — Учебное пособие для начинающих

    Давайте поговорим об основах MOSFET и о том, как их использовать. Это руководство написано в первую очередь для неакадемических любителей, поэтому я постараюсь упростить концепцию и сосредоточиться больше на практической стороне вещей.

    Однако, если вы разбираетесь в том, как работает MOSFET, я поделюсь некоторыми полезными академическими статьями и ресурсами в конце этого поста. MOSFET имеет некоторые преимущества и недостатки по сравнению с BJT, поэтому тщательно выбирайте основание для вашего приложения.

    Вы можете купить полевые МОП-транзисторы для проектов Arduino на Amazon: http://amzn.to/2Gk6ruW

    MOSFET — это металлооксидный полупроводниковый полевой транзистор. Это особый тип полевого транзистора (FET).

    В отличие от BJT, который «управляется током», MOSFET — это устройство, управляемое напряжением. MOSFET имеет клеммы «затвор», «сток» и «исток» вместо клемм «база», «коллектор» и «эмиттер» в биполярном транзисторе. Подавая напряжение на затвор, он генерирует электрическое поле для управления током, протекающим через канал между стоком и истоком, и ток от затвора не течет в полевой МОП-транзистор.

    МОП-транзистор можно рассматривать как переменный резистор, в котором разность напряжений затвор-исток может управлять сопротивлением сток-исток. Когда нет приложения напряжения между затвором-источником, сопротивление сток-исток очень велико, что почти похоже на разомкнутую цепь, поэтому ток не может течь через сток-источник. Когда применяется разность потенциалов затвор-исток, сопротивление сток-исток уменьшается, и ток будет течь через сток-источник, который теперь представляет собой замкнутую цепь.

    В двух словах, полевой транзистор управляется приложенным напряжением затвор-исток (которое регулирует электрическое поле в канале), например, при защемлении или открытии соломинки и остановке или разрешении протекания тока. Благодаря этому свойству полевые транзисторы отлично подходят для протекания большого тока, а полевые МОП-транзисторы обычно используются в качестве переключателя.

    Хорошо, позвольте мне резюмировать различия между BJT и MOSFET.

    • В отличие от биполярных транзисторов, MOSFET управляется напряжением. В то время как BJT управляется током, необходимо тщательно рассчитать базовый резистор в соответствии с величиной переключаемого тока.Не так с полевым МОП-транзистором. Просто подайте достаточное напряжение на ворота, и переключатель сработает.
    • Поскольку они управляются напряжением, полевые МОП-транзисторы имеют очень высокий входной импеданс, поэтому ими может управлять что угодно.
    • MOSFET

    • имеет высокое входное сопротивление.

    Чтобы использовать полевой МОП-транзистор в качестве переключателя, напряжение на затворе (Vgs) должно быть выше, чем у источника. Если подключить гейт к источнику (Vgs = 0), он выключится.

    Например, у нас есть IRFZ44N, который является «стандартным» полевым МОП-транзистором и включается только при Vgs = 10–20 В.Но обычно мы стараемся не давить на него слишком сильно, поэтому напряжение 10–15 В является обычным для Vgs для этого типа полевого МОП-транзистора.

    Однако, если вы хотите управлять им от Arduino, который работает при 5 В, вам понадобится МОП-транзистор «логического уровня», который можно включить при 5 В (Vgs = 5 В). Например, STP55NF06L. У вас также должен быть резистор последовательно с выходом Arduino для ограничения тока, поскольку затвор очень емкостный и может потреблять большой мгновенный ток, когда вы пытаетесь его включить. Около 220 Ом — хорошее значение.

    На этой странице показаны некоторые подробные объяснения того, как MOSFET работает как переключатель. На этой странице показано расширенное использование MOSFET.

    Полевые МОП-транзисторы

    бывают четырех различных типов. Нам нужно знать три основные категории.

    • N-канал (NMOS) или P-канал (PMOS)
    • Режим улучшения или истощения
    • Логический или нормальный МОП-транзистор

    N-Channel — Для N-канального MOSFET источник заземлен. Чтобы включить полевой МОП-транзистор, нам нужно поднять напряжение на затворе.Чтобы выключить его, нам нужно подключить ворота к земле.

    P-Channel — Источник подключен к шине питания (Vcc). Чтобы позволить току течь, ворота должны быть заземлены. Чтобы выключить его, необходимо подтянуть гейт к Vcc.

    Depletion Mode — для выключения устройства требуется приложенное напряжение затвор-исток (Vgs).

    Enhancement Mode — Транзистору требуется приложенное напряжение затвор-исток (Vgs) для включения устройства.

    Несмотря на разнообразие, наиболее часто используемым типом является N-канальный режим улучшения.

    Существуют также полевые МОП-транзисторы логического уровня и обычные, но единственное различие — это уровень потенциала затвор-исток, необходимый для управления полевым МОП-транзистором.

    Я постараюсь объяснить это как можно проще, чтобы получить более подробную информацию или, если вы сомневаетесь, просмотрите ссылки и ссылки, которые я даю в конце сообщения.

    MOSFET — это полевой транзистор, управляемый напряжением, который отличается от JFET. Электрод затвора электрически изолирован от основного полупроводника тонким слоем изоляционного материала (серьезно!).Этот изолированный металлический затвор похож на пластину конденсатора с чрезвычайно высоким входным сопротивлением (почти бесконечным!). Из-за изоляции затвора нет тока в МОП-транзистор от затвора.

    Когда на затвор подается напряжение, оно изменяет ширину канала сток-исток, по которому текут носители заряда (электроны или дырки). Чем шире канал, тем лучше проводит прибор.

    MOSFET используется иначе, чем обычный полевой транзистор с переходом.

    • Бесконечный высокий входной импеданс делает полевые МОП-транзисторы полезными для усилителей мощности. Эти устройства также хорошо подходят для приложений с высокоскоростной коммутацией. Некоторые интегральные схемы содержат крошечные полевые МОП-транзисторы и используются в компьютерах.
    • Поскольку оксидный слой очень тонкий, МОП-транзистор может быть поврежден накоплением электростатических зарядов. При работе со слабым сигналом на радиочастоте устройства MOSFET обычно не работают так же хорошо, как другие типы полевых транзисторов.

    Где поставить нагрузку на полевой МОП-транзистор? Источник или слив?

    Потому что нагрузка имеет сопротивление, которое, по сути, является резистором.Для N-канального MOSFET причина, по которой мы обычно помещаем нагрузку на сторону стока, заключается в том, что источник обычно подключен к GND.

    Если нагрузка подключена со стороны истока, Vgs должен быть выше для переключения MOSFET, иначе ток между истоком и стоком будет недостаточным, чем ожидалось.

    Радиатор подключен к канализации?

    Обычно радиатор на задней панели полевого МОП-транзистора подключается к стоку! Если вы устанавливаете несколько полевых МОП-транзисторов на радиатор, они должны быть электрически изолированы от радиатора! Если радиатор прикреплен болтами к заземляющей раме, рекомендуется изолировать его.

    Для чего нужен корпусный диод?

    Полевые МОП-транзисторы

    также имеют внутренний диод, который может пропускать ток непреднамеренно. Внутренний диод также ограничивает скорость переключения. Вам не нужно беспокоиться об этом, если вы работаете на частоте ниже 1 МГц.

    Схема активной балансировки напряжений на основе высокоточного управления синхронизацией стробирующего сигнала для последовательно соединенных быстросменных полевых транзисторов (конференция)


    Чжан, Чжэюй, Гуй, Хандун, Ню, Цзяхао, Чен, Жуйруй, Ван, Фэй, Толберт, Леон М., Костинетт, Дэниел Дж. И Блэлок, Бенджамин Дж. Схема активной балансировки напряжения на основе высокоточного управления синхронизацией стробирующего сигнала для последовательно соединенных полевых транзисторов с быстрой коммутацией. США: Н. П., 2018.
    Интернет. DOI: 10.1109 / APEC.2018.8341125.


    Чжан, Чжэю, Гуй, Хандун, Ню, Цзяхао, Чен, Жуйруй, Ван, Фэй, Толберт, Леон М., Костинетт, Дэниел Дж., & Блэлок, Бенджамин Дж. Схема активной балансировки напряжений на основе высокоточного управления синхронизацией стробирующего сигнала для последовательно соединенных полевых транзисторов с быстрой коммутацией. Соединенные Штаты. https://doi.org/10.1109/APEC.2018.8341125


    Zhang, Zheyu, Gui, Handong, Niu, Jiahao, Chen, Ruirui, Wang, Fei, Tolbert, Leon M., Costinett, Daniel J., and Blalock, Benjamin J. Thu.
    «Схема активной балансировки напряжений на основе высокоточного управления синхронизацией стробирующего сигнала для последовательно соединенных быстросменных полевых транзисторов».Соединенные Штаты. https://doi.org/10.1109/APEC.2018.8341125. https://www.osti.gov/servlets/purl/1468921.

    @article {osti_1468921,
    title = {Схема активной балансировки напряжений на основе высокоточного управления синхронизацией стробирующего сигнала для последовательно соединенных полевых транзисторов с быстрой коммутацией},
    автор = {Чжан, Чжэю и Гуй, Хандонг и Ню, Цзяхао и Чен, Жуйруй и Ван, Фэй и Толберт, Леон М.и Костинетт, Дэниел Дж. и Блалок, Бенджамин Дж.},
    abstractNote = {Из-за низкой доступности, высокой стоимости и ограниченной производительности высоковольтных силовых устройств в высоковольтных системах большой мощности обычно рассматривается последовательное соединение низковольтных переключателей. На практике из-за динамического дисбаланса напряжений и связанной с этим проблемы надежности переключатели в последовательном соединении не пользуются популярностью, особенно для полевых транзисторов с быстрым переключением, таких как кремниевые (Si) полевые МОП-транзисторы с суперпереходом, полевые транзисторы из карбида кремния (SiC), SiC-полевые МОП-транзисторы.