Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Принципиальная схема терморегулятора. Обзор наиболее популярных схем

СХЕМЫ ТЕРМОРЕГУЛЯТОРОВ

    Существует большое количество электрических принципиальных схем, которые могут поддерживать желаемую заданную температуру с точностью до 0,0000033 °С. Эти схемы включают коррекцию при отклонении от установленного значения температуры, пропорциональное, интегральное и дифференциальное регулирование.


    В регуляторе для электроплиток (рис. 1.1) используется позистор (терморезистор с положительным температурным коэффициентом сопротивления или ТКС) типа К600А фирмы Allied Electronics, встроенный в кухонную плиту, чтобы поддерживать идеальную температуру варки. Потенциометром можно регулировать запуск семисторного регулятора и, соответственно, включение или выключение нагревательного элемента. Устройство предназначено для работы в электрической сети с напряжением 115 В. При включении устройства в сеть напряжением 220 В необходимо использовать другой питающий трансформатор и семистор.

Рисунок 1.1 Регулятор температуры электроплиты


    Таймер LM122 производства компании National используется как дозирующий терморегулятор с оптической развязкой и синхронизацией при прохождении питающего напряжения через нуль. Установкой резистора R2 (рис. 1.2) задается регулируемая позистором R1 температура. Тиристор Q2 подбирается из расчета подключаемой нагрузки по мощности и напряжению. Диод D3 определен для напряжения 200 В. Резисторы R12, R13 и диод D2 реализуют управление тиристором при прохождении питающего напряжения через нуль.

Рисунок 1.2 Дозирующий регулятор мощности нагревателя


    Простая схема (рис. 1.3) с переключателем при переходе питающего напряжения через нуль на микросхеме СА3059 позволяет регулировать включение и выключение тиристора, который управляет катушкой нагревательного элемента или реле для управления электро- или газовой печью.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Переключение тиристора происходит при малых токах. Измерительное сопротивление NTC SENSOR обладает отрицательным температурным коэффициентом. Резистором Rp устанавливается желаемая температура.

Рисунок 1.3 Схема терморегулятора с комутацией нагрузки при переходе питания через ноль.


    Устройство (рис. 1.4) обеспечивает пропорциональное регулирование температуры небольшой маломощной печи с точностью до 1 °С относительно температуры, заданной с помощью потенциометра. В схеме используется стабилизатор напряжения 823В, который питается, как и печь, от того же источника напряжением 28 В. Для задания величины температуры должен использоваться 10-оборотный проволочный потенциометр. Мощный транзистор Qi работает в режиме насыщения или близко к этому режиму, однако радиатор для охлаждения транзистора не требуется.

Рисунок 1.4 Схема терморегулятора для низковольтного нагревателя


    Для управления семистором при переходе питающего напряжения через нуль используется переключатель на микросхеме SN72440 от фирмы Texas Instruments. Эта микросхема переключает симистор TRIAC (рис. 1.5), включающий или выключающий нагревательный элемент, обеспечивая необходимый нагрев. Управляющий импульс в момент перехода напряжения сети через нуль подавляется или пропускается под действием дифференциального усилителя и моста сопротивления в интегральной схеме (ИС). Ширина последовательных выходных импульсов на выводе 10 ИС регулируется потенциометром в цепи запуска R(trigger)? как это показано в таблице на рис. 1.5, и должна изменяться в зависимости от параметров используемого симистора.

Рисунок 1.5 Терморегулятор на микросхеме SN72440


    Обычный кремниевый диод с температурным коэффициентом 2 мВ/°С служит для поддержания разницы температур до ±10 °F] с точностью примерно 0,3 °F в широком диапазоне температур. Два диода, включенные в мост сопротивлений (рис.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем дают напряжение на выводах А и В, которое пропорционально разнице температуры. Потенциометром регулируется ток смещения, который соответствует предварительно устанавливаемой области смещения температуры. Низкое выходное напряжение моста усиливается операционным усилителем MCI741 производства фирмы Motorola до 30 В при изменении напряжения на входе на 0,3 мВ. Буферный транзистор добавлен для подключения нагрузки с помощью реле.

Рисунок 1.6 Регулятор температуры с датчиком на диоде

    Температура по шкале Фаренгейта. Для перевода температуры из шкалы Фаренгейта в шкалу Цельсия нужно от исходного числа отнять 32 и умножить результат на 5/9/


    Позистор RV1 (рис. 1.7) и комбинация из переменного и постоянного резисторов образуют делитель напряжения, поступающего с 10-вольтового диода Зенера (стабилитрона). Напряжение с делителя подается на однопереходный транзистор. Во время положительной полуволны напряжения сети на конденсаторе возникает напряжение пилообразной формы, амплитуда которого зависит от температуры и установки сопротивления на потенциометре номиналом 5 кОм. Когда амплитуда этого напряжения достигает отпирающего напряжения однопереходного транзистора, он включает тиристор, который и подает напряжение на нагрузку. Во время отрицательной полуволны переменного напряжения тиристор выключается. Если температура печи низка, то тиристор открывается в полуволне раньше и производит больший нагрев. Если предварительно установленная температура достигнута, то тиристор открывается позже и производит меньший нагрев. Схема разработана для использования в устройствах с температурой окружающей среды 100 °F.

Рисунок 1.7 Терморегулятор для хлебопечки


    Простой регулятор (рис. 1.8), содержащий измерительный мост с термистором и два операционных усилителя, регулирует температуру с очень высокой точностью (до 0,001 °С) и большим динамическим диапазоном, что необходимо при быстрых изменениях условий окружающей среды.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Рисунок 1.8 Схема терморегулятора повышенной точности


    Устройство (рис. 1.9) состоит из симистора и микросхемы, которая включает в себя источник питания постоянного тока, детектор перехода питающего напряжения через нуль, дифференциальный усилитель, генератор пилообразного напряжения и выходной усилитель. Устройство обеспечивает синхронное включение и выключение омической нагрузки. Управляющий сигнал получается при сравнении напряжения, получаемого от чувствительного к температуре измерительного моста из резисторов R4 и R5 и резистора с отрицательным температурным коэффициентом R6, а также резисторов R9 и R10 в другой цепи. Все необходимые функции реализованы в микросхеме ТСА280А фирмы Milliard. Показанные значения действительны для симистора с током управляющего электрода 100 мА, для другого симистора значения номиналов резисторов Rd, Rg и конденсатора С1 должны изменяться. Пределы пропорционального регулирования могут устанавливаться с помощью изменения значения резистора R12. При проходе через нуль напряжения сети симистор будет переключаться. Период колебаний пилообразной формы составляет примерно 30 сек и может устанавливаться изменением емкости конденсатора С2.


    Представленная простая схема (рис. 1.10) регистрирует разницу температур двух объектов, нуждающихся в использовании регулятора. Например, для включения вентиляторов, выключения нагревателя или для управления клапанами смесителей воды. Два недорогих кремниевых диода 1N4001, установленные в мост сопротивлений, используются как датчики. Температура пропорциональна напряжению между измерительным и опорным диодом, которое подается на выводы 2 и 3 операционного усилителя МС1791. Так как при разнице температур с выхода моста поступает только примерно 2 мВ/°С, то необходим операционный усилитель с высоким усилением.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Если для нагрузки требуется более 10 мА, то необходим буферный транзистор.

Рисунок 1.10 Схема терморегулятора с измерительным диодом


    При падении температуры ниже установленного значения разность напряжений, на измерительном мосте с терморезистором, регистрируется дифференциальным операционным усилителем, который открывает буферный усилитель на транзисторе Q1 (рис. 1.11) и усилитель мощности на транзисторе Q2. Рассеиваемая мощность транзистора Q2 и его нагрузки резистора R11 обогревают термостат. Терморезистор R4 (1D53 или 1D053 от фирмы National Lead) имеет номинальное сопротивление 3600 Ом при 50 °С. Делитель напряжения Rl—R2 уменьшает входной уровень напряжения до необходимого значения и способствует тому, что терморезистор работает при малых токах, обеспечивающих малый разогрев. Все цепи моста, за исключением резистора R7, предназначенного для точной регулировки температуры, находятся в конструкции термостата.

Рисунок 1.11 Схема терморегулятора с измерительным мостом


    Схема (рис. 1.12) осуществляет линейное регулирование температуры с точностью до 0,001 °С, с высокой мощностью и высокой эффективностью. Источник опорного напряжения на микросхеме AD580 питает мостовую схему преобразователя температуры, в которой платиновый измерительный резистор (PLATINUM SENSOR) работает в качестве датчика. Операционный усилитель AD504 усиливает выходной сигнал моста и управляет транзистором 2N2907, который, в свою очередь, управляет синхронизируемым с частотой 60 Гц генератором на однопереходном транзисторе. Этот генератор питает управляющий электрод тиристора через развязывающий трансформатор. Предварительная установка способствует тому, что тиристор включается в различных точках переменного напряжения, что необходимо для точной регулировки нагревателя. Возможный недостаток — возникновение помех высокой частоты, т. к. тиристор переключается посреди синусоиды.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Рисунок 1.12 Тиристорный терморегулятор


    Узел управления мощного транзисторного ключа (рис. 1.13) для нагрева инструментов мощностью 150 Вт использует отвод на нагревательном элементе, чтобы принудить переключатель на транзисторе Q3 и усилитель на транзисторе Q2 достичь насыщения и установить малую рассеиваемую мощность. Когда на вход транзистора Qi поступает положительное напряжение, транзистор Qi открывается и приводит транзисторы Q2 и Q3 в открытое состояние. Ток коллектора транзистора Q2 и базовый ток транзистора Q3 определяются резистором R2. Падение напряжения на резисторе R2 пропорционально напряжению питания, так что управляющий ток обладает оптимальным уровнем для транзистора Q3 при большом диапазоне напряжения.

Рисунок 1.13 Ключ для низковольтного терморегулятора


    Операционный усилитель СА3080А производства фирмы RCA (рис. 1.14) включает вместе термопару с переключателем, срабатывающем при проходе питающего напряжения через нуль и выполненным на микросхеме СА3079, который служит как триггер для симистора с нагрузкой переменного напряжения. Симистор нужно подбирать Под регулируемую нагрузку. Напряжение питания для операционного усилителя некритично.

Рисунок 1.14 Терморегулятор на термопаре


    При использовании фазового управления симистором ток нагрева сокращается постепенно, если происходит приближение к установленной температуре, что предотвращает большое отклонение от установленного значения. Сопротивление резистора R2 (рис. 1.15) регулируется так, чтобы транзистор Q1 при желаемой температуре был закрыт, тогда генератор коротких импульсов на транзисторе Q2 не функционирует и таким образом симистор больше не открывается. Если температура понижается, то сопротивление датчика RT увеличивается и транзистор Q1 открывается. Конденсатор С1 начинает заряжаться до напряжения открывания транзистора Q2, который лавинообразно открывается, формируя мощный короткий импульс, выполняющий включение симистора.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Чем больше открывается транзистор Q1, тем быстрее заряжается емкость С1 и симистор в каждой полуволне переключается раньше и, вместе с тем, в нагрузке возникает большая мощность. Пунктирной линией представлена альтернативная схема для регулирования двигателя с постоянной нагрузкой, например с вентилятором. Для работы схемы в режиме охлаждения резисторы R2 и RT нужно поменять местами.

Рисунок 1.15 Терморегулятор для отопления


    Пропорциональный терморегулятор (рис. 1.16) использующий микросхему LM3911 от фирмы National, устанавливает постоянную температуру кварцевого термостата на уровне 75 °С с точностью ±0,1 °С и улучшает стабильность кварцевого генератора, который часто используется в синтезаторах и цифровых счетчиках. Отношение импульс/пауза прямоугольного импульса на выходе (отношение времени включения/выключения) изменяется в зависимости от температурного датчика в ИС и напряжения на инверсном входе микросхемы. Изменения продолжительности включения микросхемы изменяют усредненный ток включения нагревательного элемента термостата таким образом, что температура приводится к заданной величине. Частота прямоугольного импульса на выходе ИС определяется резистором R4 и конденсатором С1. Оптрон 4N30 открывает мощный составной транзистор, у которого в цепи коллектора имеется нагревательный элемент. Во время подачи положительного прямоугольного импульса на базу транзисторного ключа последний переходит в режим насыщения и подключает нагрузку, а при окончании импульса отключает ее.

Рисунок 1.16 Пропорциональный терморегулятор


    Регулятор (рис. 1.17) поддерживает температуру печи или ванны с высокой стабильностью на уровне 37,5 °С. Рассогласование измерительного моста регистрируется измерительным операционным усилителем AD605 с высоким коэффициентом подавления синфазной составляющей, низким дрейфом и симметричными входами.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Составной транзистор с объединенными коллекторами (пара Дарлингтона) осуществляет усиление тока нагревательного элемента. Транзисторный ключ (PASS TRANSISTOR) должен принимать всю мощность, которая не подводится к нагревательному элементу. Чтобы справляться с этим, большая схема следящей системы подключается между точками «А” и «В», чтобы установить постоянно 3 В на транзисторе без учета напряжения, требуемого для нагревательного элемента. Выходной сигнал операционного усилителя 741 сравнивается в микросхеме AD301A с напряжением пилообразной формы, синхронным с напряжением сети частотой 400 Гц. Микросхема AD301A работает как широтно-импульсный модулятор, включающий транзисторный ключ 2N2219—2N6246. Ключ предоставляет управляемую мощность конденсатору емкостью 1000 мкФ и транзисторному ключу (PASS TRANSISTOR) терморегулятора.

Рисунок 1.17 Высоточный терморегулятор


    Принципиальная схема терморегулятора, срабатывающего при проходе напряжения сети через нуль (ZERO-POINT SWITCH) (рис. 1.18), устраняет электромагнитные помехи, которые возникают при фазовом управлении нагрузкой. Для точного регулирования температуры электронагревательного прибора используется пропорциональное включение/выключение семистора. Схема, справа от штриховой линии, представляет собой переключатель, срабатывающий при проходе через нуль питающего напряжения, который включает симистор почти непосредственно после прохода через нуль каждой полуволны напряжения сети. Сопротивление резистора R7 устанавливается таким, чтобы измерительный мост в регуляторе был уравновешен для желаемой температуры. Если температура превышена, то сопротивление позистора RT уменьшается и открывается транзистор Q2, который включает управляющий электрод тиристора Q3. Тиристор Q3 включается и замыкает накоротко сигнал управляющего электрода’ симистора Q4 и нагрузка отключается. Если температура понижается, то транзистор Q2 закрывается, тиристор Q3 отключается, а к нагрузке поступает полная мощность.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Пропорционального управления достигают подачей пилообразного напряжения, формируемого транзистором Q1, через резистор R3 на цепь измерительного моста, причем период пилообразного сигнала — это сразу 12 циклов частоты сети. От 1 до 12 этих циклов могут вставляться в нагрузку и, таким образом, мощность может модулироваться от 0—100% с шагом 8 %.

Рисунок 1.18 Терморегулятор на симисторе


    Схема устройства (рис. 1.19) позволяет оператору устанавливать верхние и нижние границы температуры для регулятора, что бывает необходимо при продолжительных тепловых испытаниях свойств материала. Конструкция переключателя дает возможность для выбора способов управления: от ручного до полностью автоматизированных циклов. С помощью контактов реле К3 управляют двигателем. Когда реле включено, двигатель вращается в прямом направлении с целью повышения температуры. Для понижения температуры направление вращения двигателя меняется на противоположное. Условие переключения реле К3 зависит от того, какое из ограничительных реле было включено последним, К\ или К2. Схема управления проверяет выход программатора температуры. Этот входной сигнал постоянного тока будет уменьшен резисторами и R2 максимально на 5 В и усилен повторителем напряжения А3. Сигнал сравнивается в компараторах напряжения Aj и А2 с непрерывно изменяющимся эталонным напряжением от 0 до 5 В. Пороги компараторов предварительно устанавливаются 10-оборотными потенциометрами R3 и R4. Транзистор Qi закрыт, если сигнал на входе ниже опорного сигнала. Если входной сигнал превосходит опорный сигнал, то транзистор Qi отрывается и возбуждает катушку реле К, верхнего предельного значения.

Рисунок 1.19


    Пара преобразователей температуры LX5700 от фирмы National (рис. 1.20) выдает выходное напряжение, которое пропорционально разнице температуры между обоими преобразователями и используется для измерения градиента температуры в таких процессах, как, например, распознавание отказа вентилятора охлаждения, распознавание движения охлаждающего масла, а также для наблюдения за другими явлениями в охлаждающих системах.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем С измерительным преобразователем, находящимся в горячей среде (вне охлаждающей жидкости или в покоящемся воздухе более 2 мин), 50-омный потенциометр должен устанавливаться таким образом, чтобы выход выключался. Тогда как с преобразователем в прохладной среде (в жидкости или в подвижном воздухе продолжительностью 30 сек) должно находиться положение, при котором выход включается. Эти установки перекрываются между собой, но окончательная установка между тем дает в итоге достаточно стабильный режим.

Рисунок 1.20 Схема детектора температур


    В схеме (рис. 1.21) используется высокоскоростной изолированный усилитель AD261K для высокоточного регулирования температуры лабораторной печи. Многодиапазонный мост содержит датчики с сопротивлением от 10 Ом до 1 мОм с делителями Кельвина—Варлея (Kelvin-Varley), которые используются для предварительного выбора точки управления. Выбор точки правления осуществляется с помощью переключателя на 4 положения. Для питания моста допускается применение неинвертирующего стабилизируемого усилителя AD741J, не допускающего синфазной погрешности напряжения. Пассивный фильтр на 60 Гц подавляет помехи на входе усилителя AD261K, который питает транзистор 2N2222A. Далее питание поступает на пару Дарлингтона и подводится 30 В к нагревательному элементу.


    Измерительный мост (рис. 1.22) образуется позистором (резистором с положительным температурным коэффициентом) и резисторами Rx R4, R5, Re. Сигнал, снимаемый с моста, усиливается микросхемой СА3046, которая в одном корпусе содержит 2 спаренных транзистора и один отдельный выходной транзистор. Положительная обратная связь через резистор R7 предотвращает пульсации, если достигнута точка переключения. Резистором R5 устанавливается точная температура переключения.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Если температура опускается ниже установленного значения, то реле RLA включается. Для противоположной функции должны меняться местами только позистор и Rj. Значение резистора Rj выбирается так, чтобы приблизительно достичь желаемой точки регулировки.

Рисунок 1.22 Регулятор температуры с позистором


    Схема регулятора (рис. 1.23) добавляет множество стадий опережающего сигнала к нормально усиленному выходу температурного датчика LX5700 от фирмы National, чтобы, по меньшей мере, частично компенсировать измерительные задержки. Коэффициент усиления по постоянному напряжению операционного усилителя LM216 будет установлен на значение, равное 10, с помощью резисторов с сопротивлением 10 и 100 мОм, что дает в итоге 1 В/°С на выходе операционного усилителя. Выход операционного усилителя активирует оптрон, который управляет обычным терморегулятором.

Рисунок 1.23 Терморегулятор с оптроном


    Схема (рис. 1.24) используется для регулирования температуры в установке промышленного отопления, работающей на газе и обладающей высокой тепловой мощностью. Когда операционный усилитель-компаратор AD3H переключается при требуемой температуре, то запускается одновйбратор 555, выходной сигнал которого открывает транзисторный ключ, а следовательно, включает газовый вентиль и зажигает горелку отопительной системы. По истечении одиночного импульса горелка выключается, несмотря на состояние выхода операционного усилителя. Постоянная времени таймера 555 компенсирует задержки в системе, при которой нагрев выключается, прежде чем датчик AD590 достигает точки переключения. Позистор, включенный во времязадающую цепь одновибратора’555, компенсирует изменения постоянной времени таймера из-за изменений температуры окружающей среды. При включении питания во время процесса запуска системы сигнал, формируемый операционным усилителем AD741, минует таймер и включает нагрев отопительной системы, при этом схема имеет одно устойчивое состояние.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Рисунок 1.24 Коррекция перегрузки


    Все компоненты терморегулятора находятся на корпусе кварцевого резонатора (рис. 1.25), таким образом, максимальная рассеиваемая мощность резисторов 2 Вт служит для того, чтобы поддерживать температуру в кварце. Позистор имеет при комнатной температуре сопротивление около 1 кОм. Типы транзистора некритичны, но должны иметь низкие токи утечки. Ток позистора примерно от 1 мА должен быть гораздо больше, чем ток базы 0,1 мА транзистора Q1. Если в качестве Q2 выбрать кремниевый транзистор, то нужно повысить 150-омное сопротивление до 680 Ом.

Рисунок 1.25


    В мостовой схеме регулятора (рис. 1.26) используется платиновый датчик. Сигнал с моста снимается операционным усилителем AD301, который включен как дифференциальный усилитель-компаратор. В холодном состоянии сопротивление датчика менее 500 Ом, при этом выход операционного усилителя приходит в насыщение и дает положительный сигнал на выходе, который открывает мощный транзистор и нагревательный элемент начинает греться. По мере нагревания элемента растет и сопротивление датчика, которое возвращает мост в состояние уравновешивания, и нагрев выключается. Точность достигает 0,01 °С.

Рисунок 1.26 Регулятор температуры на компараторе


Адрес администрации сайта: [email protected]

СХЕМА ТЕРМОРЕГУЛЯТОРА

   Поводом для сборки этой схемы послужила поломка терморегулятора в электрическом духовом шкафу на кухне. Поискав в интернете, особого изобилия вариантов на микроконтроллерах не нашел, конечно есть кое-что, но все в основном рассчитаны на работу с термодатчиком типа DS18B20, а он очень ограничен в температурном диапазоне верхних значений и для духовки не подходит. Задача ставилась измерять температуры до 300°C, поэтому выбор пал на термопары К-типа.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Анализ схемных решений привел к паре вариантов.

Схема терморегулятора — первый вариант

   Термостат собраный по этой схеме имеет заявленный предел верхней границы 999°C. Вот что получилось после его сборки:

   Испытания показали, что сам по себе термостат работает достаточно надежно, но не понравилось в данном варианте отсутствие гибкой памяти. Пошивка микроконтроллера для обеих вариантов — в архиве.

Схема терморегулятора — второй вариант

   Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP. Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и «помехонекапризной» работе терморегулятора в части управления. При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

   Работа регулятора температуры на макетной плате понравилась — приступил к окончательной сборке на печатной плате.

   Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

   Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений. В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Итак, вот что имеем:

   В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 — это означает датчик отключен или обрыв.

   И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу 🙂 Единственное что жена забраковала — маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

   Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор — ГУБЕРНАТОР.

   Форум по регуляторам температуры на МК

   Форум по обсуждению материала СХЕМА ТЕРМОРЕГУЛЯТОРА

принцип работы, схема включения и выключения

Часто для работы какого-либо устройства или целой системы необходимо поддерживать определённый температурный режим. Это актуально при работе контуров отопления или охлаждения, построении устройств типа «инкубатор». Одним из простых приборов, позволяющих контролировать температуру, является термореле. Такое приспособление возможно приобрести в специализированных торговых точках, но можно изготовить такой регулятор температуры и своими руками.

Назначения и характеристики

В основе работы термореле лежит способность устройства управлять включением и выключением узлов схемы в зависимости от изменения температуры. Фактически — это приспособление, располагающееся между управляемыми элементами и датчиками температуры. Конструктивно прибор представляет собой электронную схему или же устройство, выполненное из специального материала.

Первый вид предполагает использование выносных или встроенных датчиков, а второй — использует свойства различных материалов изменять свои параметры при изменении характеристик электрической сети.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем То есть контроль происходит контактным или бесконтактным способом. Но несмотря на принципиальные различия, суть работы терморегуляторов одинаков. Регистрируя изменение температуры, устройство разрывает или подсоединяет подключённые к нему узлы аппаратуры или оборудования в автоматическом режиме.

Благодаря их применению, температура воздуха, воды, поверхностей различных приборов и радиоэлементов имеет стабильное значение.

Для каждой среды используются свои особенности размещения устройства. Его точность срабатывания зависит не только от качества исполнения самого регулятора, но и правильного размещения.

Выпускаются терморегуляторы разных видов. Классифицировать их можно по следующим признакам:

  1. По назначению. Разделяются на внутренние и наружные.
  2. Способу установки. Существуют независимые терморегуляторы, как способные располагаться на любой поверхности, так и размещаемые только внутри оборудования.
  3. Функциональностью. Терморегуляторы могут регистрировать только один сигнал или сразу несколько. При этом второго типа называются многоканальными. Они могут поддерживать значение температуры как на нескольких устройствах одновременно, используя независимые каналы, так и только на одном.
  4. Способу настройки. Управление режимами работы и настройка приспособления может быть механической, электронной или электромеханической.
  5. Гистерезису. В терморегуляторах под ним понимают значение температуры, при которой сигнал изменяется на противоположный знак, а также явление, когда происходит задержка переключения сигнала в зависимости от величины влияния. Именно он даёт возможность снизить частоту переключения, например, при повышении температуры в нагревателе. Но при этом следует понимать, что большая величина гистерезиса приводит к температурному скачку.
  6. Виду термодатчиков. Подключаемые к терморегуляторам датчики могут быть контактного и бесконтактного действия. Например, использующие в работе инфракрасное излучение или свойство биметаллической пластины.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Параметры приспособления

Как и любое оборудование, регуляторы температуры характеризуются набором параметров. От них в первую очередь зависит точность срабатывания устройства. Зависят эти характеристики не только от качества применяемых при построении схемы терморегулятора элементов, но и реализации системы, позволяющей избегать влияния посторонних факторов. К основным характеристикам относят:

  1. Время переключения. Зависит от схемы реализации регулятора и способа установки датчика, определяющего его инерционность.
  2. Регулируемый диапазон. Устанавливает граничные значения температурного режима, в котором может происходить работа устройства.
  3. Напряжение питания. Это значение рабочего напряжения, необходимого для нормальной работы устройства.
  4. Активная нагрузка. Показывает, какой максимальной мощностью может управлять регулятор температуры.
  5. Класс защиты. Характеризует безопасность прибора. Обозначается согласно международной классификации по электрической безопасности.
  6. Система сигнализации. В регуляторе может использоваться светодиодный сигнализатор или жидкокристаллический экран. Ориентируясь на него, пользователь может сразу видеть, в каком режиме работает прибор контроля.
  7. Рабочая температура. Обозначает диапазон, в рамках которого обеспечивается правильная работа терморегулятора.
  8. Вид термодатчика. Являясь чувствительным элементом, он выступает в качестве индикатора температуры, отправляя данные на контроллер. Такие термодатчики на включение и выключение устройства бывают разных типов и конструкций, а также отличаются по способу передачи данных.

Кроме этого, к качественным характеристикам устройства относят: удобство использования, габариты, дополнительные возможности, общий вид.

Поэтому собирая терморегулятор своими руками, для получения законченного вида устройства желательно продумывать не только схему приспособления, но и корпус, в котором он будет располагаться.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Принцип работы

В общем виде терморегулятор можно представить в виде блок-схемы, состоящей из датчика температуры, блока обработки и регулирующего механизма. В основе работы механического теплового реле лежит способность биметаллической пластины изменять свою форму в зависимости от температуры. Для её изготовления используются два материала, жёстко скреплённые между собой с разным температурным коэффициентом расширения.

При нагреве такой пластины происходит её изгиб. Именно это свойство и используется при производстве тепловых реле. Во время деформирования пластинка замыкает или размыкает контактную группу, вследствие чего разрывается или восстанавливается электрический контакт. Такое реле может применяться в цепях как переменного, так и постоянного тока, а выбор граничной температуры в них обычно устанавливается с помощью механического регулятора.

Кроме этого, существуют твердотельные реле (электронные). В их конструкции уже нет движущихся и механических частей, а используется электронная схема, вычисляющая изменения температуры.

В качестве основных элементов таких приборов является термистор и микропроцессор. В первом происходит изменение электрических параметров при колебаниях температуры, а второй обрабатывает и в зависимости от запрограммированного алгоритма коммутирует контактные группы.

Схемотехника регуляторов

Из-за сложности настройки механического реле самостоятельное его изготовление практически невозможно, поэтому радиолюбители изготавливают твердотельные регуляторы. На сегодняшний день известно большое количество схем термореле разного класса. Так что подобрать подходящую для возможного повторения не составит сложности.

Но перед тем как приступить к самостоятельному изготовлению терморегулятора, необходимо подготовить ряд инструментов и материалов. Для этого, кроме электрической схемы и необходимых согласно ей радиоэлементов, понадобится:

  1. Паяльник или в случае использования сложных микроконтроллеров паяльная станция.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем
  2. Односторонний фольгированный стеклотекстолит. Если электрическая схема содержит большое количество радиоэлементов и относится к средней или высокой группе сложности, то изготовить её навесным монтажом не представляется возможным. Поэтому используется стеклотекстолит, на котором удобным методом, например, лазурно-утюжным или фотолитографией, наносится печатная схема будущего термореле.
  3. Мультиметр. Он необходим для настройки работы устройства и проверки правильности установки радиоэлементов.
  4. Мини-дрель. С помощью неё выполняют отверстия, в которые устанавливаются радиоэлементы.
  5. Рабочие материалы. К ним относятся: флюс, припой, спиртовой раствор, изолента или термоусадочные трубочки.

Последовательность действий при изготовлении сводится к следующему. На первом этапе выбирается схема и изучается её описание, доступность радиоэлементов. При этом не стоит забывать, что почти для каждой радиодетали существует аналог. Затем, изготавливается печатная схема, а по ней уже плата. На плату запаиваются радиоэлементы, коммутационные гнёзда и провода. Как только всё готово, производится тестовый запуск и в случае необходимости подстройка работы.

Простые устройства

Простейшее устройство, реагирующее на изменение температуры, можно собрать из нескольких сопротивлений и интегрального усилителя. Использующиеся резисторы представляют собой два полуплеча, образующие собой измерительную и опорную часть схемы. В качестве R2 используется термистор, то есть резистор, сопротивление которого меняется в зависимости от воздействующей на него температуры.

Интегральный усилитель LM393 работает в режиме компаратора, то есть сравнивает два сигнала, снимаемые с R1-R2 и R3-R4. Как только уровень сигнала на двух входах микросхемы сравняется, LM393 переключает нагрузку к питающей сети. В качестве нагрузки можно использовать вентилятор. Как только вентилятор охладит контролируемое устройство, уровень сигнала на втором и третьем входе компаратора снова начнёт различаться.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Устройство снова переключит свои выходы, и питание прекратит поступать в нагрузку.

Несложную схему можно собрать и на тиристоре. В качестве её нагрузки можно использовать нагреватель, температуру которого и будет регулировать самодельный терморегулятор.

Эта схема может использоваться в инкубаторе или аквариуме.

В основе схемы также лежит способность компаратора сравнивать уровни напряжения на своих входах и в зависимости от этого открывать свои выходы. При одинаковом сигнале ток через транзистор VT1 не течёт, а значит, на управляющем выводе тиристора VS1 находится низкий уровень, и он закрыт. Появившееся напряжение на сопротивлении R8 приводит к его открытию. Запитывается схема через диод VD2 и R10. Для стабилизации питания используется стабилитрон VD1. Перечень и номиналы элементов приведены в таблице:

ОбозначениеНаименованиеАналог
R110 кОм
R222 кОм
R3100 кОм
R4 =R66,8 кОм
R51 кОм
R8470 Ом
R95,1 кОм
R1027 кОм
С10,33 мкФ
VT1КТ1172N6027
VD1КС212ЖBZX30C12
VD2КД1051N4004
VS1КУ208ГTAG307— 800

Термореле на микроконтроллере

Собрав такой термостат, его можно использовать совместно с отопительной системой, например, совместно с котлом.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем В основе конструкции используется микросхема DS1621, которая совмещает в себе термометр и термостат. Её цифровой ввод-вывод обеспечивает точность ±0,5 °C.

При использовании DS1621 в качестве термостата в её внутреннюю энергонезависимую память (EEPROM) помещаются данные о температуре, которую необходимо поддерживать. А также контрольные точки, по достижении которых температура повышается или понижается. Разница между ними образует гистерезис, при этом на третьем выводе микросхемы формируется логическая единица или ноль.

Данные в микросхему заносятся с помощью микроконтроллера, выполненного на ATTINY2313. Устройство может поддерживать температуру в диапазоне от 10 до 40 градусов. Управление термоэлементом котла осуществляется через тиристор. С помощью кнопки S1 осуществляется включение и выключение термометра. А кнопками S2 и S3 устанавливается температура. Светодиод HL1 сигнализирует о работоспособности прибора. Во время нагревания термоэлемента котла он мигает. В качестве трансформатора используется TAIWAN 110—230V 6−0−6V 150TA.

При программировании в Features необходимо выбрать: int. RC Osc. 4 MHz; Start-up time: 14 CK + 0 ms; [CKSEL=0010 SUT=00] и Brown-out detection disabled; [B0DLEVEL=111] поставить галочку на Serial program downloading (SPI) enabled; [SPIEN=0]. А также отметить фьюзы: SUT1, SPIEN, SUTO, CKSEL3, CKSEL2, CKSELO. Правильно собранное устройство работает сразу и в наладке не нуждается.

Регулятор температуры с раздельной установкой температур срабатывания (LM311)

Большинство аналоговых терморегуляторов, построенных на компараторе, выполнено по схеме, в которой устанавливают только температуру, которую нужно поддерживать.

При этом гистерезис установлен фиксированным и нигде не обозначается, поэтому понять в каких пределах поддерживается заданная температура сложно. Здесь же предлагается схема терморегулятора, в котором можно отдельно установить как температуру включения нагревателя, так и его выключения, то есть нижний и верхний пределы температуры.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Принципиальная схема терморегулятора показана на рисунке в тексте. Схема выполнена на основе двухуровневого компаратора на микросхеме LM311. Питание электронной части — от маломощного силового трансформатора, а включение / выключение нагревателя посредством электромагнитного реле.

Датчиком температуры служит датчик LM235. Эта микросхема практически представляет собой стабилитрон, напряжение на котором зависит только от температуры, но никак не от напряжения питания. Зависимость линейная, напряжение на нем равно значению температуры, выраженной в градусах Кельвина, умноженной на 0,01.

То есть, при нуле градусов Цельсия, что равно 273 градуса Кельвина, напряжение будет 2,73V. А при 50 градусах Цельсия (323 градуса Кельвина) напряжение равно 3,23V. Кстати, термостат и настроен так, чтобы температуру можно было выбирать в этом диапазоне — от 0 до 50°С.

На отрицательный вход компаратора А2 (вывод 3) поступает напряжение с делителя, образованного резистором R7 и датчиком температуры VD4. Таким образом, на выводе 3 А2 будет напряжение, численно равное температуре в градусах Кельвина, умноженной на 0,01.

На положительный вход компаратора поступает напряжение с одного из делителей на резисторах R1-R2-R3 или R4-R5-R6 в зависимости от положения контактов реле К1. От напряжения на выходах этих делителей зависит температура включения и температура выключения нагревателя, поэтому напряжение на них подается через стабилизатор на микросхеме А1.

Рис. 1. Принципиальная схема регулятора температуры (термостата) на LM311.

Температура переключения компаратора зависит от напряжения на его положительном входе. Сюда подключен разъем «Контроль», к нему подключаются щупы цифрового мультиметра, включенного на режим измерения напряжения. Таким образом, мультиметр является шкалой для задания температуры верхнего и нижнего предела. Происходит это следующим образом.

Сначала нужно желаемые значения температуры включения и выключения нагревателя перевести в градусы Кельвина (прибавить к значениям в градусах Цельсия по 273).Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Затем, подключить мультиметр к разьему «Контроль» и резистором R5 установить на дисплее мультиметра напряжение, численно равное нижнему пределу температуры, умноженному на 0,01.

Например, 20°С = (273+20) 0,01 = 2,93V. Затем, включить выключатель S1 ручного включения нагревателя. При этом контакты реле К1.2 переключатся, и резистором R2 установить на дисплее мультиметра напряжение, численно равное верхнему пределу температуры, умноженному на 0,01. Например, 25°С = (273+25) 0,01 = 2,98V.

Теперь выключить S1. Термостат начинает работать. Когда температура опускается ниже нижнего предела, установленного R5 на выходе компаратора появляется напряжение, открывающее транзистор VТ1. При этом реле К1 включает нагреватель и переключает положительный вход А2 на R2, которым установлена максимальная температура.

При нагреве до максимальной температуры напряжение на выходе А2 упадет и реле К1 выключит нагреватель, и переключает положительный вход А2 на R5, которым установлена минимальная температура. Источник питания выполнен на маломощном силовом трансформаторе Т1.

Это готовый китайский трансформатор. У него первичная обмотка на 220/110V (есть отвод, который не используется, потому на схеме и не показан). А вторичная обмотка двойная (под двухполупериодный выпрямитель) по 9V переменного тока. Трансформатор рассчитан на максимальный ток вторичной обмотки 150mA.

Так как вторичная обмотка двойная выпрямитель сделан по двухполупериодной схеме на диодах VD1 и VD2. Если будет трансформатор с одинарной вторичной обмоткой на 9V переменного тока нужно выпрямитель сделать на четырех диодах по мостовой схеме.

Реле с двумя контактными группами, обмоткой на 12V и ток контактов 10А при напряжении 220V. При отсутствии такового, можно его заменить двумя реле. Их обмотки включить параллельно. Одно реле будет управлять контактами К1.1, второе — контактами К1.2.

При этом, реле с контактами К1.1 должно быть достаточно мощным, чтобы управлять нагревателем.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем А реле с контактами К1.2 может быть маломощным, даже герконовым.

Термодатчик LM235 можно заменить на LM135 или LM335, — большой разницы нет, в основном в типе корпуса.

Кромилин О.А. РК-2015-12.

схема регулятора температуры, установка и настройка термостата для батареи отопления

Как правило, схема терморегулятора температуры воздуха достаточно проста, чтобы даже начинающий радиолюбитель смог с ней справиться. Так как детали к подобным приборам по отдельности стоят недорого, то можно собрать работающее устройство буквально «за копейки». Единственное, чему нужно уделять внимание, делая регулятор температуры своими руками, так это его безопасности.

Зачем нужен регулятор температуры на радиаторе

В настоящее время все большее количество потребителей приходят к выводу, что без терморегулятора ни одна отопительная система не может быть экономически выгодной и надежной. Регулятор температуры воздуха даже с ручными настройками способен создать и поддерживать в комнатах нужный микроклимат, а более сложные цифровые аналоги позволяют управлять «погодой» в доме, находясь от него на расстоянии.

Что дает установка терморегулятора на радиатор отопления:

  • Поддержание одинакового нагрева воздуха в комнате даже тогда, когда за окном температура упала или, наоборот, поднялась. Если в отопительной системе нет подобного устройства, то в первом случае в помещениях станет прохладно, а во втором – жарко.
  • Установка терморегулятора электронного или цифрового типа на радиаторах дает возможность регулировать температуру в зависимости от времени суток, так как они оснащены встроенным таймером. Так, когда в будние дни домочадцев нет дома до вечера, то можно выставить параметры более низкие, например +14-16°C с тем, чтобы они повысились к возвращению людей домой.
  • Экономия энергоресурсов, так как при повышении температуры в комнате термостат перекрывает путь теплоносителю в радиатор до его остывания до нужного параметра.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Особенно заметна экономия в автономных системах обогрева, хотя и при подключении квартиры к городской теплосети при наличии счетчика его работа так же значительно уменьшит счет за отопление.
  • Комфорт и уют, вот что создает установка терморегулятора на радиатор.
  • Безопасность – еще один «конек» термостатов. Как показывает практика их использования в отопительном контуре, они не допускают завоздушенности в трубах и радиаторах, и нормализую напор теплоносителя.

Это основные преимущества, которые получает потребитель, даже если сделан терморегулятор своими руками.

Подбирая устройство, следует учесть тип отопительной системы и материал, из которого изготовлены батареи и трубы. Сегодня на рынке представлены модели для чугунных радиаторов и стальных или алюминиевых, для однотрубных и двухтрубных контуров.

Последовательность действий при изготовлении терморегулятора

Чтобы сделать простой терморегулятор своими руками, схема которого предусматривает наличие датчика, нужно проделать следующие шаги:

  • В качестве корпуса можно приспособить старый электросчетчик.
  • К месту, где у него нарисован «+» подсоединяется переменный резистор (потенциометр), который будет задавать температурные параметры.
  • К знаку «-» на корпусе счетчика подсоединяется аналоговый датчик температуры LM335, который можно купить в любом магазине товаров для теплооборудования. Это самый простой и дешевый датчик, главной задачей которого будет отслеживать напряжение в сети. Как только на плюсе оно повысится, прибор отдает об этом сигнал реле, и ток начнет поступать к котлу или теплоноситель в систему. Когда показатель повышается на минусе, происходит обратный процесс, и устройство отключает обогреватель.
  • Чтобы терморегулятор работал правильно, включая систему, когда температура воздуха в комнате опускается, например, до +20°C и выключая при нагреве до +25°C, нужно создать между плюсом и минусом связь.
  • Для обеспечения питания можно использовать катушку, чтобы «превратить» ее в трансформатор.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Подойдет та, что стояла в старом счетчике.

Так можно сделать самое примитивное устройство на 12В, тогда как схема электронного терморегулятора температуры содержит в своей основе электромагнитное реле, способное работать при 30 амперах.

Следует знать, что устройство, в основе которого термодатчик LM335, настраивается не на температуру воздуха, а на уровень напряжения в сети. Так, если нужно, чтобы воздух прогревался до +20 градусов, то выставляется параметр на 2.93 В.

Правила монтажа

Мало сделать регулятор температуры своими руками, его еще нужно правильно монтировать. Схема подключение комнатного термостата должна учитывать:

  • Возле устройства не должно быть нагревательных приборов.
  • Он не должен находиться под прямыми солнечными лучами.
  • Высота установки терморегулятора от пола должна составлять не менее 80 см.
  • Если радиатор закрыт коробом или гардиной, то следует сделать выносной датчик и закрепить его в нескольких метрах от рабочей части прибора.

Если предстоит подключение терморегулятора к батареям в автономной системе отопления, в функции которого будет входить отслеживание работы котла, то лучше отдать предпочтение покупному устройству той же фирмы.

Установка терморегулятора на батарею

Отопительная система – это единый «организм», в котором все элементы должны соответствовать друг другу и слаженно работать. Установка терморегулятора на радиатор отопления – это внедрение в него прибора, который должен полностью ему подходить по всем параметрам. Например, нельзя на чугунную батарею ставить термостат для алюминиевого радиатора, так как он попросту не выдержит напора воды или ее состава, если речь идет о городской теплосети.

Схема подключения терморегулятора следующая:

    • Слив воды из радиатора и его отсоединение от контура.
    • Если отопительная система однотрубная, то обязательно устанавливается байпас, чтобы носитель мог продолжать двигаться по трубам, когда ему перекрывается вход в батарею.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем
    • Монтаж терморегулятора производится путем вкручивания его в отверстие, через которое теплоноситель подается в радиатор.

Вкручивая термостат, нужно отслеживать, чтобы стрелка на его корпусе была по направлению течения воды в системе.

  • Термостатическую часть прибора следует установить горизонтально, но так, чтобы расположенный в нем датчик нагрева воздуха не попадал под воздействие температуры радиатора. Если отопительная система не позволяет этого сделать, то нужно монтировать устройство с выносным датчиком.
  • Когда монтируется терморегулятор для двухтрубной системы отопления, то он ставится в отверстие радиатора, куда входит подающая труба, а на выходе закручивается шаровой кран.
  • Радиатор подключается к контуру и проводится настройка терморегулятора и его проверка.

Довольно часто в отопительных системах используется трехходовой клапан с терморегулятором, который разделяет поток на две части и регулирует очередность подачи горячей и холодной воды. Он может быть как механического управления (ручка терморегулятора поворачивается вручную) и стоить недорого, так и автоматического с электроприводом.

Настройка термостата

Не зависимо от того, какой тип регулятора температуры используется, нужно придерживаться основных правил при их подключении. Настройки терморегулятора батареи отопления, как правило, не требуют особых знаний:

  • Необходимо убрать все источники теплопотерь в комнате.
  • Открыть клапан терморегулятора, провернув ручку до упора влево.
  • Спустя время проверить, насколько поднялась температура в комнате. Если она стала выше на 6-7 градусов, то нужно ручку регулятора вернуть в исходное положение, провернув ее вправо.
  • Медленно открыть клапан, создав оптимальный поток теплоносителя, который будет поддерживать температуру на одном уровне.

Так настраивается ручной термостат, тогда как у электронных аналогов все параметры указаны на дисплее. Достаточно внести их в устройство, чтобы дальше оно автоматически отслеживало изменения температуры воздуха в помещении.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Регулятор температуры воздуха в отопительной системе способен творить «чудеса» даже в условиях городской теплосети и создавать для людей комфортную жизнь и экономию средств. Конечно, схема регулятора температуры достаточно проста, чтобы сделать его своими руками, но настоящую гарантию качества и надежность работы обеспечивают исключительно приборы от производителей.

Рекомендуем:

  • Удлинитель потока для биметаллического радиатора, заглушки, краны, ниппеля и другие комплектующие
  • Экран на чугунную батарею: решетки, декоративные и отражающие экраны, кронштейны, терморегуляторы и другие комплектующие для чугунного радиатора
  • Тэны для радиаторов отопления: устройство, сфера применения, виды, подключение тэнов с терморегулятором
  • Фурнитура для полипропиленовых труб: заглушки, муфты, тройники, компенсаторы и другие фитинги для труб из полипропилена

Симисторный регулятор мощности до трёх киловатт своими руками

Проверка и регулировка схемы блока терморегулятора

Перед подключением блока к инструменту испытайте его.

  1. Возьмите собранную схему.
  2. Соедините её с сетевым проводом.
  3. Подключите лампу на 220 к плате и симистору или тиристору. В зависимости от вашей схемы.
  4. Сетевой провод воткните в розетку.
  5. Вращайте ручку переменного резистора. Лампа должна менять степень накаливания.

Схема с микроконтроллером проверяется аналогично. Только на цифровом индикаторе ещё будет отображаться процент выходной мощности.

Для регулировки схемы меняйте резисторы. Чем больше сопротивление, тем меньше мощность.

Нередко приходится ремонтировать или дорабатывать разные приборы, используя паяльник. От качества пайки зависит работа этих устройств.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Если вы приобрели паяльник без регулятора мощности, то обязательно установите его. При постоянном перегреве пострадают не только электронные компоненты, но и ваш паяльник.

Фото симисторного регулятора мощности

Также рекомендуем просмотреть:

  • Полировка фар своими руками
  • Строительные леса своими руками
  • Точилка для ножей своими руками
  • Антенный усилитель
  • Восстановление аккумулятора
  • Мини паяльник
  • Как сделать электрогитару
  • Оплетка на руль
  • Фонарик своими руками
  • Как заточить нож для мясорубки
  • Электрогенератор своими руками
  • Солнечная батарея своими руками
  • Течет смеситель
  • Как выкрутить сломанный болт
  • Зарядное устройство своими руками
  • Схема металлоискателя
  • Станок для сверления
  • Нарезка пластиковых бутылок
  • Аквариум в стене
  • Врезка в трубу
  • Стеллаж в гараж своими руками
  • Фильтр низких частот
  • Вечный фонарик
  • Нож из напильника
  • Усилитель звука своими руками
  • Трос в оплетке
  • Пескоструйный аппарат своими руками
  • Генератор дыма
  • Ветрогенератор своими руками
  • Акустический выключатель
  • Воскотопка своими руками
  • Туристический топор
  • Стельки с подогревом
  • Паяльная паста
  • Полка для инструмента
  • Пресс из домкрата
  • Золото из радиодеталей
  • Штанга своими руками
  • Как установить розетку
  • Ночник своими руками
  • Аудио передатчик
  • Датчик влажности почвы
  • Счетчик Гейгера
  • Древесный уголь
  • Wi-Fi антенна
  • Электровелосипед своими руками
  • Ремонт смесителя
  • Индукционное отопление
  • Стол из эпоксидной смолы
  • Трещина на лобовом стекле
  • Эпоксидная смола
  • Как поменять кран под давлением
  • Кристаллы в домашних условиях

Помогите проекту, поделитесь в соцсетях

Самодельный регулятор температуры

Создать функциональный термостат своими руками не слишком сложно.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Тем не менее, надо реалистично оценивать собственные возможности. Следующие инструкции помогут принять правильное решение.

Простейшая схема

Чтобы исключить лишние трудности, применяют схему с блоком питания без трансформатора. Для выпрямления питающего напряжения используют обычный диодный мост. Необходимый уровень постоянной составляющей поддерживают стабилитроном. Конденсатором устраняют броски.

Типовой делитель подойдет для контроля напряжения. В одном плече устанавливают резистор, который реагирует на изменение температуры. Для управления исполнительным устройством подойдет реле.

Прибор для помещения

Это устройство можно использовать для поддержания температурного режима в мини-теплице, другом ограниченном объеме. Основной элемент – микросхема операционного усилителя, которая включена в режиме сравнения напряжений. Точную и грубую настройку порога срабатывания выполняют с помощью резисторов R5 и R4, соответственно.

Терморегулятор для инкубатора

На микросхеме LM 311

Этот вариант предназначен для подключения электрических теплых полов, других мощных нагрузок

Следует обратить внимание на повышенную надежность изделия, которая обеспечена гальванической развязкой цепей со слабыми и сильными токами

Схема для подключения мощной нагрузки

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

Минимальная мощность

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной).Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Рассмотрим случай, представленный на следующем графике.

Половинная мощность

Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.

Мощность, близкая к максимальной

Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.

Переключение тиристора через «ноль»

Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Сборка

Используя данный план по сборке, вы сэкономите свое время. Вам нужны точные параметры устройства, для которого будет изготавливаться прибор.

Нужно знать:

  • Количество фаз. Их может быть одна или три;
  • Наличие необходимости точной регулировки выходной мощности;
  • Входное напряжение и ток потребляемый нагрузкой. Значения должны быть в Вольтах и Амперах.

Необходимо выбрать тип устройства, либо аналоговый либо цифровой. Подобрать комплектующие по мощности прибора. В сети можно найти различный софт, который поможет с расчетами.

Выполнить расчет тепловыделений. Это делается довольно просто: Падение напряжения на симисторе умножается на номинальный ток. Необходимые данные должны быть указаны в характеристике симистора.

Приобрести необходимые элементы, печатную плату и радиатор. Произвести разводку дорожек на печатной плате при помощи растворителя.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Нельзя забывать о креплении симистора и радиатора. Припаять все элементы так, как показано на схеме

Уделить особое внимание полярности подключения диодов и симистора.

Осуществить проверку готового прибора при помощи мультиметра в режиме сопротивления. Характеристика должна быть идентична изначальному проекту.

Поместить полученную установку в защитный корпус. Поставить значения потенциометра на минимальные значения и осуществить пробный запуск. Мультиметром измеряем напряжения на выходе, при этом плавно поворачиваем ручку регулятора;

Если полученный результат не соответствует требуемым производим регулировку мощности. Если прибор работает как надо, можно подключать нагрузку к выходу регулятора.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.

Так выглядят регуляторы мощности, которые я использую много лет.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.

Инструкция по настройке

Термостатические регуляторы тяги имеют 2 вида разметки для работы в различных положениях. На приборе RT 10 шкала красного цвета предназначена для работы в горизонтальном положении, желтая разметка – для вертикального. Настройка изделия выполняется в таком порядке:

  • Перед началом настройки нижний конец цепи надо отсоединить от воздушной заслонки, чтоб она свободно свисала вниз, а винт – фиксатор рукояти — ослабить.
  • Выбрав цвет шкалы в соответствии с ориентацией термостата в пространстве, выставить по ней значение желаемой температуры.
  • Разжечь теплогенератор и прогревать его, контролируя температуру теплоносителя по котельному термометру.
  • Когда температура воды в рубашке достигнет значения, на которое выставлен регулятор тяги, надеть конец цепи на дверцу зольника. Следует убедиться, что цепь натянута, свободный ход не должен превышать 1 мм. После этого можно рукоятку зафиксировать с помощью винта.

После настройки нелишним будет проверить работу термостатического регулятора, изменяя температуру рукоятью и сравнивая ее с показаниями термометра. При этом надо учитывать, что в твердотопливных котлах присутствует явление инерционности. Это значит, что после прикрывания дверцы зольника рост температуры теплоносителя остановится не сразу, поскольку дрова или уголь в топке не могут потухнуть в один момент.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Надо выждать какое-то время, в течение которого показания термометра стабилизируются.

Устройство и принцип действия

Конструкция изделия довольно проста, в этом можно убедиться на примере термостатического регулятора RT 10, изображенного на рисунке.

1 – рукоять установки желаемой температуры; 2 – шток; 3 – исполнительный механизм; 4 – направляющая; 5 – корпус прибора; 6 – гильза погружная; 7 – термочувствительный элемент; 8 – пружина; 9 – рычаг цепного привода; 10 – цепь; 11 – винт крепления рукояти; 12 – винт крепления рычага.

В зависимости от того, какая конструкция твердотопливного котла, регулятор устанавливается сверху, на фронтальной или боковой панели в специальное посадочное место водяной рубашки, чтобы погружная гильза изделия контактировала с теплоносителем. Находящийся в ней термочувствительный элемент заполнен жидкостью или газом, расширяющимися при нагревании.

Когда температура теплоносителя начинает расти, термоэлемент через шток воздействует на исполнительный механизм, который опускает рычаг цепного привода. Цепь, закрепленная одним концом на рычаге, а другим – на воздушной откидной заслонке зольной камеры, начинает прикрывать эту заслонку. Таким способом подача воздуха через зольник в топку ограничивается, а интенсивность горения уменьшается. Как только температура воды в рубашке котла упадет, термоэлемент посредством исполнительного механизма, рычага и цепного привода снова откроет дверцу и подача воздуха возобновится.

Принцип работы

Основную роль в конструкции регулятора тяги исполняет термостатический элемент, размещенный внутри корпуса цилиндрической формы. Он имеет механическую связь с рычагом, который, в свою очередь, прикреплен цепочкой к заслонке отдушины.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем

Термостатический элемент представлен в виде герметичной колбы, которая заполнена термочувствительной жидкостью, обладающей способностью расширяться под воздействием температуры.

Сам элемент расположен в нижней части корпуса, которая попадает при установке внутрь рубашки и имеет прямой контакт с нагреваемым теплоносителем. Контроль сгорания топлива, в этом случае, осуществляется путем регулировки положения задвижки поддувала.

  1. В процессе сжигания топлива происходит нагрев теплоносителя, который воздействует на термостатический элемент. Тот, в свою очередь, преодолевает сопротивление возвратной пружины и приводит в действие исполнительный механизм.
  2. Опускаясь, рычаг послабляет цепочку, открепленная заслонка опускается, уменьшая сечение отверстия подачи воздуха. При сокращении притока воздуха к топке процесс сжигания замедляется.
  3. Когда происходит понижение температуры теплоносителя, то все действия происходят в обратном порядке. В результате заслонка поднимается, возобновляя приток воздуха к топке.
  4. Цикличность регулировки притока воздуха к топке происходит непрерывно до момента полного сгорания топлива. В этом случае термостатический элемент полностью освобождает возвратную пружину, которая открывает задвижку на подаче воздуха максимально.

В торце терморегулятора предусмотрена рукоятка настройки, которая способна ограничивать амплитуду движения рычага, регулируя перемещения заслонки. Это позволяет осуществлять контроль температуры теплоносителя. Принцип работы газового котла не позволяет применять данные приспособления.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н.Схема регулятора температуры: Принципиальная схема терморегулятора. Обзор наиболее популярных схем Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Виды

В простейшем варианте (реле холодильника) применяют механический переключатель. Для более точной регулировки (обороты двигателя) используют не только микроэлектронику, но и специализированное программное обеспечение.

Терморегулятор на трех элементах

Чтобы сделать простой терморегулятор своими руками схема для блока питания персонального компьютера подходит лучше других вариантов.

Регулятор вентилятора для компьютерного БП

Термистором измеряют температуру в контрольной точке. Потенциометром устанавливают оптимальное значение для включения вентилятора. Изменять обороты данная схема не способна. Подключает индуктивную нагрузку MOSFET транзистор. Допустимо применение аналога с подходящими силовыми характеристиками.

Терморегуляторы для котлов отопления

Регулятор температуры своими руками можно сделать в рамках проекта модернизации старого котла. Не имеет значения вид топлива, хотя проще обеспечить хороший результат с применением газового оборудования.

Схема термостата с индикацией показаний на LCD экране

Цифровой терморегулятор

В этом примере разработчики создавали устройство поддержания температурного режима в хранилище фруктов (овощей). Для анализа поступающих данных выбрана микросхема со следующими блоками:

  • таймеры;
  • генератор;
  • два компаратора;
  • модули обмена, сравнения и передачи данных.

При соответствующем положении переключателей светодиодная матрица показывает актуальное значение температуры или контрольный уровень. Кнопками в пошаговом режиме устанавливают нужный порог срабатывания.

Схема с регулировкой гистерезиса

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров

Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Регуляторы для паяльника своими руками. Обзор способов монтажа

В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.

Возможные виды монтажа в корпус: вилка, розетка, станция

В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный — вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.

Такой регулятор мощности всегда находится вместе с паяльником — его нельзя забыть или потерять

Другой вид корпуса для несложных регуляторов — розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.

Корпус удобен для размещения платы с деталями
На месте одной и розеток стоит ручка переключателя со шкалой

Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант — удлинитель с вмонтированным туда индикатором, так и оригинальные решения.

Счетчик на корпусе дает точные цифры для работ, где важна строго определённая температура
Плата закреплена внутри винтами

Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать — например, термоусадочной трубкой.

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Список источников

  • www.asutpp.ru
  • oldoctober.com
  • amperof.ru
  • kotle.ru
  • cotlix.com
  • tehznatok.com
  • postroika.biz
  • YDoma.info
  • sdelatlegko.ru

Поделитесь с друзьями!

Простая и надёжная схема терморегулятора для инкубатора

 ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

Терморезистор

R3

1 kОм

2,7 кОм

2 кОм

4,3 кОм

3,6 кОм

7,5 кОм

10 кОм

10 кОм

15 кОм

15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ вывода

Нагреватель выкл / включен

1, 2

4,3 / 5,5

3

0,2 / 8,9

4

3,8 / 8,9

5, 6

4,1 / 0

7

0

8

7 / 8,9

9

0,2 / 8,9

10

~

12, 13

0

14

9 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

Фото печатной платы

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

 Наш «Магазин Мастера«

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Подготовка яйц для инкубации.
  • Для воспроизводства стада используются яйца от здо­ровых, высокопродуктивных кур, достигших восьмимесячно­го возраста.

    Сезон разведения приходится на раннюю весну. К этому времени за период зимовки хорошая несушка во многом из­расходовала свои резервы питательных веществ. Поэтому за месяц-полтора до начала сбора инкубационных яиц куры нуждаются в полноценной подкормке. Подробнее…

  • Пробник для проверки цифровых устройств.
  • В радиолюбительской практике часто бывает необходимо про­верить состояние сигнала в различных участках устройства. В большинстве случаев это делают с помощью осциллографа. Но такой прибор не всегда имеется под рукой, да и приобрести его под силу не каждому начинающему радиолюбителю. Опре­деленную помощь при отсутствии осциллографа могут оказать различные пробники. Например, такой, о котором рассказыва­ется в предлагаемой статье. Подробнее…

  • Как показать температуру двигателя в Renault и Driving Eco2 в MediaNav?
  • На сайте drive2 можно встретить ни одну активацию различных функций в MediaNav, в прочем и в других блоках тоже.

    Обладателям бензиновых версий автомобилей Renault в комплектации со штатным автозапуском и MediaNav повезло больше — с завода у них в машине установлен блок BIC 283468105R который коммутирует две шины автомобиля: CAN1 и CAN2, передавая данные бортового компьютера и температуры окружающей среды на экран MediaNav.

    Подробнее…

Популярность: 160 284 просм.

Встроенный ПИД-регулятор температуры, Часть 1: Схема

Ключевыми компонентами этого ПИД-регулятора (пропорционально-интегрально-производная) являются микроконтроллер EFM8, ЦАП и преобразователь термопары в цифровой MAX31855.

Дополнительная информация

Легендарные ПИД-регуляторы P-I-D

, возможно, достигли несколько мифического статуса. Когда необходимо управлять физической переменной — температурой, угловой скоростью, положением, расходом и т. Д. — задействуется сила ПИД, и с ПИД приходит уверенная надежда на скорый успех.Популярность и известность PID не обязательно являются незаслуженными; ПИД-регулирование элегантно, гибко и надежно, и оно доказало свою эффективность в бесчисленных практических приложениях. Однако возможно, что наши знания PID намного превосходят наш опыт работы с PID, особенно с учетом того, что реализации PID часто скрыты внутри так называемых программируемых логических контроллеров (ПЛК), с различными низкоуровневыми деталями, абстрагированными от пользователя. Производители ПЛК делают действительно хорошие ПИД-регуляторы, которые намного превосходят все, что я мог разработать; в этом я не сомневаюсь.Но мне нравится конструировать вещи самому, с нуля — это веселее и помогает мне действительно понимать важные концепции и методы.

Таким образом, в этой серии статей мы исследуем практическое низкоуровневое ПИД-регулирование с помощью простой схемы, которая может измерять температуру резистивного нагревательного элемента. Мы не будем вдаваться в подробности теории ПИД, которые подробно описаны в «Введение в системы управления», и мы не будем включать все возможные функции и уточнения в наш алгоритм.Вместо этого мы попытаемся осветить основополагающие принципы ПИД-регулирования, применив их к простой схеме контроля температуры.

Почему PID?

ПИД-регулятор представляет собой частную реализацию отрицательной обратной связи:

Чтобы понять длительный успех ПИД-регулирования, вам сначала нужно понять выдающуюся способность отрицательной обратной связи легко выполнять сложные задачи управления. Здесь я процитирую Отрицательные отзывы, Часть 1: Общая структура и основные концепции: часто в жизни,

у нас есть некоторая выходная переменная, которой необходимо управлять, но взаимосвязь между управляющим входом и фактическим поведением выхода настолько сложна или непредсказуема, что было бы трудно, если не невозможно, точно регулировать выход просто с помощью применение указанного ввода.

Решение: отрицательный отзыв.

Путем простого вычитания фактического выходного значения. . . от опорного сигнала, и используя результат [т.е. «ошибка» термин] в качестве входного сигнала усилителя с разомкнутым контуром, мы можем точно контролировать нагрузку, даже когда отношения ввода-вывод к противоречивы или сложные.

В случае системы PID (пропорционально-интегрально-производная) «усилитель разомкнутого контура» фактически является алгоритмом, который работает с самой последней ошибкой, а также с предыдущими ошибками и ожидаемыми ошибками.В этом заключается элегантность ПИД-регулирования: пропорциональный член регулирует выходной сигнал в соответствии с текущим состоянием системы, интегральный член точно настраивает выходной сигнал, накапливая прошлые ошибки, а производный член делает выход более чувствительным, прогнозируя будущие ошибки. в зависимости от того, как меняется вывод.

Схемотехника

Функциональность этого проекта, по сути, аналогична термостату: «нагреватель» представляет собой просто резистор 2,4 Ом, 5 Вт. Сигнал обратной связи обеспечивается термопарой типа K в сочетании с преобразователем термопары в цифровой MAX31855.Однако наш термостат более интересен, чем типичная бытовая разновидность, потому что он не ограничивается включением и выключением; скорее, мы можем выбрать из 256 различных уровней мощности нагревателя. Это выполняется с помощью следующей схемы:

Выводы резистора нагревательного элемента ввинчиваются в две клеммы клеммной колодки J7, поэтому, когда вы посмотрите на J7, представьте себе резистор на его месте:

ЦАП — это 8-битное устройство вывода напряжения, управляемое микроконтроллером EFM8 через SPI.Опорное напряжение (обеспечивается EFM8) составляет 2,4 В, так что выходной диапазон ЦАП составляет от 0 В до 2,4 В с шагом (2,4 В) / (2 8 ) = 9,4 мВ. Хилый выходной драйвер ЦАП может непрерывно подавать только около 10 мА, и мы не собираемся выводить много тепла из нашего резистора с помощью всего лишь 10 мА. Здесь вступают в игру операционный усилитель и BJT (номер по каталогу DSS20201L от Diodes Inc.).

Мы могли бы просто использовать операционный усилитель для буферизации выхода ЦАП, но выходного тока операционного усилителя также недостаточно.Итак, вы видите здесь стандартную схему для увеличения мощности привода операционного усилителя. Биполярный транзистор может выдерживать постоянный ток коллектора 2 А, что более чем достаточно для наших целей. Управляющее напряжение (то есть выходное напряжение ЦАП) подается на положительный вход операционного усилителя. Общая конфигурация схемы представляет собой повторитель напряжения с единичным усилением, но обратите внимание, как сигнал обратной связи (подключенный к отрицательному входу операционного усилителя) исходит от напряжения, приложенного к нагревательному элементу, а не от выходной клеммы операционного усилителя.Эта схема указывает операционному усилителю, что необходимо регулировать выходное напряжение любым способом, чтобы гарантировать, что напряжение, приложенное к нагревательному элементу, будет таким же, как управляющее напряжение.

Еще одна важная деталь: хотя операционный усилитель напрямую не управляет нагревательным элементом, его выходная токовая нагрузка не имеет значения. Ток, протекающий в базе Q1, будет приблизительно равен току нагревателя, деленному на коэффициент усиления постоянного тока в активной области BJT, иначе известный как бета или h FE .(Обратите внимание, что Q1 всегда будет в режиме отсечки или в активном режиме, потому что базовое напряжение не будет превышать 2,4 В + ~ 0,7 В = 3,1 В, тогда как на коллекторе всегда будет 5 В. Транзистор npn не войдет в насыщение, пока базовое напряжение не превышает напряжение коллектора более чем на ~ 0,4 В.) Минимальное значение бета для нашего транзистора составляет 200, поэтому, если мы подаем 1 А на нагревательный элемент, операционный усилитель должен иметь возможность подавать 5 мА на база. Я думаю, что практически любой операционный усилитель может обрабатывать 5 мА, но если вы измените эту схему для значительно более высокого тока нагревателя, не забудьте подтвердить, что ваш операционный усилитель может безопасно обеспечить необходимый базовый ток.

Нагреватель

В основном, к резистору нагревательного элемента предъявляются два требования: его сопротивление должно быть очень низким, чтобы наши низкие управляющие напряжения давали большой ток, и его номинальная мощность должна быть достаточно высокой (намного выше, чем у нас. используется с типичными резисторами для сквозного монтажа или поверхностного монтажа). Я не могу потреблять больше 1 А от зарядного устройства USB, которое использую в качестве источника питания, поэтому я выбрал сопротивление 2,4 Ом: максимальное напряжение привода составляет 2,4 В, и, таким образом, при максимальном напряжении привода ток также будет на макс.Рассеиваемая мощность при максимальном токе составляет всего 2,4 В × 1 А = 2,4 Вт. Мне нравится поддерживать примерно двукратный запас прочности, поэтому резистор 5 Вт подойдет. Вот фото настройки оборудования:

Даже при 1 А эта система не выделяет большого количества тепла, поэтому во время работы я расширяю полезный диапазон температур, оборачивая резистор пушистой изоляционной тканью:

Заключение

Мы представили общую концепцию и преимущества ПИД-регулирования, а также подробно обсудили схему «термостат», которую мы будем использовать для изучения функциональности ПИД-регулятора.В следующей статье мы сосредоточимся на прошивке, необходимой для сбора данных о температуре от MAX31855 и регулировки тока привода нагревателя через ЦАП.

Следующая статья серии: Встроенный ПИД-регулятор температуры, часть 2: Интеграция на уровне платы

Попробуйте этот проект сами! Получите спецификацию.

ОСНОВЫ РЕГУЛЯТОРА ТЕМПЕРАТУРЫ — Электроника длины волны

Источник тока регулятора температуры

: Одним из ключевых звеньев регулятора температуры является регулируемый двунаправленный источник тока.Его также можно назвать выходным каскадом. Эта секция реагирует на секцию системы управления, направляя ток на исполнительный механизм температуры (термоэлектрический или резистивный нагреватель). Направление тока имеет решающее значение для термоэлектриков. На блок-схеме термоэлектрический элемент подключен между двумя выводами на контроллере. Для резистивного нагревателя может потребоваться специальная проводка, чтобы ограничить ток через резистивный нагреватель только в одном направлении.

Система управления

: Пользовательские входы включают предельную уставку (в терминах максимального тока, разрешенного для термоэлектрического или резистивного нагревателя) и рабочую уставку.Кроме того, если требуется удаленная уставка, обычно доступен вход удаленной уставки.

  • Уставка: это аналоговое напряжение в системе. Его можно создать путем сочетания встроенной регулировки подстроечного резистора и ввода удаленной уставки. В некоторых случаях эти входы суммируются. Некоторые действуют самостоятельно.
  • Прецизионный источник тока смещения датчика: этот источник тока управляет датчиком температуры на известном уровне, делая фактическое напряжение датчика стабильным и точным. Напряжение на датчике определяется законом Ома: V = I * R, где V — напряжение, I — ток, а R — сопротивление датчика.Напряжение ограничено максимумом и минимумом (указанным в таблице данных контроллера температуры). Следует использовать минимально возможный ток, чтобы свести к минимуму эффекты самонагрева. Термистор нагревается при более высоких уровнях тока и ложно сообщает о более высокой температуре.
  • Генерация ошибки: Чтобы узнать, как работает система, фактическая температура сравнивается с заданной температурой. Эти два напряжения вычитаются, и результат называется «Ошибка». Выходной сигнал регулируемого источника тока будет изменяться, чтобы сигнал обратной связи по температуре оставался неизменным.
  • PID Control System: преобразует сигнал ошибки в управляющий сигнал для регулируемого источника тока. Более подробное обсуждение ПИД-регулирования можно найти в Техническом примечании TN-TC01
  • .

  • Ограничительная цепь: Один из способов повредить термоэлектрик — пропустить через него слишком большой ток. В каждом техническом описании привода указывается максимальный рабочий ток. Превышение этого тока приведет к повреждению устройства. Чтобы этого избежать, в терморегулятор включен ограничительный контур. Пользователь определяет максимальную настройку, и выходной ток не должен превышать этот уровень.Большинство цепей ограничения ограничивают ток на максимальном уровне и продолжают работать.
  • Функции безопасности: Термоэлектрики и резистивные нагреватели чувствительны к избыточной мощности, но они устойчивы к быстрым изменениям тока или напряжения. Функции безопасности могут включать индикатор состояния «теплового разгона». Температурные пределы — как высокие, так и низкие — также могут быть доступны для включения индикаторов или отключения выходного тока.

Питание: необходимо подать питание на управляющую электронику и источник тока.Это может быть источник питания постоянного тока (некоторые драйверы используют входы с одним источником питания, другие используют два источника питания) или входной разъем переменного тока и кабель. В некоторых случаях, когда для термоэлектрического или резистивного нагревателя требуется более высокое напряжение, могут быть доступны отдельные входы источника питания постоянного тока для питания управляющей электроники от источника низкого напряжения +5 В и термоэлектрика от источника более высокого напряжения.

В чем разница между инструментом, модулем и компонентом?

Обычно цена, набор функций и размер.Прибор обычно имеет переднюю панель с ручками и кнопками для регулировки, а также какой-либо дисплей для отслеживания датчика. Все они могут быть автоматизированы с помощью компьютерного управления через USB, RS-232, RS-485 или GPIB. Инструмент обычно питается от сети переменного тока, а не от источника постоянного тока. По нашему определению, модуль не включает в себя дисплей или источник питания и имеет минимально необходимые настройки. Для контроля состояния вольтметр измеряет напряжение, а в таблице данных модуля предусмотрена передаточная функция для преобразования напряжения в фактическое сопротивление датчика.В паспорте датчика сопротивление датчика преобразуется в температуру. Некоторые устройства выделяют память для калибровки отклика датчика. Компонент дополнительно урезан, без движущихся частей. Внешние резисторы или конденсаторы задают рабочие параметры. Функции безопасности являются общими для всех трех форм. Обычно модули можно разместить на столе или интегрировать в систему с помощью кабелей. Компоненты монтируются непосредственно на печатную плату (PCB) с помощью выводов для сквозного монтажа или поверхностного монтажа (SMT). Два ряда контактов называются DIP-упаковкой (двойной ряд), а один ряд выводов называется упаковкой SIP (одинарный ряд).

Разнообразные стандартные контроллеры доступны как в приборной, так и в OEM-упаковке. Некоторые производители стирают границы, например, предлагая USB-управление компонентами в качестве мини-инструментов.

Упаковка компонентов и модулей включает надлежащий теплоотвод элементов схемы (или инструкции о том, как устройство должно быть теплоотводом) и обычно включает соответствующие кабели для термоэлектрического элемента, датчика и источника питания. Инструменты включают шнур питания, и доступ пользователя внутрь корпуса не требуется.

Типовая терминология:

Термоэлектрик: Это устройство, состоящее из двух керамических пластин, которые скрепляют металлические соединения двух разнородных металлов. Если ток протекает через соединение разнородных металлов, тепло генерируется с одной стороны, а поглощается с другой. Пропуская ток через термоэлектрик, тепло передается от одной керамической пластины к другой. Направление тока определяет, какая пластина станет «горячей», а какая — «холодной» относительно друг друга.Изменение направления тока немедленно меняет эффект. Контроллер температуры работает, оптимально контролируя величину и направление тока через переход, чтобы поддерживать фиксированную температуру устройства, подключенного к «холодной» стороне. Термоэлектрики можно накладывать друг на друга, чтобы создать более широкий температурный перепад. Их называют многоступенчатыми или каскадными термоэлектриками. Термоэлектрик также может преобразовывать перепад температур в электричество. Это называется эффектом Зеебека.Термоэлектрик также известен как термоэлектрический охладитель, устройство Пельтье или твердотельный тепловой насос.

Q MAX: Спецификация термоэлектрика. Это максимальная мощность, которую он может поглотить холодной пластиной.

Delta T MAX: Спецификация термоэлектрика. Это максимальный перепад температур, который может создать термоэлектрик между своими пластинами. Он указан в IMAX и VMAX и для определенной температуры «горячей» пластины.

I MAX и V MAX: Максимальный ток и напряжение термоэлектрика соответственно. Не превышайте эти условия эксплуатации.

Резистивный нагреватель: Обычно эти нагреватели гибкие, с резистивным элементом, зажатым между двумя изоляторами. Материалы резистивного элемента и изоляторов сильно различаются в зависимости от области применения. Некоторым требуется питание переменного тока, а не постоянного тока, который вырабатывает типичный регулятор температуры. В резистивном нагревателе при протекании тока в любом направлении выделяется тепло; следовательно, активная функция охлаждения отсутствует.Охлаждение достигается за счет снижения тока до нуля и рассеивания тепла в окружающую среду. Стабильность обычно не так хороша, как у термоэлектриков, за исключением случаев, когда рабочая температура значительно выше температуры окружающей среды.

Температура окружающей среды: Обычно это температура воздуха / окружающей среды вокруг нагрузки.

Disable: Когда выходной ток отключен, все механизмы безопасности обычно устанавливаются на начальное состояние включения, и на термоэлектрический элемент подается только остаточный ток утечки.

DVM: Цифровой вольтметр, измеритель напряжения.

Амперметр: измеритель, отслеживающий ток.

ESD: Электростатический разряд. Чувство «взрыва», которое возникает при переходе по ковру и прикосновении к металлической ручке двери, является наиболее распространенным примером электростатического разряда. Лазерные диоды чувствительны к электростатическому разряду. «Взрыва», которого не чувствует человек, по-прежнему достаточно, чтобы повредить лазерный диод. При обращении с лазерным диодом или другим чувствительным к электростатическому разряду электронным оборудованием следует соблюдать соответствующие меры предосторожности.

Внутреннее рассеяние мощности: при линейном источнике тока часть мощности, передаваемой источником питания, поступает на термоэлектрический или резистивный нагреватель, а часть используется в контроллере температуры. Максимальное внутреннее рассеивание мощности контроллера — это предел, при превышении которого возможно тепловое повреждение внутренних электронных компонентов. Проектирование системы контроля температуры включает выбор напряжения питания. Если для управления термоэлектриком с напряжением 6 В выбрано питание 28 В, на выходном каскаде регулятора температуры (или источнике тока) будет падать 22 В.Если драйвер работает на 1 А, внутренне рассеиваемая мощность будет V * I или 22 * ​​1 = 22 Вт. Если внутренняя мощность рассеивания составляет 9 Вт, компоненты источника тока будут перегреваться и необратимо повредятся. Wavelength предоставляет онлайн-калькуляторы безопасной рабочей зоны для всех компонентов и модулей, чтобы упростить выбор конструкции.

Соответствие напряжению: Источник тока имеет соответствующее падение напряжения на нем. Соответствующее напряжение — это напряжение источника питания за вычетом этого внутреннего падения напряжения.Это максимальное напряжение, которое может подаваться на термоэлектрический или резистивный нагреватель. Обычно указывается при полном токе.

Ограничение по току: В технических характеристиках термоэлектрического или резистивного нагревателя максимальный ток указывается при температуре окружающей среды. Выше этого тока устройство может выйти из строя. При более высоких температурах это максимальное значение будет уменьшаться. Current Limit — это максимальный ток, который будет подавать источник тока. Предел тока можно установить ниже максимального термоэлектрического тока и использовать в качестве инструмента для минимизации внутреннего рассеивания мощности терморегулятора.При более высоком пределе тока термоэлектрик будет быстрее передавать больше тепла, поэтому время достижения температуры может быть уменьшено (если система управления оптимизирована, чтобы избежать перерегулирования и звона).

Нагрузка: для регулятора температуры нагрузка состоит из регулятора температуры (термоэлектрического или резистивного нагревателя) и датчика температуры.

ACTUAL TEMP MON: аналоговое напряжение, пропорциональное сопротивлению датчика температуры. Функции перехода к сопротивлению представлены в отдельных технических паспортах контроллеров.Для преобразования сопротивления в температуру используются передаточные функции из таблицы данных датчика. Его также можно назвать монитором ACT T или монитором температуры.

VSET: это общий термин, используемый для обозначения входного сигнала удаленной уставки. V указывает на сигнал напряжения, в то время как SET указывает его цель: заданное значение системы управления. Его также можно назвать MOD, MOD IN или ANALOG IN.

Каковы типичные характеристики и как их интерпретировать для моего приложения?

В настоящее время каждый производитель проводит собственное тестирование, и стандарта для измерения не существует.После того, как вы определите решение для своего приложения, критически важно протестировать продукт в своем приложении, чтобы проверить его работу. Вот некоторые из определений, которые использует длина волны, и способы интерпретации спецификаций в вашем дизайне.

Входное сопротивление: указывается для аналоговых входов напряжения, таких как VSET или MOD IN. Он используется для расчета силы тока, который должен выдавать внешний генератор сигналов. Например, если VSET управляется цифро-аналоговым преобразователем с максимальным напряжением 5 В и входным сопротивлением 20 кОм, цифро-аналоговый преобразователь должен выдавать не менее 5 В / 20000 Ом или 0.25 мА.

Стабильность: для регулятора температуры, насколько стабильной может быть система, обычно является критическим параметром. Испытания на длину волны с использованием термисторов, поскольку они обеспечивают максимальное изменение сопротивления на градус C. Испытательная нагрузка также хорошо спроектирована, с датчиком, расположенным рядом с управляемым устройством, и термоэлектрическим элементом, радиатором надлежащего размера и компонентами, соединенными высококачественной термопастой минимизировать тепловое сопротивление между ними. Стабильность указывается в градусах Кельвина или Цельсия.Типичная стабильность может достигать 0,001 ° C. Более подробное техническое примечание TN-TC02, описывающее тестирование, доступно в Интернете.

Диапазон рабочих температур: Электроника рассчитана на правильную работу в указанном диапазоне температур. За пределами минимальной и максимальной температуры может произойти повреждение или измениться поведение. Рабочий диапазон, который указывает длина волны, связан со спецификацией максимального внутреннего рассеивания мощности. Выше определенной температуры окружающей среды (обычно 35 ° C или 50 ° C) максимальное внутреннее рассеивание мощности снижается до нуля при максимальной рабочей температуре.

Диапазон рабочего напряжения: В некоторых регуляторах температуры можно использовать два напряжения питания — одно для питания управляющей электроники (VDD), а второе для обеспечения более высокого напряжения согласования для термоэлектрического или резистивного нагревателя (VS). Обычно управляющая электроника работает при более низких напряжениях: от 3,3 до 5,5 В. Превышение этого напряжения может повредить элементы в секциях управления или питания. Источник тока (или выходной каскад) разработан для более высоких напряжений (например, 30 В для контроллеров температуры семейства PTC).Эту спецификацию необходимо рассматривать вместе с приводным током и мощностью, подаваемой на нагрузку, чтобы гарантировать, что конструкция не превышает спецификацию максимального внутреннего рассеивания мощности. Например, PTC5K-CH рассчитан на работу до 5 А и может принимать входное напряжение 30 В. Максимальная внутренняя рассеиваемая мощность составляет 60 Вт. Если 28 В используется для питания термоэлектрика, который падает на 4 В, 24 В будет падать на PTC5K-CH. При 24 В максимальный ток в пределах безопасного рабочего диапазона составляет менее 60/24 или 2.5 ампер. Использование большего значения тока приведет к перегреву компонентов выходного каскада и необратимому повреждению контроллера. Максимальные характеристики тока и напряжения связаны, а не достижимы независимо.

Монитор

в сравнении с фактической точностью: сигнал ACT T MON представляет собой аналоговое напряжение, пропорциональное сопротивлению датчика. Точность фактического сопротивления по отношению к измеренным значениям указана в отдельных технических паспортах драйвера. Длина волны использует откалиброванное оборудование, отслеживаемое NIST, чтобы гарантировать эту точность.

Раздельное заземление монитора и питания: одно заземление высокой мощности предназначено для подключения к источнику питания на любом контроллере температуры. Несколько слаботочных заземлений расположены среди сигналов монитора, чтобы минимизировать смещения и погрешности. Несмотря на то, что заземления с высоким и низким током связаны внутри, для достижения наилучших результатов используйте заземление с низким током с любым монитором.

Линейные или импульсные блоки питания для компонентов и модулей: Линейные блоки питания относительно неэффективны и имеют большие размеры по сравнению с импульсными блоками питания.Однако они малошумные. Если шум критичен для вашей системы, вы можете попробовать импульсный источник питания, чтобы увидеть, влияет ли частота переключения на производительность в любом месте системы.

Thermal Runaway: если термоэлектрик отводит тепло от устройства (охлаждает его до температуры ниже окружающей), это тепло должно рассеиваться из системы. Дополнительное тепло из-за неэффективности термоэлектрика также должно рассеиваться. Если конструкция радиатора подходящая, удаляется достаточно тепла, чтобы устройство могло работать при температуре ниже окружающей среды.Однако, если конструкция является предельной, тепло остается в нагрузке, а температура датчика повышается вместо того, чтобы оставаться на желаемой температуре. Система управления реагирует, пропуская больше охлаждающего тока через термоэлектрик. Это приводит к увеличению количества тепла, выделяемого нагрузкой, и продолжающемуся повышению температуры датчика. Это называется «тепловым разгоном». Температура системы не контролируется, но определяется недостаточным отводом тепла в окружающую среду.

Wavelength разрабатывает регуляторы температуры и производит их на предприятии в Бозмане, штат Монтана, США.Чтобы просмотреть список текущих вариантов регуляторов температуры, щелкните здесь.

Полезные сайты:

Что такое термоэлектрик?

Что такое термистор?

Внешние ссылки предназначены для справочных целей. Wavelength Electronics не несет ответственности за содержание внешних сайтов.

Создайте свой собственный точный контроллер температуры

Эта схема работает как диммер. Пока температура повышается — контроллер постепенно снижает мощность нагревателя.На заданном уровне — когда тепловая мощность точно соответствует тепловым потерям — температура стабилизируется. И контроллер поддерживает эту стабильность, производя сотню точных регулировок мощности нагревателя каждую секунду.

Он не может справиться с большими или быстрыми изменениями, скажем, температуры воздуха. Ему нужна замкнутая среда. Лучше всего, когда он поддерживает температуру жидкости — например, воды. Подобно маховику — тепловая энергия, запасенная в жидкой массе, — сама будет иметь тенденцию сопротивляться любым значительным колебаниям температуры.

В хорошо изолированной среде с небольшими потерями тепла нагреватель с относительно низкой мощностью будет поддерживать температуру. В течение многих лет — в предыдущей (чрезмерно сложной) версии этой схемы — использовался подогреваемый коврик мощностью 50 Вт, чтобы поддерживать температуру в моем сосуде для брожения (5-галлонное пластиковое ведро) при температуре 20 ° C (68 ° F).

Принципиальная схема

Банкноты

Нагреватель управляется симистором (TIC 206D).Симистор управляется оптическим изолятором (MOC 3021). А оптический изолятор управляется импульсами, поступающими с вывода 7 LM358N. Каждый импульс кратковременно включает нагреватель. А варьируя ширину импульсов — меняет мощность нагревателя. Эта схема не подходит для индуктивных нагрузок, таких как вентиляторы или тепловентилятор. Подходит только для обогревателей с резистивными элементами.

Предлагаю вам встроить модуль вывода высокого напряжения в гнездо расширения. Затем вы можете включить нагреватель прямо в розетку.Чтобы проверить выходной модуль отдельно, подключите 40-ваттную вольфрамовую лампу к розетке и используйте батарею 9/12 В для управления диодом оптического изолятора — через R12.

Я не предоставил руководство по конструкции для модуля вывода. Если у вас есть опыт работы с электросетью, вы уже знаете, как ее безопасно построить. Если у вас нет опыта работы с электросетью, найдите кого-нибудь, кто знает, или оставьте этот проект в покое. Ваша жизнь (и жизнь других людей) может зависеть от этого.

Низковольтной цепи управления требуется очень небольшой ток — не более 30 мА. Используйте небольшой трансформатор на 12 В (1,5 ВА или ниже). На входе должен быть переменный ток. Сигнал 50/60 Гц от вторичной катушки — используется для синхронизации выходных импульсов на выводе 7 — с сетевым напряжением переменного тока, которое питает нагреватель.

R11 устанавливает температуру. Мой диапазон регулировки составлял примерно от 24 ° C до 48 ° C (от 75 ° F до 118 ° F). Не ожидайте получить точно такой же диапазон. Производственные допуски — факторы окружающей среды — ваш выбор нагревателя — положение датчика и т. Д.- обязательно повлияют на ваши результаты.

Для доступа к более низкому диапазону температур увеличьте значение R10. Чтобы получить доступ к более высокому диапазону температур — уменьшите значение R10. Я расположил R10 так, чтобы его можно было временно прикрепить к правому краю доски. Используйте метод проб и ошибок — пока не доберетесь до желаемого диапазона.

Макет Veroboard

Цепь точного цифрового контроллера температуры

Работа и ее применение

Цепь цифрового контроллера температуры представляет собой точный контроллер температуры в медицинских, промышленных и домашних применениях.Эта система лучше, чем аналоговая / термостатическая система, которая имеет низкую точность. Например, его можно использовать для контроля температуры в инкубаторе, где очень важно поддерживать точную температуру. Цифровая система контроля температуры

Описание блок-схемы цифрового регулятора температуры

Эта предлагаемая система цифрового регулятора температуры предоставляет информацию о температуре на дисплее, и, когда температура превышает заданное значение, нагрузка (например, нагреватель) выключается.В этом проекте в демонстрационных целях в качестве нагрузки используется лампа. Блок-схема цифровой системы контроля температуры приведена ниже.

Блок-схема цифрового контроллера температуры

Предлагаемая система цифрового контроллера температуры использует микроконтроллер семейства 8051, который является сердцем приложения. Блок дисплея состоит из четырех-семисегментного дисплея, датчика температуры и сопряжен с микроконтроллером.

Цифровой датчик температуры, подключенный к микроконтроллеру для измерения температурных условий.Эта система также имеет четыре кнопочных переключателя для регулировки настроек температуры.

Затем микроконтроллер непрерывно запрашивает информацию о температуре через цифровой датчик температуры и отображает его на 7-сегментном дисплее и автоматически выключает лампу, когда соответствующая температура превышает заданное значение.

Требования к оборудованию

  • Трансформатор (230 — 12 В переменного тока)
  • Регулятор напряжения (LM 7805)
  • Выпрямитель
  • Фильтр
  • Микроконтроллер (at89s52 / at89c51)
  • DS1621 Датчик температуры
  • Кнопки
  • 7-сегментный дисплей
  • BC547
  • Резисторы
  • Конденсаторы
  • 1N4007
  • Реле

Микроконтроллер (AT89S52)

Atmel AT89S52 — это мощный микроконтроллер на базе 8051, который обеспечивает гибкое и экономичное решение для многих встраиваемых приложений управления .

AT89S52 обеспечивает следующие стандартные функции:

  • 8 Кбайт флэш-памяти
  • 256 байт ОЗУ
  • 32 линии ввода / вывода
  • Сторожевой таймер
  • Два указателя данных
  • Три 16-битных таймера / счетчика
  • Шестивекторная двухуровневая архитектура прерывания
  • Полнодуплексный последовательный порт
  • Встроенный генератор и схема синхронизации

Схема выводов приведена ниже.

8051 Микроконтроллер

Датчик температуры — DS1621

Датчик — это устройство, которое принимает сигнал или стимул и реагирует на них.Датчик может преобразовывать полученный сигнал только в электрическую форму.

Датчик температуры DS 1621 обеспечивает следующие стандартные функции:

  • Для измерений не требуются внешние компоненты
  • Измеряет температуру от -55 ° C до + 125 ° C с шагом 0,5 ° C (от 67 ° F до 257 ° F в С шагом 0,9 ° F)
  • Температура считывается как 9-битное значение (2-байтовая передача)
  • Широкий диапазон питания (от 2,7 В до 5,5 В)
  • Преобразует температуру в цифровое слово менее чем за 1 секунду
  • Термостатический настройки определяются пользователем и энергонезависимы
  • Данные считываются / записываются через 2-проводный последовательный интерфейс (линии ввода-вывода с открытым стоком)
  • Приложения включают термостатические регуляторы, промышленные системы, потребительские товары, термометры или любую термочувствительную систему
  • Это 8-контактный корпус DIP или SO
Описание контактов

DS1621 Описание контактов

  • SDA — 2-проводный последовательный ввод / вывод данных
  • SCL — 2-проводные последовательные часы
  • GND — Земля
  • TOUT — Выходной сигнал термостата
  • A0 — Вход адреса чипа
  • A1 — Вход адреса чипа
  • A2 — Вход адреса чипа
  • VDD — Напряжение источника питания

Функциональная схема DS1621 показана на рисунке ниже.

Функциональная блок-схема DS1621

DS1621 обеспечивает 9-битные показания температуры, которые указывают температуру устройства. Выходной сигнал термостата (TOUT) активен, когда температура устройства превышает заданную пользователем температуру (TH).

Выход остается активным до тех пор, пока температура не упадет ниже заданной пользователем температуры TL, с учетом любого необходимого гистерезиса. Заданные пользователем настройки температуры хранятся в энергонезависимой памяти, поэтому детали могут быть запрограммированы перед установкой в ​​систему.

Параметры температуры и показания температуры передаются на / от DS1621 от микроконтроллера через простой двухпроводной (I2C) последовательный интерфейс.

Измерение температуры

DS1621 измеряет температуру с помощью датчика температуры на основе ширины запрещенной зоны. Аналого-цифровой преобразователь дельта-сигма (АЦП) преобразует измеренную температуру в цифровое значение, которое калибруется в ° C или ° F.

Показание температуры предоставляется в виде 9-битного показания с дополнением до двух с помощью команды READ TEMPERATURE.Данные передаются через 2-проводный последовательный интерфейс — сначала MSB (интерфейс последовательной связи I2C).

Базовый семисегментный дисплей

Эта версия является стандартной версией анода. Это означает, что положительный вывод каждого светодиода подключен к общей точке, которой является вывод 3, в данном случае Vcc. Каждый светоизлучающий диод имеет отрицательную ногу, которая подключена к одному из контактов устройства.

7-сегментный светодиодный дисплей

Чтобы он заработал, необходимо подключить контакты 3 к 5 вольт. Затем, чтобы каждый сегмент загорелся, соедините контакт заземления этого провода с землей через резистор.Его также можно использовать через любой вывод порта микроконтроллера, например, в режиме погружения. ПОРТ 0 в микроконтроллере серии 8051.

Программное обеспечение

Мы использовали язык «C» для написания кода приложения и скомпилировали его с помощью компилятора KEIL Micro Vision (IDE). После завершения записи программного обеспечения этот код будет преобразован в шестнадцатеричный код для управления микроконтроллером. Сгенерированный шестнадцатеричный код записывается в микроконтроллер с помощью подходящего программатора.

Принципиальная схема подключения цифрового контроллера температуры

Для работы системы требуется источник питания 5 В, подключенный к контакту 40 микроконтроллера, а заземление — к его 20 контактам.Контакты 1.0 — 1.3 порта 1 подключены к кнопкам. Контакты 3.5–3.7 микроконтроллера подключены к 1, 2, 3 контактам датчика температуры DS1621 соответственно. Принципиальная схема цифрового контроллера температуры

Контакты 0,0–0,6 порта 0 микроконтроллера подключены к 7-сегментному дисплею. Контакты 2.0 — 2.3 порта 2 микроконтроллера подключены к транзисторам BC547 порта 2 микроконтроллера подключены к транзистору BC547. Контакт 2.4 подключен к другому транзистору BC547, который управляет реле.

Рабочий

В проекте используется цифровой датчик температуры DS1621, подключенный к микроконтроллеру. Поверхность этой 8-контактной ИС измеряет температуру окружающей среды для последовательной передачи цифровых данных на контакт № 1, который отображается с микроконтроллера на 4-х 7-сегментных дисплеях с общим анодом, которые все параллельно подключены к порту «0».

Четыре кнопочных переключателя соединены с микроконтроллером с подтягивающими резисторами, чтобы помочь запрограммировать заданную температуру по желанию.Выход микроконтроллера на выводе 25 управляет транзистором, который, в свою очередь, управляет реле, которое включает или выключает нагреватель для поддержания температуры.

Однако в этом проекте в демонстрационных целях вместо нагревателя используется лампа. Лампа обычно горит и гаснет при достижении заданной температуры.

Применение цифрового регулятора температуры

Ниже приведены некоторые примеры приложений, которым следует уделять особое внимание.

  • Использование на открытом воздухе с потенциальным химическим загрязнением или электрическими помехами
  • Системы контроля ядерной энергии, системы сжигания, железнодорожные системы, авиационные системы
  • Медицинское оборудование, развлекательные машины, транспортные средства, оборудование для обеспечения безопасности и установки, регулируемые отдельными отраслевыми или правительственными постановлениями
  • Системы, машины и оборудование, которые могут представлять опасность для жизни или имущества

Таким образом, речь идет о цифровом контроллере температуры с использованием микроконтроллера.Мы надеемся, что вы лучше понимаете эту концепцию.

Кроме того, любые вопросы, касающиеся этой концепции или проектов на основе микроконтроллеров, просьба оставлять свои отзывы, комментируя их в разделе комментариев ниже. Вот вам вопрос, какова функция 7-сегментного дисплея?

Основы регулятора температуры, работа схемы и оптимальное применение

Температура — это наиболее часто измеряемая величина окружающей среды, и многие биологические, химические, физические, механические и электронные системы зависят от температуры.Некоторые процессы работают хорошо только в узком диапазоне температур. Поэтому необходимо соблюдать осторожность, чтобы контролировать и защищать систему.

При превышении температурных пределов электронные компоненты и схемы могут быть повреждены из-за воздействия высоких температур. Измерение температуры помогает повысить стабильность цепи. Измеряя температуру внутри оборудования, можно определить высокие уровни температуры и предпринять действия для снижения температуры системы или даже отключения системы для предотвращения аварий.

Некоторые из приложений контроля температуры — это практический контроллер температуры и схемы беспроводной сигнализации превышения температуры, которые обсуждаются ниже.

Практический контроллер температуры

Контроллеры этого типа используются в промышленных приложениях для регулирования температуры устройств. Он также отображает температуру на одном ЖК-дисплее в диапазоне от –55 ° C до + 125 ° C. В основе схемы лежит микроконтроллер из семейства 8051, который управляет всеми его функциями.IC DS1621 используется как датчик температуры.

DS1621is выдает 9-битные показания для отображения температуры. Заданные пользователем настройки температуры сохраняются в энергонезависимой памяти EEPROM через микроконтроллер серии 8051. Настройки максимальной и минимальной температуры вводятся в MC через набор переключателей, которые хранятся в EEPROM -24C02. Максимальные и минимальные настройки предназначены для разрешения любых необходим гистерезис. Сначала используется кнопка Set, затем установка температуры с помощью INC, а затем кнопка ввода.Аналогично для кнопки DEC. Реле управляется от MC через драйвер транзистора. Контакт реле используется для нагрузки, показанной в схеме в виде лампы. Для нагрузки нагревателя большой мощности может использоваться контактор, катушка которого приводится в действие контактами реле вместо лампы, как показано.

Стандартный источник питания 12 вольт постоянного тока и 5 вольт через регулятор состоит из понижающего трансформатора вместе с мостовым выпрямителем и фильтрующим конденсатором.

Характеристики IC DS1621:
  • Для измерения температуры не требуются внешние компоненты
  • Измеряет температуру от -55 ° C до + 125 ° C в диапазоне 0.Шаг 5 ° C. Эквивалент по Фаренгейту составляет от -67 ° F до 257 ° F с шагом 0,9 ° F
  • Температура читается как 9-битное значение (2-байтовая передача)
  • Широкий диапазон питания (от 2,7 В до 5,5 В)
  • Преобразует температуру до цифрового слова менее чем за 1 секунду
  • Термостатические настройки определяются пользователем и являются энергонезависимыми
  • Данные считываются / записываются через двухпроводной последовательный интерфейс (линии ввода-вывода с открытым стоком)
  • Приложения включают термостатические регуляторы, промышленные системы, потребительские товары, термометры или любая термочувствительная система
  • 8-контактный корпус DIP или SO (150 мил и 208 мил)

Беспроводная сигнализация превышения температуры

В схеме используется аналоговый датчик температуры LM35, должным образом подключенный к компаратору LM 324, выходной сигнал которого поступает на 4-битный входной энкодер IC HT 12E.Предел выбирается с помощью предустановки 10K, которая откалибрована вокруг его поворота на 270 градусов. ИС кодировщика преобразует эти данные в параллельные данные в последовательные, которые передаются модулю передатчика для передачи.

Радиочастотный модуль, как следует из названия, работает на радиочастоте. Соответствующий частотный диапазон варьируется от 30 кГц до 300 ГГц. В этой радиочастотной системе цифровые данные представлены как вариации амплитуды несущей волны. Этот вид модуляции известен как амплитудная манипуляция (ASK).

Передача через РЧ лучше, чем через ИК (инфракрасный порт) по многим причинам. Во-первых, сигналы через RF могут проходить на большие расстояния, что делает его пригодным для приложений с большим радиусом действия. Кроме того, хотя ИК-порт в основном работает в режиме прямой видимости, РЧ-сигналы могут распространяться даже при наличии препятствий между передатчиком и приемником. Далее, передача RF более сильная и надежная, чем передача IR. В радиочастотной связи используется определенная частота, в отличие от ИК-сигналов, на которые влияют другие источники ИК-излучения.

Пара передатчик / приемник (Tx / Rx) работает на частоте 434 МГц. РЧ-передатчик принимает последовательные данные и передает их по беспроводной связи через РЧ-сигнал через антенну, подключенную к выводу 4. Скорость передачи составляет 1–10 кбит / с. Переданные данные принимаются радиочастотным приемником, работающим на той же частоте, что и передатчик.

Сторона приемника принимает эти последовательные данные и затем передает их на IC HT12D декодера для генерации 4-битных параллельных данных, которые передаются на инвертор CD7404 для управления транзистором Q1 для включения любой нагрузки в целях предупреждения.И передатчик, и приемник питаются от батареек с диодами обратной защиты, а также получают около 5 В от используемой 6-вольтовой батареи.

HT12D — это микросхема декодера серии 2 12 (интегральная схема) для приложений дистанционного управления, производимая Holtek. Он обычно используется для радиочастотных (RF) беспроводных приложений. Используя спаренный кодировщик HT12E и декодер HT12D, мы можем передавать 12 бит параллельных данных последовательно. HT12D просто преобразует последовательные данные на свой вход (могут быть получены через РЧ-приемник) в 12-битные параллельные данные.Эти 12-битные параллельные данные делятся на 8 адресных битов и 4 бита данных. Используя 8 бит адреса, мы можем предоставить 8-битный код безопасности для 4-битных данных и может использоваться для адресации нескольких приемников с помощью одного и того же передатчика.

HT12D — это ИС CMOS LSI, способная работать в широком диапазоне напряжений от 2,4 В до 12 В. У него низкое энергопотребление и высокая помехоустойчивость. Полученные данные проверяются 3 раза на предмет большей точности. Он имеет встроенный генератор, нам нужно подключить только небольшой внешний резистор.Первоначально декодер HT12D будет в режиме ожидания, т. Е. Генератор отключен, а HIGH на выводе DIN активирует генератор. Таким образом, генератор будет активен, когда декодер принимает данные, переданные кодером. Устройство начинает декодирование входного адреса и данных. Декодер непрерывно трижды сопоставляет полученный адрес с локальным адресом, присвоенным контактам A0 — A7. Если все совпадают, биты данных декодируются и выходные контакты D8 — D11 активируются. Эти действительные данные обозначаются установкой на контакте VT (действительной передачи) ВЫСОКОГО уровня.Это будет продолжаться до тех пор, пока адресный код не станет неправильным или пока не будет получен сигнал.

Цифровой регулятор температуры | Полная принципиальная схема с пояснением

Рис. 1: ЖК-дисплей для контроллера температуры

Цифровой контроллер температуры является важным инструментом в области электроники, контрольно-измерительной аппаратуры и автоматизации управления для измерения и контроля температуры. Его можно использовать как дома, так и в промышленности. На рынке легко доступны различные типы аналоговых и цифровых регуляторов температуры, но они, как правило, не только дороги, но и их температурный диапазон обычно не очень высок.Здесь представлен недорогой контроллер температуры на основе микроконтроллера, который может считывать и контролировать температуру в диапазоне от нуля до 1000ºC. Температура в реальном времени отображается на его ЖК-экране, и вы можете использовать его для управления температурой в пределах заданного минимального и максимального диапазона.

Схема и работа цифрового регулятора температуры
На рис. 2 показана принципиальная схема цифрового регулятора температуры. Схема построена на базе микроконтроллера PIC16F877A (IC1), прецизионного усилителя термопары AD8495 (IC2), термопары типа K (подключенной к CON3), ЖК-дисплея 16 × 2 (LCD1), реле с однократным переключением (RL1) и нескольких общих компонентов.

Выбор датчика. Существует два основных типа систем измерения температуры: системы прямого измерения температуры до 1000 ° C и системы косвенного измерения температуры для более высокого диапазона температур, где датчики температуры могут быть физически повреждены из-за высоких температур. Выбор датчика температуры зависит от диапазона температуры, который вы хотите проверить. Существуют различные типы датчиков прямого измерения для разных диапазонов температуры (см. Таблицу I).

Термопара. Здесь мы использовали термопару типа К для прямого измерения температуры до 1000 ° C. В термопаре K-типа для образования спая используются два материала: хромель (Ni-Cr) и алюмель (Ni-Al). К-тип — это недорогая и одна из самых популярных термопар общего назначения. Его рабочий диапазон составляет от -250 до + 1350 ° C, с чувствительностью примерно 42 мкВ / ° C.

Микроконтроллер. Сердцем системы является микроконтроллер PIC16F877A, который представляет собой маломощный, высокопроизводительный 8-битный КМОП-микроконтроллер.Он включает в себя 8 КБ флэш-памяти, 256-байтовую EEPROM, 368-байтовую RAM, 33 контакта ввода / вывода, 10-битный 8-канальный аналого-цифровой преобразователь (АЦП), три таймера, сторожевой таймер с собственный кварцевый генератор на кристалле для надежной работы и синхронный интерфейс I2C.

Рис. 2: Принципиальная схема цифрового регулятора температуры

Выводы порта RD0 — RD7 микросхемы IC1 подключены к выводам D0 — D7 ЖК-дисплея. Контакты порта с RB0 по RB2 подключены для выбора регистра RS, чтения / записи R / W и включения EN на ЖК-дисплее.На канал АЦП RA0 микроконтроллера поступает аналоговый сигнал от усилителя термопары IC2. Коммутаторы с S2 по S4 подключены к контактам порта с RC0 по RC2 IC1. Переключатели S2 и S3 используются для установки минимального и максимального пределов температуры соответственно. Переключатель S4 замыкается, чтобы запустить функцию АЦП и отобразить фактическую температуру. Контакт порта RC3 управляет нагревательным элементом. Когда на контакте RC3 порта устанавливается высокий уровень, транзистор T1 переходит в режим насыщения, а реле RL1 срабатывает, чтобы включить нагревательный элемент.

Кристалл 4 МГц подключен между контактами 13 и 14 микроконтроллера IC1 для обеспечения базовой тактовой частоты. Сброс при включении обеспечивается комбинацией резистора R2 и конденсатора C1. Переключатель S1 используется для ручного сброса. IC2 — это прецизионный инструментальный усилитель со схемой компенсации холодного спая термопары. Входной сигнал для IC2 (приблизительно 42 мкВ / ° C) генерируется тепловым воздействием термопары. IC2 выдает выходной сигнал (5 мВ / ° C) непосредственно из сигнала термопары.При питании 5 В выход 5 мВ / ° C позволяет устройству покрывать почти 1000 градусов температурного диапазона термопары. Выход IC2 подключен к входному выводу АЦП RA0 микроконтроллера IC1.

Рис. 3: Принципиальная схема источника питания 5В Рис. 4: Конфигурационный бит Рис. 5: Комбинированная односторонняя компоновка печатной платы реального размера для цепей контроллера температуры и источника питания Рис. 6: Компоновка компонентов для печатной платы

Скачать файлы печатной платы и компоновки компонентов в формате PDF: щелкните здесь

Скачать исходный код: нажмите здесь

Схема блока питания представлена ​​на рис.3, где напряжение сети понижено до 9 В, 500 мА трансформатором X1. Это пониженное переменное напряжение выпрямляется мостовым выпрямителем BR1 и фильтруется конденсатором C10 перед подачей на IC3. Регулятор IC3 обеспечивает регулируемое питание 5 В постоянного тока. Свечение светодиода LED1 указывает на наличие питания в цепи.

Программное обеспечение
Программа написана на языке «C» и скомпилирована с использованием компилятора Hi-Tech вместе с MPLAB для генерации шестнадцатеричного кода. Сгенерированный шестнадцатеричный код записывается в микроконтроллер с помощью подходящего программатора с установкой битов конфигурации, как показано на рис.4. Программа хорошо прокомментирована и проста для понимания.

Строительство и тестирование
Односторонняя печатная плата цифрового регулятора температуры реального размера показана на рис. 5, а компоновка ее компонентов — на рис. 6. Соберите схему на печатной плате, чтобы сэкономить время и минимизировать ошибки сборки. Тщательно соберите компоненты и дважды проверьте, нет ли пропущенных ошибок. Используйте соответствующую базу IC для IC1. IC2 является SMD-микросхемой, поэтому ее необходимо припаять на стороне пайки печатной платы. После правильной сборки и подключения схемы подключите источник питания 230 В, 50 Гц к первичной обмотке трансформатора, а вторичную обмотку трансформатора подключите к плате в точке X1.

Контроль температуры включения-выключения — Electronics-Lab.com

Эта схема управляет нагрузкой (в данном случае бесщеточным вентилятором постоянного тока) на основе температуры по сравнению с заданным значением. Преобразованный диод в режиме прямой поляризации. Фактически, при прямом смещении прямое падение напряжения на диоде зависит от температуры, в частности, имеет отрицательный линейный наклон. Это из-за распределения Больцмана, заставляющего электроны переходить в зону проводимости термически, снижая падение напряжения на диоде.

В любом случае эта схема comparates точного опорного напряжения (стабилитрон) с прямого падения напряжения диода прямого смещения 11mA тока.

Компаратор просто LM158 / 258/358 работает в режиме разомкнутого контура, инвертирующий вход подключен к датчику диода, и неинвертирующий к опорному напряжению. Se, когда температура поднимается выше заданного значения, прямое напряжение падает ниже опорного напряжения, а выход компаратора vccturning на транзисторе и так вентилятора.

Транзистор большей мощности может быть заменен на более крупные вентиляторы, или вы можете заменить реле, IGBT, МОП-транзистор и т. Д. Для управления более высокими нагрузками (и более высокими напряжениями).

Уставка регулируется с помощью потенциометра, и вы можете использовать драйвер светодиода LM3914 для создания индикатора уставки температуры (требуется тщательная калибровка и использование Excel для расчета наклона и точки пересечения).

Можно сделать множество модификаций, но схема работает очень хорошо в своей основной форме.

Компаратор может различать разницу в 10 мкВ, поэтому примерно 0.Разница в 01 ° C (осторожная регулировка потенциометра позволяет почувствовать тепло тела на расстоянии 1/2 см от датчика или почувствовать тепло окружающей среды, что позволит постоянно включать и выключать вентилятор)

Вы можете контролировать температуру до 140 ° C (150 макс. Температура диода), но линейность не гарантируется

Возможные варианты использования? Охлаждение радиатора, аварийное охлаждение компьютера (но я думаю, что линейное устройство лучше, чем двухпозиционное), охлаждение металла при сверлении и т. Д.

А! Одно замечание: вы можете даже нагревать с помощью этой схемы, но вам нужны входы обратного компаратора и заменить вентилятор реле, управляющим нагревателем.

.