Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения — устройство, принцип работы, виды, применение

Виды и схемы стабилизаторов напряжения

Автор: Александр Старченко

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение ру.

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Стоит ли собирать стабилизатор напряжения своими руками

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Смотрим видео, принцип работы импульсного прибора:

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Электронный стабилизатор напряжения 220 своими руками. Виды и схемы стабилизаторов напряжения

Исследовав источники и ряд сайтов в Интернете, я упростил стабилизатор переменного напряжения, описанный в статье . Число микросхем удалось сократить до четырёх, число оптосимисторных ключей — до шести. Принцип действия стабилизатора такой же, как у прототипа .

Основные технические характеристики стабилизатора напряжения:

  • Входное напряжение, В …..135…270
  • Выходное напряжение, В. . . .197…242
  • Максимальная мощность нагрузки, кВт ………………5
  • Время переключения или отключения нагрузки,мс …….10

Схема предлагаемого стабилизатора показана на рисунке. Устройство состоит из силового модуля и блока управления. Силовой модуль содержит мощный автотрансформатор Т2 и шесть ключей переменного тока, обведённых на схеме штрихпунктирной линией.

Остальные детали образуют блок управления. Он содержит семь пороговых устройств: I — DA2.1 R5 R11 R17, II -DA2.2 R6 R12 R18, III — DA2.3 R7 R13 R19, IV — DA2.4 R8 R14 R20, V — DA3.1 R9 R15 R21, VI — DA3.2 R10 R16 R22, VII -DA3.3 R23. На одном из выходов дешифратора DD2 присутствует напряжение высокого уровня, которое вызывает включение соответствующего светодиода (одного из HL1 — HL8).Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Мощный автотрансформатор Т2 включён иначе, чем в прототипе. Напряжение сети подаётся на один из отводов обмотки или на обмотку целиком через один из симисторов VS1—VS6, а нагрузка подключена к одному и тому же отводу. При таком включении расходуется меньше провода на обмотку автотрансформатора.

Напряжение обмотки II трансформатора Т1 выпрямляют диоды VD1, VD2 и сглаживает конденсатор С1. Выпрямленное напряжение пропорционально входному. Оно используется как для питания блока управления, так и для измерения входного напряжения сети. С этой целью оно подаётся на делитель R1—R3. С движка подстроечного резистора R2 поступает на неинвертирующие входы операционных усилителей DA2.1 —DA2.4, DA3.1—DA3.3. Эти ОУ используются в качестве компараторов напряжения. Резисторы R17—R23 создают гистерезис переключения компараторов.

В таблице ниже показаны пределы изменения выходного напряжения Uвых и логические уровни напряжения на выходах операционных усилителей и входах дешифратора DD2, а также включённые светодиоды в зависимости от входного напряжения Uвх без учёта гистерезиса.

Микросхема DA1 вырабатывает стабильное напряжение 12 В для питания остальных микросхем. Стабилитрон VD3 вырабатывает образцовое напряжение 9 В. Оно подаётся на инвертирующий вход ОУ DA3.3. На инвертирующие входы других ОУ оно поступает через делители на резисторах R5—R16.

При сетевом напряжении ниже 135 В напряжение на движке резистора R2, а значит, и на неинвертирующих входах ОУ меньше, чем на инвертирующих. Поэтому на выходах всех ОУ низкий уровень. На всех выходах микросхемы DD1 также низкий уровень. В этом случае появляется высокий уровень на выходе О (вывод 3) дешифратора DD2. Включён светодиод HL1, показывая слишком низкое напряжение сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

При напряжении сети от 135 до 155 В напряжение на движке резистора R2 больше, чем на инвертирующем входе DA2.1, поэтому на его выходе высокий уровень.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение На выходе элемента DD1.1 также высокий уровень. В этом случае появляется высокий уровень на выходе 1 (вывод 14) дешифратора DD2 (см. таблицу). Светодиод HL1 гаснет. Включается светодиод HL2, течёт ток через излучающий диод оптрона U6, вследствие чего оптосимистор этого оптрона открывается. Через открытый симистор VS6 напряжение сети подаётся на нижний по схеме отвод (вывод 6) относительно начала обмотки (вывода 7) автотрансформатора Т2. Напряжение на нагрузке больше напряжения сети на 64…71 В.

При дальнейшем повышении напряжения сети оно будет переключаться на следующий вверх по схеме вывод автотрансформатора Т2. В частности, напряжение сети от 205 до 235 В непосредственно поступает на нагрузку через открытый симистор VS2, а также на выводы 1—7 автотрансформатора Т2.

При напряжении сети от 235 до 270 В на выходах всех ОУ, кроме DA3.3, высокий уровень, ток течёт через светодиод HL7 и излучающий диод U1.2. Напряжение сети через открытый симистор VS1 подключено ко всей обмотке автотрансформатора Т2. Напряжение на нагрузке меньше напряжения сети на 24…28 В.

При напряжении сети более 270 В на выходах всех ОУ высокий уровень, а ток течёт через светодиод HL8, который сигнализирует о чрезмерно высоком напряжении сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

Маломощный трансформатор Т1 аналогичен применённому в прототипе, за исключением того, что его вторичная обмотка содержит 1400 витков с отводом от середины. Мощный автотрансформатор Т2 — готовый от промышленного стабилизатора VOTO 5000 Вт. Отмотав вторичную обмотку и часть первичной, я сделал новые отводы, считая от начала обмотки (вывода 7): вывод 6 от 215-го витка (150 В), вывод 5 от 236-го витка (165 В), вывод4 от 257-го витка (180 В), вывод 3 от 286-го витка (200 В), вывод 2 от 314-го витка (220 В). Вся обмотка (выводы 1—7) имеет 350 витков (245 В).

Постоянные резисторы — С2-23 и ОМЛТ, подстроечный резистор R2 — С5-2ВБ. Конденсаторы С1 —СЗ— К50-35, К50-20.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение Диоды (VD1, VD2) можно заменить на — , КД243Б— КД243Ж.

Микросхему можно заменить отечественными аналогами КР1157ЕН12А, КР1157ЕН12Б.

Налаживание выполняют с помощью ЛАТРа. Вначале устанавливают пороги переключения. Для достижения более высокой точности установки резисторы R17—R23, создающие гистерезис, не устанавливают. Мощный автотрансформатор Т2 не подключают. Устройство подключают к сети через ЛАТР. На выходе ЛАТРа устанавливают напряжение 270 В. Перемещают движок подстроечного резистора R2 снизу вверх по схеме до включения светодиода HL8. Далее на выходе ЛАТРа устанавливают напряжение 135 В. Подбирают резистор R5 так, чтобы напряжение на инвертирующем входе (вывод 2) ОУ DA2.1 было равно напряжению на его неинвертирующем входе (вывод 3). Затем последовательно подбирают резисторы R6…R10, устанавливая пороги переключения 155 В, 170 В, 185 В, 205 В, 235 В, сверяя логические уровни с таблицей. После этого устанавливают резисторы R17— R23. В случае необходимости подбирают их сопротивления, устанавливая необходимую ширину петли гистерезиса. Чем больше сопротивление, тем меньше ширина петли. Установив пороги переключения, подключают мощный автотрансформатор Т2, а к нему нагрузку, например, лампу накаливания мощностью 100…200 Вт. Проверяют пороги переключения и измеряют напряжение на нагрузке. После налаживания светодиоды HL2—HL7 можно удалить, заменив их перемычками.

ЛИТЕРАТУРА:

1. Годин А. Стабилизатор переменного напряжения. — Радио, 2005, № 8.
2. Озолин М. Усовершенствованный блок управления стабилизатора переменного напряжения. — Радио, 2006, № 7.

В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082).Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение В качестве ключей используются мощные быстродействующие реле.

Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)

Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.

На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема

Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16
поступает на вход микроконтроллера через конденсатор C10
.
Питание реле и микросхемы осуществляется через диод D3
и микросхему U1
. Кнопка SB1
совместно с резистором R1
служат для калибровки стабилизатора. Транзисторы Q1-Q4
– усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422
и обмотки реле шунтированы диодами 1N4007
и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676
.
Блок программы zero
ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U
измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on
, R2off
, R1on
и R1off
.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50
200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1
, а вспомогательные LIMING JZC — 22F
.
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).

Прибор повешен на стене и закрыт кожухом из жести

Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР»а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки .Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой

🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165

Здравствуй, читатель!
Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель.
Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи — помоги мне!

Стабилизатор напряжения для дома | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

Тема сегодняшней статьи относится к таким неотъемлемым в настоящее время устройствам, как стабилизаторы напряжения для дома. Сейчас я Вам поясню почему неотъемлемые. Энергоснабжающая организация не уделяет должного внимания на качество поставляемой электроэнергии потребителям. Причиной этому может являться отсутствие законов и наложение санкций при несоответствующем качестве.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение К тому же не стоит забывать, что энергоснабжающая организация является монополистом по поставке электрической энергии.

Поставляемая электроэнергия является товаром. И если этот «товар» будет не надлежащего качества, то это может привести к выходу из строя электрооборудования. Поэтому каждый потребитель должен позаботиться о себе сам, применив стабилизаторы напряжения для дома, которые предназначены для поддержания стабильного напряжения питания нагрузок бытового и промышленного назначения.

Что же такое «качество» электрической энергии?

Для этого обратимся к следующим нормативным документам, где регламентируются параметры электрической сети от источника питания до потребителя.

В этих ГОСТах представлена расшифровка параметров и цифровые показатели качества электрической энергии, методы их измерения, причины и вероятности появления того или иного отклонения качества.

Кстати, скачать ПУЭ 7 издание Вы можете с моего сайта.

Теперь давайте рассмотрим основные показатели качества электрической энергии, согласно ГОСТ 13109-97.

Основные показатели электрической энергии

1. Отклонение напряжения

Существуют следующие нормы отклонений:

  • нормально-допустимые (±5%)
  • предельно-допустимые (±10%)

Согласно ГОСТа 21128-83, номинальное действующее напряжение однофазной бытовой сети должно составлять 220 (В). Отсюда следует, что предел напряжений от 209 — 231 (В) является нормально-допустимым отклонением, а предел напряжений от 198 — 242 (В) — предельно-допустимым отклонением.

2. Провал напряжения

Провал напряжения — это падение напряжения ниже, чем 198 (В) длительностью более 30 секунд. Глубина провала напряжения может достигать до 100%.

3. Перенапряжение

Перенапряжение — это превышение амплитудного значения напряжения больше 339 (В).

Напоминаю, что амплитудное значение 310 (В) соответствует действующему значению 220 (В).

Более подробно о причинах возникновения перенапряжений читайте в моей статье: виды перенапряжений и их опасность.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Так что же такое стабилизатор напряжения для дома?

Стабилизатор напряжения — это автоматическое устройство, которое при изменении входного напряжения, на выход выдает стабильное заданное напряжение 220 (В). Схематично можно изобразить так:

Рассмотрим проблемы, которые могут возникнуть с питающим напряжением в своих домах, коттеджах и садах.

Наружная электропроводка для большинства дачных поселков была построена и рассчитана еще в прошлом веке, когда нормы потребления на каждый дом принимались около 2 (кВт). В настоящее время только один электрический чайник потребляет около 1 (кВт), стиральная машинка около 2 (кВт), не говоря уже об электрических плитах, мощность которых достигает 10 (кВт) и больше.

По причине долгого срока эксплуатации состояние питающих линий с каждым годом ухудшается. Обслуживающие электрики приезжают на линию только по аварийным заявкам и вызовам. Периодические проверки и обслуживание линий ведется по минимуму.

От воздействий атмосферных осадков происходит окисление проводов, что уменьшает их сечение, в местах соединений проводов ухудшается электрический контакт, что приводит к дополнительным потерям. Также увеличивается число потребителей на одну и ту же линию. Хотя в последнее время в технических условиях на подключение дома энергоснабжающая организация обязывает установку ограничителей мощности.

Что в итоге мы имеем?

Когда линия не нагружена, то величина питающего напряжения не выходит за рамки норм. Как только нагрузка на линии начинает постепенно расти (люди приходят с работы), питающее напряжение начинает уменьшаться. По личному примеру скажу, что в одной из деревень величина напряжения в вечернее время достигала 150 (В). При таком напряжении холодильники выходят из строя, лампочки светят тускло, электрические печи не греют до номинальной температуры и т.д.

Как выходит из данной ситуации энергоснабжающая организация?

Очень просто.

Они выставляют на питающем трансформаторе с помощью привода ПБВ или РПН изначально повышенный уровень напряжения, чтобы в часы максимальной нагрузки напряжение было в норме, ну или почти в норме.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение Но ведь изначально выставленный повышенный уровень напряжения на питающем трансформаторе приводит к скорому перегоранию лампочек, а также к выходу из строя бытовой аппаратуры и техники.

Что же получается? Палка о «двух концах»?

Кто в данном тексте увидел свою проблему, то рекомендую Вам позаботиться о себе самостоятельно, вооружившись стабилизатором напряжения для дома. Ниже я познакомлю Вас с типами стабилизаторов.

Типы стабилизаторов напряжения для дома

Рассмотрим классификацию стабилизаторов напряжения для дома.

1. Феррорезонансные или магниторезонансные стабилизаторы напряжения

Это самые «древние» стабилизаторы напряжения для дома, которые применялись для питания первых цветных телевизоров. Помните, такую «коробку»?

Стабилизатор напряжения для дома «Украина-2″ мощностью всего то 315 (Вт).

А это еще один феррорезонансный стабилизатор напряжения.

Принцип их работы основывается на явлении магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей.

У этих стабилизаторов напряжения недостатков пожалуй гораздо больше, чем достоинств. Во-первых, они выпускались небольшой мощности (до 600 Вт). Во-вторых, они очень сильно искажают синусоидальную форму выходного напряжения. В-третьих, они очень сильно гудят, а также у них узкий диапазон стабилизации и они частенько выходят из строя при повышенном напряжении в сети.

2. Дискретные (ступенчатые) стабилизаторы напряжения

Следующий тип стабилизаторов напряжения для дома, который мы рассмотрим, называются дискретными или ступенчатыми.

Принцип их работы основывается на ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора с помощью ключей.

Ключи бывают либо релейными, либо полупроводниковыми (симисторы).

Ниже на рисунке приведена упрощенная схема дискретного стабилизатора для дома с прямым включением 5 ключей. Обычно такая схема применяется у самых дешевых моделей.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение Каждый ключ (реле или симистор) настроен на определенный порог срабатывания по уровню входного напряжения сети. При достижении этого значения ключ замыкает часть обмотки автотрансформатора.

Про достоинства таких типов стабилизаторов напряжения для дома могу сказать то, что они обладают высокой скоростью реакции на изменение входного напряжения, что необходимо для двигательных нагрузок, таких как холодильник, стиральная машина, глубинный насос и др.

Время реакции на изменение входного напряжения зависит от количества обмоток и скорости работы ключей.

Также у них небольшой вес и габариты, отсутствуют движущиеся части, в отличие от электромеханических стабилизаторов, а также широкий диапазон входных напряжений.

Из недостатков можно отметить то, что напряжение на выходе меняется ступенчато и во время процесса регулирования происходит прерывание выходного напряжения.

Сейчас мы рассмотрим электромеханические стабилизаторы напряжения для дома. Их принцип работы основан на регулировании напряжения за счет перемещения щетки по обмотке автотрансформатора.

Непрерывность фазы выходного напряжения обеспечивается конструкцией токосъемника, т.е. щеткой. Ширина щетки приблизительно равна 2,2 диаметра провода обмотки автотрансформатора, чтобы при переходе с одного витка на другой электрический контакт не терялся.

Достоинства электромеханического стабилизатора напряжения:

  • плавное регулирование
  • отсутствие помех при работе
  • отсутствие искаженной формы напряжения
  • отсутствие электронных ключей, коммутирующих рабочий ток
  • высокая точность удержания выходного напряжения — 220 ± 3% (в отличие от дискретных — 220 ± 7%)

Недостатки электромеханического стабилизатора напряжения:

  • необходимо следить за износом щетки
  • искрение во время перемещения щетки по обмотке автотрансформатора
  • во время работы двигателя сервопривода слышно гудение
Выводы

Про необходимость установки стабилизаторов напряжения для дома я Вам пояснил.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение Далее решать только Вам. С типами стабилизаторов я Вас познакомил. Рекомендую Вам приобретать только дискретные или электромеханические стабилизаторы (сам лично склоняюсь к последним), про феррорезонансный вообще забудьте.

P.S. В следующей статье мы научимся выбирать стабилизатор напряжения по мощности. Покажу Вам пример расчета мощности стабилизатора для своей квартиры. А также поговорим о месте их установки и креплении. Чтобы не пропустить выход новых статей — пройдите процедуру подписки. Форма находится в конце каждой статьи и в правой колонке сайта.

zametkielectrika.ru

стабилизатор напряжения 220в своими руками — Меандр — занимательная электроника

Цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы безтрансформаторного БП. Ниже приведена схема вольтметра. Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5А …

В статье приведено описание устройства, которое позволяет наглядно с помощью двух светодиодных линеек отображать текущее значение напряжения сети ~220 В и тока потребления в контролируемой линии, а также осуществлять звуковую сигнализацию при выходе уровней напряжения и тока за установленные границы. Идея контролировать состояние домашней питающей сети возникает, думаю, у многих, особенно после очередной оплаты за …

R1, R2, R3 — делители напряжения в диапазонах 0-1,2В, 0-12В и 0-120В. Вольтметр индикатор собран на микросхеме LM3914. Ток протекающий через каждый светодиод может достигать 30мА. R4 — регулирует яркость светодиодов. Каждый светодиод имеет шаг 1,2В (в диапазоне 12В). Изменив значения делителей напряжения R1 R2 R3 Вы можете самостоятельно подобрать необходимый Вам диапазон измерения напряжения.

Технические характеристики: Напряжение питания – 10-17 В Шаг индикации напряжения – 0.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение 5 В Диапазон измерения напряжения – 10.5-16 В Количество точек индикации – 12 Максимальный ток потребления – 40 мА Устройство представляет собой универсальный линейный индикатор напряжения на базе КР1003ПП1. Сигнал индицируется шкалой из 12 светодиодов, загорающихся последовательно в зависимости от входного напряжения. При использовании …

meandr.org

Подключение стабилизатора напряжения пошаговая инструкция

В зависимости от того, какой стабилизатор напряжения вы выбрали, стоит рассмотреть несколько вариантов подключения. (Меню кликабельно)

Кроме того, важно определиться с местом расположения стабилизатора

Зачастую бывает так, что в квартире (доме, офисе) есть необходимость подключить только одно-два устройства под стабилизатор, а остальные в таком не нуждаются.

Это случается тогда, когда входящее напряжение в сети незначительно отличается от номинальных 220 вольт и его перепады незначительны (+/- 15 вольт).

В таких случаях, действительно нет необходимости подключать полностью весь дом и достаточно защитить плазменный телевизор, спутниковый тюнер или компьютер.

Для подключения по такой схеме необходимо, тем не менее, позаботиться о том, чтобы высокоточная техника (аудио, видеосистемы, ПК) были дополнительно подключены через сетевой фильтр. Это необходимо для того, чтобы эти источники не давали помехи друг на друга, а также, чтобы отфильтровать скачки напряжения от работы сварки во дворе, например.

Стоит отметить, что в случае подключения газового котла, необходимо также включить в схему ИБП – источник бесперебойного питания, который обеспечит корректную работу оборудования даже при отключении электричества.

Непосредственно к самому выпрямителю можно подключать мощные токоприемники, такие, как насос, холодильник, микроволновая печь, электродуховка, пылесос, пароварка, утюг. Эти потребители не требуют особой точности в стабилизации и мало зависят от перепадов напряжения.

Схема подключения всей квартиры через стабилизатор напряжения

Этот способ подключения стабилизатора напряжения наиболее приемлем для современных квартир и домов.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Выпрямитель в этом случае является самым первым прибором после электросчетчика и обеспечивает стабильным и ровным напряжением все токоприемники квартиры, дачи или дома.

При таком подключении наиболее правильным считается проведение отдельных линий под разные типы электроприборов. Каждая из линий должна оборудоваться своими пакетниками (освещение, насос, телевизор+аудиосистема, компьютер и т.д.)

Но очень редко на этапе строительства учитывается, какие электроустановки будут включаться в ту или иную розетку, поэтому возникают ситуации, когда с помощью удлинителя удобно подключить маломощную, но точную технику (телевизор, спутниковая антенна) в одну розетку с «грубой» (холодильник, стиральная машина, насос, утюг).

При этом «грубая» техника при включении будет создавать помехи, которую стабилизатор, расположенный на входе в дом, отфильтровать не в состоянии. Поэтому старайтесь избегать такого соседства и подключать такие электроприборы как можно дальше друг от друга.

Если же это невозможно, то перед «точной» техникой должен обязательно стоять сетевой фильтр.

Три фазы

Нередко в помещение заходит не одна, а три фазы. В этом случае нужно подключать один трехфазный стабилизатор напряжения или три однофазных.

Первый из них используется только в том случае, если будут применяться электроприборы, рассчитанные на 380 вольт, например мощные электродвигатели, но такие устройства в быту обычно не используются.

Подключение стабилизаторов к трем фазам

Если же в дом поступает три фазы (380 вольт), то лучше использовать схему из трех стабилизаторов, которая обеспечит качественным, ровным 220 В электричеством всю элетрику в доме.

Более того, даже в промышленных масштабах рекомендуется использовать схему из трех однофазных, т.к. в случае выхода из строя или попросту отключения одного из них, в сети остается 220 вольт, что невозможно при использовании трехфазного – тот попросту отключает электричество полностью.

Поэтому, если в сети преобладают потребители по 220 вольт, а не по 380 – следует использовать схему из трех стабилизаторов.Схема стабилизатора напряжения 220в своими руками: Стабилизатор напряжения - устройство, принцип работы, виды, применение

Схема подключения показана на рисунке.

Трехфазный вход имеет четыре провода – один из которых – ноль, является общим для всех трех стабилизаторов в системе, а каждая отдельная фаза пропускается через отдельный выпрямитель.

Перепады напряжения негативно сказываются на любой бытовой технике. Особенно это касается высокоточной электроники, регулирующей работу отопительных приборов.

Для того, чтобы выровнять ток в домашних условиях используют стабилизатор напряжения. В самом простом варианте он работает по принципу реостата, повышая и понижая сопротивление в зависимости от силы тока. Но есть и более современные приборы, которые в полной мере защищают технику от скачков напряжения. О том, как их сделать и поговорим.

Стабилизатор напряжения и принцип его действия

Для более детального понимания работы прибора рассмотрим составляющие электрического тока:

  • сила тока,
  • напряжение,
  • частота.

Сила тока – это количество заряда, который прошел через проводник за определенный промежуток времени. Напряжение, если объяснять очень просто, эквивалентно понятию работы, которое совершает электрическое поле. Частота – это скорость, с которой поток электронов меняет свое направление. Данная величина характерна исключительно для переменного тока, который циркулирует в электросети. Большинство бытовых приборов рассчитано на напряжение в 220 Вольт, при этом сила тока должна быть 5 Ампер, а частота 50 Герц.

В большинстве случаев бытовая техника имеет допустимую вилку по каждому из параметров, но любая защита рассчитана на то, что условия работы приборов длительное время будут неизменными. В нашей же сети колебания тока происходят практически постоянно. Амплитуда составляет до 2 А по силе тока и до 40-50 В, по напряжению. Частота тока, также отлична от 50 Гц и составляет от 40 Гц до 60 Гц.

Данная проблема связана со многими факторами, но главный среди них, — удаленность конечного потребителя от источника электричества. В результате достаточно длительной транспортировки и многократной трансформации, ток теряет стабильность. Данный дефект электросетей присутствует не только у нас, но и в любых других странах, которые пользуются электричеством. Поэтому был придуман специальный прибор, позволяющий стабилизировать выходной ток.

Виды стабилизаторов напряжения

Так как ток – это направленное движение частиц, для его регулировки используются:

  • механический метод,
  • импульсный метод.

Механический основан на законе Ома. Такой стабилизатор называется линейным. Он состоит из двух колен, соединенных между собой реостатом. Напряжение подается на одно колено, проходит по реостату и попадает на второе колено, с которого уже и раздается далее. Преимущества данного метода заключается в том, что он позволяет достаточно точно установить параметры выходного тока. В зависимости от предназначения, линейный стабилизатор модернизируют дополнительными запчастями. Стоит отметить, что прибор эффективно справляется со своей задачей только в том случае, если разница между входным и выходным током невелика. В противном случае стабилизатор будет иметь низкий КПД. Но даже этого достаточно, чтобы защитить бытовую технику и обезопасить себя от короткого замыкания в случае перенагрузки сети.

Импульсный стабилизатор напряжения основан на принципе амплитудной модуляции тока. Схема стабилизатора напряжения устроена таким образом, что в цепи есть выключатель, который автоматически разрывает цепь через равные промежутки времени. Это позволяет подавать ток частями и равномерно накапливать его в конденсаторе. После того, как он зарядится, уже выровненный ток подается на приборы. Недостаток этого метода в том, что он не позволяет задать определенную величину. Тем не менее, достаточно часто встречаются импульсные повышающе-понижающие стабилизаторы, которые оптимально подходят для бытового использования. Они выравнивают ток в пределах чуть ниже или чуть выше нормы. В обоих случаях все параметры тока не выходят за допустимую вилку.

Важно отметить и разделение приборов на:

  • стабилизатор напряжения однофазный,
  • стабилизатор напряжения трехфазный.

После перераспределения в трансформаторе, выходит трехфазная линия, она как правило идет до распределительного щитка на отдельно взятый дом. Далее от щитка в квартиру идут уже стандартные фаза и ноль. Таким образом большинство бытовых приборов рассчитано именно на однофазную сеть. Поэтому в типовых квартирах целесообразно использовать однофазный стабилизатор. К тому же, стоит он в 10 раз дешевле трехфазного, даже если собрать его своими руками.

Стабилизаторы напряжения для дачи могут быть и трехфазными. Особенно актуально это для мощных насосов, культиваторов и тяжелой строительной техники. В таком случае необходимо сделать стабилизатор, рассчитанный на трансформацию тока под конкретный прибор. На практике сделать это достаточно сложно. Поэтому проще взять его в аренду. Использование указанных выше приборов носит временный характер, поэтому смысла тратить время и деньги на трехфазный стабилизатор напряжения нет.

Основные элементы стабилизатора напряжения

Для того, чтобы собрать простой выравниватель тока не понадобится ни особых навыков, ни специфических деталей. Стабилизаторы напряжения для дома состоят из:

  • трансформатора,
  • конденсаторов,
  • резисторов,
  • диодов,
  • провода для соединения микросхемы.

Идеально, если есть старый сварочный аппарат. Переделать его в стабилизатор напряжения очень легко, к том же не понадобится покупать дополнительные запчасти и конструировать корпус для микросхем. Этому вопросу посвящено видео в конце статьи. Но, ненужная сварка – это большая редкость, поэтому рассмотрим процедуру создания стабилизатора напряжения с нуля. Так как импульсный стабилизатор не позволяет провести точную настройку параметров, рассматривать будем линейный стабилизатор напряжения.

Изготовление самодельного стабилизатора напряжения

Его основа – это трансформатор. На практике трансформаторы намного меньше, чем массивные будки для выравнивания высокого напряжения, приходящего с электростанции. Они представляют собой две катушки, образующие индуктивную электромагнитную связь. Проще говоря, ток подается на одну катушку, заряжает ее, затем возникает электромагнитное поле, которое заряжает вторую катушку, с которой ток идет далее. Эта взаимосвязь выражена формулой:

U 2
=
N 2
=
I 1
U 1
N 1
I 2
  • U 1 – напряжение на первичной обмотке,
  • U 2 – напряжение на вторичной обмотке,
  • N 1 – число витков на первичной обмотке,
  • N 2 – число витков на вторичной обмотке,
  • I 1 – сила тока на первичной обмотке,
  • I 2 – сила тока на вторичной обмотке.

Формула не идеальна, так как позволяет либо понижать напряжение, либо его повышать. В 90% случаев к потребителю доходит ток с низким напряжением. Поэтому имеет смысл сразу же сделать повышающий трансформатор. Индуктивные катушки к нему продаются в магазинах электротехники либо на любом блошином рынке. Важно отметить, что число витков должно быть не менее 2000 тысяч, так как иначе трансформатор будет очень сильно греться и вскоре сгорит. Для того, чтобы выбрать мощность трансформатора, необходимо замерять напряжение в сети. Для расчетов возьмем значение 196 В. Формула приобретает такой вид:

Как видно из формулы, сила напряжения на выходе будет 220х4/196=4,4 А. Большинство электроприборов допускает вилку в 1 А. Поэтому полученная величина достаточна для нормальной работы техники.

Стабилизатор напряжения, энергия в котором увеличивается на заданную величину готов. Но, если в сети произойдет скачек мощности, то формула примет следующие значения:

Это приведет к поломке большинства электроприборов.

Для устранения данного дефекта воспользуемся законом Ома:

  • U– напряжение,
  • I– сила тока,
  • R– сопротивление.

264=4,47хR, R=264/4,47=60. Данная формула говорит о том, что в идеале сопротивление всех элементов в системе будет составлять 60 Ом. Если понизить сопротивление, то напряжение уменьшиться:

220=4,47хR, R=220/4,47=50.

Для изменения сопротивления сети используется прибор, под названием реостат. Естественно, регулировать его вручную достаточно неудобно. Поэтому понадобится микросхема-стабилизатор напряжения, на которой будет отмечен путь следования электрического тока после выхода из трансформатора.

Наиболее простой способ – это вывести ток с трансформатора на конденсатор. Желательно использовать 12-16 конденсаторов одинаковой емкости. Это позволит накопить ток и сделать его более однородным. Далее все конденсаторы подсоединяются к реостату. Сила тока в сети после трансформатора будет в пределах 4,5-5 А, а желаемое напряжение должно составлять 220 В. Следовательно, имеем формулу R=220/4,75=46. При усредненных показателях сопротивление должно составлять 46 Ом.

Для достижения более плавного выравнивания, желательно установить несколько параллельных реостатов. Таким образом соединяясь в один поток после конденсаторов, цепь необходимо распределить на 4,6,8 отдельных веток, подключенных к реостатам. При этом следует использовать формулу R/число реостатов. Если делать цепь из 6 реостатов, то согласно представленным данным, каждый из них должен иметь сопротивление в 8 Ом.

После прохождения реостатов, цепь снова собирается в один поток и выводится на диод. Диод подключается к обычной розетке.

Все указанные манипуляции относятся к проводу на котором находится фаза, ноль просто пропускаем напрямую к розетке.

Указанный с реостатами способ является достаточно архаичным. Намного более эффективно использовать вместо них обычное устройство защитного отключения. Ток от трансформатора подается на УЗО, ноль также подключается к УЗО. Далее от него идет выход напрямую к розетке.

В том случае, если напряжение или сила тока возрастут в следствии скачка напряжения, УЗО разомкнет цепь, и бытовая техника не пострадает. В остальное время трансформатор будет качественно выравнивать ток.

При повышенном напряжении понадобится понижающий трансформатор. Собирается он по аналогии, за тем исключением, что обмотка на второй катушке должна быть сделана из более толстой проволоки, иначе трансформатор сгорит.

Наиболее эффективно собрать оба трансформатора. Тем более, что есть конструкции понижающе-повышающего типа. В первом случае понадобится ручное переключение провода, во втором — процесс поддается автоматизации. Как видно, сделать стабилизатор напряжения не сложно, но работа с электричеством предполагает предельный уровень осторожности.

Советы по работе с самодельным стабилизатором напряжения

Важно

: описанная схема идеально подходит для постоянных условий, но в электросети достаточно часто случаются перебои и скачки, как вверх, так и вниз.

Поэтому при сборке стабилизатора напряжения рекомендуем отталкиваться от параметров конкретной техники, т.е.:

  • продумать разводку по квартире,
  • если ремонта не предполагается, установить удлинители под определенные группы электроприборов со схожими параметрами,
  • подключить каждую группу к отдельному стабилизатору.

Любая бытовая техника либо на тыльной стороне, либо в паспорте содержит ведомости о требованиях к электропитанию. Отталкиваясь от конкретных цифр значительно проще создать эффективный стабилизатор, так как нет необходимости подстраиваться под сеть. Еще один полезный гаджет – это электронный вольтметр. Желательно подключить его в схему стабилизатора для визуального контроля за его работой.

Для корпуса подойдет любой материал кроме дерева. Достаточно часто самодельные стабилизаторы помещают в пластиковые контейнеры для еды.

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.

Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают , автоматика которого требует подключения к электропитанию, насосного оборудования, сплит систем и подобных потребителей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше . В этом деле без опыта и знаний в сфере электротехники не обойтись.

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Подробные инструкции по сборке

Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор в данном случае применяется из числа тех, что устанавливались в телевизорах старых моделей.

Вот такой примерно силовой трансформатор потребуется под изготовление самодельной конструкции стабилизатора. Однако не исключается подбор других вариантов или же намотка своими руками

Правда в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется как минимум ТС-320 чтобы обеспечить выходную нагрузку до 2 кВт.

Шаг #1 – изготовление корпуса стабилизатора

Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

Допустимо подобрать корпус от любой электроники, подходящий под размещение всех рабочих компонентов схемы самодельного стабилизатора. Также корпус можно собрать своими руками, к примеру, из листов стеклотекстолита

Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

Шаг #2 – изготовление печатной платы

Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора. Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

Изготовить печатную плату стабилизатора вполне доступными способами можно непосредственно в домашних условиях. Для этого нужно приготовить трафарет и набор средств для травления на фольгированном текстолите

Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

Шаг #3 – сборка стабилизатора напряжения

Укомплектованная радиодеталями плата подготавливается для внешней обвязки. В частности, от платы выводятся линии внешней связи (проводники) с другими элементами – трансформатором, выключателем, интерфейсами и т.д.

На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

Пример самодельного стабилизатора напряжения релейного типа, изготовленного в домашней обстановке, помещённого в корпус от пришедшего в негодность промышленного измерительного прибора

Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов. Можно приступать к настройке с дальнейшими испытаниями.

Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840. Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.

Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

Часть схемы, в которую включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа. Соответственно, на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Если процесс изготовления стабилизатора показался вам слишком сложным и нерациональным с практической точки зрения, без особых проблем можно найти и приобрести устройство заводского исполнения. Правила и критерии приведены в рекомендуемой нами статье.

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самоделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, публикуйте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как собрали стабилизатор напряжения собственными руками. Поделитесь полезной информацией, которая может пригодиться посещающим сайт начинающим электротехникам.

⚡️Самодельный стабилизатор напряжения 220в | radiochipi.ru


На чтение 3 мин. Опубликовано
Обновлено

Электронный стабилизатор напряжения — это промежуточное устройство между бытовой электросети и электропотребителем (нагрузкой). Такое устройство предназначено для поддержания напряжения на определенном уровне, а в частности 220В.

Нередко случается в квартирах, а часто в своих домах, напряжения в розетке далеко от идеала 220В, оно или сильно занижено, либо завышено, а порой просто резко скачет. В таких ситуациях включенные бытовые приборы в розетку ведут себя как-то странно, освещение тускло горит, холодильник начинает гудеть, вода в электрочайнике медленно закипает. На помощь нам приходит стабилизатор сетевого напряжения.

[info]Стабилизаторы бывают промышленные и бытовые. Промышленные стабилизаторы напряжения работают от трех фазного напряжения 380В, бытовые от однофазного и делятся на электронные, феррорезонансные, релейные, электромеханические, инверторные.[/info]

Рассмотрим принципиальную схему упрощенного электронного стабилизатора напряжения. В диодном мосту VD2 по диагонали расположен полевой транзистор VT2, когда он закрыт, то первичная обмотка вольтодобавочного трансформатора Т1 отключена от сети. Выходное U на холостом ходу, равно сетевому за исключением, малого падения напряжения на вторичной обмотке трансформатора Т1.

По схеме начало первичной обмотки L1-1 трансформатора Т1 соединен непосредственно к сети 220В. Для того чтобы подключить второй конец первичной обмотки L2-1’ трансформатора Т1 к сети 220В, необходимо открыть полевой транзистор VT2 (IRF840), после чего к нагрузке приложится сумма напряжений на вторичной обмотке L1 1-2, L2 2’-1’ и напряжения сети.

На биполярный транзистор VT1 структуры n-p-n перехода подается напряжение, через нагрузку, трансформатор Т2 и диодный мост VD1. Потенциометром R1 выставляется выходное U=220В порог срабатывания устройства на нагрузке, биполярный транзистор VT1 открывается, при этом транзистор VT2 закрывается. Если напряжение в сети упадет и станет ниже 220В, то закроется транзистор VT1, откроется транзистор VT2.

Диодный мост VD1 КЦ405В выпрямляет переменное U=12В на вторичной обмотке трансформатора Т2, после постоянное напряжение подается на стабилизатор DA1 КР142ЕН8А и запитывает коллекторную цепь транзистора VT1 КТ972А. Конденсатор С5 и резистор R6 соединены параллельно истоку стоку транзистора VT2 и образуют гасящую цепочку от нежелательных скачков напряжения. С1 выполняет роль фильтрующего конденсатора от сетевых помех, тем самым улучшает процесс работы устройства.

Подбирая номиналы сопротивлений резисторов R3, R5 добиваются наилучшей и устойчивой работы стабилизации напряжения. Включение/выключение устройства и нагрузки осуществляется выключателем SA1. В стабилизаторе напряжения предусмотрено отключение стабилизирующего напряжения на нагрузке выключателем SA2. Собранный по схеме стабилизатор включают в сеть 220В и переменным резистором R1 выставляют U=220В на нагрузке.

С каталогом масляных трансформаторов можно ознакомиться по ссылке.

Вольтодобавочный трансформатор Т1 собран на основе готового трансформатора марки СТ-320, ранее использовавшегося в БП-1 блоках питания телевизоров УЛПЦТ-59. Трансформатор необходимо разобрать полностью, снять магнитосердечник, после чего смотать все вторичные обмотки, необходимо оставить только сетевую (первичную обмотку). Заново намотать поровну вторичные обмотки эмалированным медным проводом ПЭВ, ПЭЛ.

Одинаковые две катушки имеют следующие намоточные данные:

Полевой транзистор VT2 необходимо закрепить на радиаторе!

Стабилизатор напряжения 220В для дома: какой выбрать правильно

Автор aquatic На чтение 6 мин. Просмотров 3.5k. Обновлено

Чтобы приобрести без ошибок стабилизатор напряжения 220В для дома, какой выбрать из предложенных на рынке надо выяснить заранее. Личные знания помогут точнее формулировать свои требования, беседовать с продавцом на равных. Пригодится также изучение актуальных предложений рынка в соответствующем сегменте.

Современный стабилизатор

Стабилизатор напряжения 220В для дома: какой выбрать набор оборудования

Современный жилой дом оснащен разнообразной техникой с питанием от электрической сети. Это оборудование будет выполнять свои функции полноценно, если параметры напряжения стабильны. Для решения такой задачи во входной цепи устанавливают специальные устройства. Они автоматически фиксируют выход показателей из нормального диапазона и делают необходимые коррекции самостоятельно.

При изменении входного напряжения на выходе обеспечивается автоматическое подержание нормального уровня

Не сложно описать качественный стабилизатор напряжения 220В для дома, какой выбрать будет решить не сложно с помощью следующих критериев:

  • Хороший аппарат должен работать без лишнего контроля и вмешательства со стороны пользователя.
  • Минимальный шум, или полное его отсутствие упростят выбор места для установки.
  • Выходную мощность выбирают, соответствующую подключенным потребителям.
  • Разумная стоимость – это приятно. Но для полноценного экономического расчета следует учитывать потери электроэнергии в самом устройстве, длительность его срока службы, выполнение обязательного технического обслуживания.

Для чего нужна стабилизация напряжения

Чтобы исключить сомнения в необходимости таких инвестиций надо открыть любой  технический паспорт на бытовую технику. В соответствующей строке указано номинальное напряжение питания с допустимыми отклонениями (например: ±10%). Если напряжение выходит за пределы указанного диапазона, производитель вправе снять свои гарантийные обязательства.

Испорченную по собственной вине микроволновую печь придется ремонтировать за счет владельца

По действующим в настоящее время правилам сложно предъявить претензии, а точнее – получить компенсацию ущерба. Отечественные обслуживающие организации иногда проводят работы вовсе без предварительного предупреждения. Снижение напряжения происходят при подключении большого количества кондиционеров летом. Соответствующие скачки наблюдаются вечером, когда готовят пищу, зимой в процессе эксплуатации мощных нагревательных приборов. Определенное негативное влияние оказывает несовершенство оборудования питающей подстанции, ее недостаточная мощность.

Перечисленные выше факторы убеждают в том, что обычный владелец частного дома исключить их не способен. Но он может установить стабилизатор. Такое решение поможет:

  • сохранить гарантийные обязательства;
  • обеспечить нормальную яркость осветительных приборов;
  • поддерживать полноценную работоспособность насосов и других подключенных к сети устройств.

Достаточная освещенность рабочего места необходима для хорошего зрения

Виды специализированного оборудования

Чтобы приобрести стабилизатор напряжения 220В для домашнего использования, надо выяснить, какой выбрать механизм изменения напряжения. Чаще всего используются следующие схемы:

  • релейная;
  • тиристорная;
  • с электромеханическим приводом (латерная).

Все они подсоединяют разные выходные обмотки трансформатора при изменении напряжения на входе.

Принципиальная схема стабилизатора

С помощью этой схемы можно рассмотреть подробнее принципы действия этого устройства:

  • Если напряжение в норме, то ничего не происходит. Ток поступает через транзитное реле непосредственно на выход. Потери в цепи настолько малы, что ими можно пренебречь.
  • При повышении определенной пороговой величины изменяется разница напряжений на шунте. Плата управления с помощью тиристорного ключа подключает соответствующую обмотку.
  • Напряжение на выходе снижается до нормы. На экране отображаются данные о результатах измерений в двух цепях.
  • Если напряжение на входе изменится в любую сторону, то будут выполняться необходимые коррекции.

Тиристоры работают быстро, но создают искажения. В некоторых ситуациях не исключено существенное изменение форы выходного сигнала. Это способно вызвать сбои в работе потребителей. Также образуются электромагнитные помехи. Следует отметить значительную стоимость качественных тиристоров большой мощности.

Как ни странно, но исключить перечисленные недостатки можно с помощью реле. Они не создают искажения, переключаются с достаточно высокой скоростью. Некоторые современные изделия такого типа работают практически бесшумно без повреждений в течение многих лет при постоянном использовании стабилизатора.

Следующий вариант – перемещение контактора с применением электромеханического привода. Такое инженерное решение позволяет обеспечить плавную регулировку и высокую точность. Однако здесь используют сложные механизмы, которые необходимо периодически обслуживать. Некоторые из них не стабильно работают при снижении температуры воздуха ниже 0°C. Стоит отметить наличие шумов и ограниченную скорость изменения электрических параметров.

Стабилизатор, оснащенный сервоприводом

Феррорезонансные преобразователи создают с применением нескольких индукционных катушек. Они отличатся быстротой реакции, долговечностью. Но следующие отрицательные параметры существенно ограничивают сферу их применения:

  • высокая стоимость;
  • шумность;
  • крупные размеры;
  • существенные искажения формы выходного сигнала;
  • прекращение работоспособности даже при незначительном изменении нагрузки (около 15%).

Именно поэтому чаще применяют три перечисленные выше схемы с учетом необходимой мощности и напряжения в сети (220V, или 380V).

Схема работы феррорезонансного преобразователя

Разные схемы подключения стабилизатора напряжения в частном доме

В коттеджах нередко предпочитают использование трехфазных сетей 380. Как правило, они рассчитаны на большие нагрузки. Некоторые станки, нагреватели рассчитаны именно на такое питание. Но для оснащения дома вполне достаточно приобрести двухфазные стабилизаторы.

По этой схеме можно подключить через них трехфазные потребляющие устройства
Здесь показано, как подсоединяют нагрузку через стабилизатор к сети 220 V

Статья по теме:

Какой выбрать стабилизатор напряжения для дачи. Изучаем наш рейтинг популярных моделей и выбираем лучший для вашего дачного участка. Приятного чтения!

Как самостоятельно сделать регулирующее устройство

Для изготовления повышающего стабилизатора напряжения своими руками 220В можно использовать проверенное фабричное изделие.

Принципиальная схема стабилизатора

Понадобится приобрести комплектующие детали по розничным ценам, создать печатные платы, корпус.

Профессиональные навыки понадобятся для пайки микросхем
Настраивают электронные схемы с помощью осциллографа

Работающую качественную схему стабилизатора напряжения 220В своими руками создать будет дороже, чем приобрести готовое изделие с заводской гарантией.

Стабилизаторы напряжения 220В для дома: цены и технические характеристики

Если решите купить стабилизатор напряжения 220В для дома на 10кВт, то надо понимать, что его возможностей хватит на меньшую суммарную мощность всех потребителей. Дело в том, что при включении индукционных нагрузок она резко возрастает. Для подключения электропривода 0,5 кВт понадобится мощность примерно в 2 раза больше. Итоговый результат рекомендуется увеличить еще на 25-30%, чтобы стабилизатор не работал на предельных нагрузках. Данные по нескольким фабричным моделям техники приведены в таблице.

Компактный стабилизатор
Релейный стабилизатор

Выводы

Какой лучше стабилизатор напряжения, релейный или электромеханический, однозначно сказать нельзя. Чтобы сделать правильный вывод, надо сравнить параметры двух моделей с учетом изложенных выше сведений. Для уменьшения требований можно только часть оборудования подключить через систему стабилизации.

Стабилизатор высокой мощности

Как выбрать стабилизатор напряжения для дома? (видео)

Схема электрическая стабилизатора

Разработчики электрических и электронных устройств, в процессе их создания, исходят из того, что будущее устройство будет работать в условиях стабильного питающего напряжения. Это необходимо для того, чтобы электрическая схема электронного устройства, во-первых, обеспечивала стабильные выходные параметры в соответствии со своим целевым назначением, а во-вторых, стабильность питающего напряжения защищает устройство от скачков, чреватых слишком большими потребляемыми токами и перегоранием электрических элементов устройства. Для решения задачи обеспечения неизменности питающего напряжения применяют какой-либо вариант стабилизатора напряжения. По характеру потребляемого устройством тока различают стабилизаторы переменного и постоянного напряжения.

Стабилизаторы переменного напряжения

Стабилизаторы переменного напряжения применяют, если отклонения напряжения в электрической сети от номинального значения превышают 10% . Такая норма выбрана исходя из того, что потребители переменного тока при таких отклонениях сохраняют свою работоспособность весь срок эксплуатации. В современной электронной технике, как правило, для решения задачи стабильного электропитания используют импульсный блок питания, при котором стабилизатор переменного напряжения не нужен. А вот в холодильниках, микроволновых печах, кондиционерах, насосах и т.п. требуется внешняя стабилизация питающего переменного напряжении. В таких случаях чаще всего используют стабилизатор одного из трёх типов: электромеханический, главным звеном которого является регулируемый автотрансформатор с управляемым электрическим приводом, релейно- трансформаторный, на базе мощного трансформатора, имеющего несколько отводов в первичной обмотке, и коммутатора из электромагнитных реле, симисторов, тиристоров или мощных ключевых транзисторов, а также чисто электронный. Широко распространенные в прошлом веке феррорезонансные стабилизаторы в настоящее время практически не используются из-за наличия многочисленных недостатков.

Для подключения потребителей к сети переменного тока 50 Гц применяют стабилизатор напряжения на 220 В. Электрическая схема стабилизатора напряжения такого типа изображена на следующем рисунке.

Трансформатор А1 повышает напряжение в сети до уровня, достаточного для стабилизации выходного напряжения при низком входном напряжении. Регулирующий элемент РЭ осуществляет изменение выходного напряжения. На выходе управляющий элемент УЭ измеряет значение напряжения на нагрузке и выдает управляющий сигнал для его корректировки, если это необходимо.

Электромеханические стабилизаторы

В основе такого стабилизатора — использование бытового регулируемого автотрансформатора или лабораторного ЛАТРа. Применение автотрансформатора обеспечивает более высокий КПД установки. Рукоятка регулирования автотрансформатора удаляется, а на корпусе вместо нее соосно устанавливают небольшой двигатель с редуктором, обеспечивающим усилие вращения достаточное для поворота бегунка в автотрансформаторе. Необходимая и достаточная скорость вращения – около 1 оборота за 10 — 20 сек. Этим требованиям удовлетворяет двигатель типа РД-09, который раньше применялся в самопишущих приборах. Управляет двигателем электронная схема. При изменении сетевого напряжения в пределах +- 10 вольт выдаётся команда на двигатель, который поворачивает бегунок до достижения на выходе напряжения 220 В.

Примеры схем электромеханических стабилизаторов приведены ниже:

Электрическая схема стабилизатора напряжения с использованием логических микросхем и релейного управления электроприводом

Электромеханический стабилизатор на основе операционного усилителя.

Достоинством подобных стабилизаторов является простота реализации и высокая точность стабилизации напряжения на выходе. К недостаткам следует отнести невысокую надёжность из — за присутствия механических подвижных элементов, относительно малую допустимую мощность нагрузки ( в пределах 250 … 500 Вт), малую распространенность в наше время автотрансформаторов и необходимых электродвигателей.

Релейно — трансформаторные стабилизаторы

Релейно — трансформаторный стабилизатор является более популярным в силу простоты реализации конструкции, применения распространенных элементов и возможности получения значительной выходной мощности (до нескольких киловатт), значительно превышающей мощность примененного силового трансформатора. На выбор его мощности влияет минимальное напряжение в конкретной сети переменного тока. Если, к примеру, оно не меньше 180 В, то от трансформатора потребуется обеспечение вольтодобавки 40 В, что в 5,5 раз меньше номинального напряжения в сети. Выходная мощность у стабилизатора во столько же раз будет больше, чем мощность силового трансформатора (если не учитывать КПД трансформатора и максимально допустимый ток через коммутирующие элементы). Число ступеней изменения напряжения, как правило, устанавливают в пределах 3 … 6 ступеней, что в большинстве случаев обеспечивает приемлемую точность стабилизации напряжения на выходе. При вычислении количества витков обмоток в трансформаторе для каждой ступени напряжение в сети принимается равным уровню срабатывания коммутирующего элемента. Как правило, в качестве коммутирующих элементов используют электромагнитные реле — схема выходит достаточно элементарной и не вызывающей затруднений при повторении. Недостатком такого стабилизатора является образование дуги на контактах реле в процессе коммутации, что разрушает контакты реле. В более сложных вариантах схем переключение реле производят в моменты перехода полуволны напряжения через нулевое значение, что предотвращает возникновение искры, правда при условии использования быстродействующих реле или коммутации на спаде предшествующей полуволны. Использование в качестве коммутирующих элементов тиристоров, симисторов или других бесконтактных элементов надёжность схемы резко возрастает, но усложняется из-за необходимости обеспечения гальванической развязки между цепями управляющих электродов и модулем управления. Для этого применяют оптронные элементы или разделительные импульсные трансформаторы. Ниже приведена принципиальная схема релейно — трансформаторного стабилизатора:

Схема цифрового релейно — трансформаторного стабилизатора на электромагнитных реле

Электронные стабилизаторы

Электронные стабилизаторы имеют, как правило, небольшую мощность (до 100 Вт) и необходимую для работы многих электронных устройств высокую стабильность выходного напряжения. Они обычно строятся в виде упрощённого усилителя низкой частоты, имеющего достаточно большой запас изменения уровня питающего напряжения и мощности. На его вход от электронного регулятора напряжения подаётся сигнал синусоидальной формы с частотой 50 Гц от вспомогательного генератора. Можно использовать понижающую обмотку силового трансформатора. Выход усилителя подключен к повышающему до 220 В трансформатору. Схема имеет инерционную отрицательную обратную связь по значению выходного напряжения, что гарантирует стабильность выходного напряжения с неискажённой формой. Для достижения мощности на уровне нескольких сотен ватт используют другие методы. Обычно применяют мощный преобразователь постоянного тока в переменный на основе использования нового вида полупроводников — так называемых IGBT транзисторо.

Эти коммутирующие элементы в ключевом режиме могут пропустить ток в несколько сотен ампер при максимально допустимом напряжении более 1000 В. Для управления такими транзисторами используются специальные виды микроконтроллеров с векторным управлением. На затвор транзистора с частотой в несколько килогерц подают импульсы с переменной шириной, которая меняется по программе, введенной в микроконтроллер. По выходу такой преобразователь нагружен на соответствующий трансформатор. Ток в цепи трансформатора меняется по синусоиде. В то же время напряжение сохраняет форму исходных прямоугольных импульсов с разной шириной. Такая схема используется в мощных источниках гарантированного питания, используемых для бесперебойной работы компьютеров. Электрическая схема стабилизатора напряжения такого типа очень сложна и практически недоступна для самостоятельного воспроизведения.

Упрощенные электронные стабилизаторы напряжения

Такие устройства применяют, когда напряжение бытовой сети (особенно в условиях сельских населенных пунктов) нередко оказывается пониженным, практически никогда не обеспечивая номинальных 220 В.

В такой ситуации и холодильник работает с перебоями и риском выхода из строя, и освещение оказывается тусклым, и вода в электрочайнике долго не может закипеть. Мощности старенького, еще советских времен, стабилизатора напряжения, рассчитанного на питание телевизора, как правило, недостаточна для всех остальных бытовых электропотребителей, да и значение напряжения в сети часто падает ниже уровня, допустимого для подобного стабилизатора.

Существует простой метод для повышения напряжение в сети, путем использования трансформатора мощностью значительно меньшей мощности применяемой нагрузки. Первичная обмотка трансформатора включается непосредственно в сеть, а нагрузка подключается последовательно к вторичной (понижающей) обмотке трансформатора. При правильной фазировке напряжение на нагрузке окажется равным сумме снимаемого с трансформатора и сетевого напряжения.

Электрическая схема стабилизатора напряжения, действующего по этому несложному принципу, приведена рисунке ниже. Когда стоящий в диагонали диодного моста VD2 транзистор VT2 (полевой) закрыт, обмотка I (являющаяся первичной) трансформатора Т1 к сети не подключена. Напряжение на включенной нагрузке почти равно сетевому за минусом небольшого напряжения на обмотке II (вторичная) трансформатора Т1. При открытии полевого транзистора первичная обмотка трансформатора окажется замкнутой, а к нагрузке будет приложена сумма сетевого и напряжения вторичной обмотки.

Схема электронного стабилизатора напряжения

Напряжение с нагрузки, через трансформатор Т2 и диодный мост VD1 подается на транзистор VT1. Регулятор подстроечного потенциометра R1 должен быть выставлен в положение, обеспечивающее открытие транзистора VT1 и закрытие VT2, когда напряжение на нагрузке превышает номинальное (220 В). Если напряжение меньше 220 вольт транзистор VT1 закроется , a VT2 — откроется. Полученная таким способом отрицательная обратная связь сохраняет напряжение на нагрузке примерно равным номинальному значению.

Выпрямленное напряжение с моста VD1 используется и для запитки коллекторной цепи VT1 (через цепь интегрального стабилизатора DA1). Цепочка C5R6 гасит нежелательные скачки напряжения сток-исток на транзисторе VT2. Конденсатор С1 обеспечивает снижение помех, проникающих в сеть в процессе работы стабилизатора. Номиналы резисторов R3 и R5 подбирают, получая наилучшую и устойчивую стабилизацию напряжения. Выключатель SA1 обеспечивает включение и выключение стабилизатора и нагрузки. Замыкание выключателя SA2 отключает автоматику, стабилизирующую напряжение на нагрузке. Оно в таком варианте оказывается максимально возможным при текущем напряжении в сети.

После включения собранного стабилизатора в сеть, подстроечным резистором R1 устанавливают на нагрузке напряжение, равное 220 В. Нужно учесть, что вышеописанный стабилизатор не может устранить изменения сетевого напряжения, превышающие 220 В, или оказавшиеся ниже минимального, использованного при расчете обмоток трансформатора.

Замечание: В некоторых режимах работы стабилизатора мощность, рассеиваемая транзистором VT2, оказывается весьма значительной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем отводе тепла от этого транзистора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Как из простого преобразователя сделать стабилизатор тока. Как сделать стабилизатор тока своими руками. Описание и схема

Я уже как-то рассказывал про схему, позволяющую сделать индикацию тока нагрузки выше определенного порога. Сегодня расскажу про то, как при помощи этой схемы доработать простой преобразователь напряжения и получить в итоге стабилизатор тока.

Наверняка в хозяйстве многих радиолюбителей валяются подобные мелкие платки преобразователей напряжения. Стоят они копейки и часто их продают на вес десятками.

Платка мелкая, но очень полезная, но она позволяет работать только в режиме стабилизации напряжения, которое выставляется подстроечным резистором.

Также иногда бывают ситуации, когда надо сделать стабилизатор тока буквально «из палок и веревок», например для питания светодиодов, заряда аккумуляторов и прочего.
В этом может помочь простой индикатор тока потребления, о котором я подробно рассказывал в отдельном видео.

Собран он по простейшей схеме.
При прохождении тока через данную схему на резисторе R1 падает некоторое напряжение, которое зависит от силы тока.
Напряжение которое падает на резисторе R1 открывает транзистор когда для этого будет достаточно тока. Обычно транзистор открывается когда на резисторе R1 падает около 0.6-0.7 Вольта.
Открывшись, транзистор подает ток в цепь светодиода, засвечивая его. Изменяя номинал резистора R1 можно менять ток, при котором будет светиться светодиод. Например при номинале в 1 Ом этот ток составляет около 0.6-0.7 Ампера. Если поставить резистор в два раза меньше сопротивлением, то соответственно ток будет уже 1.2-1.4 Ампера, т.е. изменение пропорционально изменению сопротивления.
Транзистор, используемый в данной схеме — BC557B, хотя на самом деле выбор очень большой, например банальный КТ361, а если сделать схему «наизнанку», то и КТ315.

В качестве примера я попробую сделать стабилизатор тока для питания вот такой светодиодной сборки. На ней светодиоды включены параллельно-последовательно, т.е. общее падение около 7 Вольт при токе в 700мА.

Можно конечно было сделать стабилизатор тока на привычной LM317, но это линейный стабилизатор, потому греться он будет ощутимо.
Но мы пойдет другим путем.

Слева синим цветом выделена упрощенная схема понижающего стабилизатора напряжения, который я показал в самом начале. Микросхема контролирует выходное напряжение через вывод FB (FeedBack)
Красным цветом выделена показанная выше платка.

Чтобы правильно все подключить, надо найти где у микросхемы вход обратной связи, на схемах он также обозначается как FB либо Feedback.
На мой плате установлена LM2596, находим описание и выясняем что это вывод номер 4.

Припаиваем проводок прямо к выводу микросхемы, обычно выводы луженые и паяются очень легко.

Подключаем этот провод к коллектору транзистора платы контроля тока, попутно соединяем выход платы преобразователя со входом платы контроля.
На вход преобразователя подаем наше входное напряжение, в моем случае я подал около 17 Вольт. На выходе выставляем напряжение выше, чем надо диодной сборке, например 10-12 Вольт и подключаем сборку к выходу платы контроля тока.

Отлично, ток в цепи получился 650 мА, все работает отлично.

В некоторых ситуациях может потребоваться установка диода между выходом нашей платы и преобразователем, это необходимо чтобы наша схема не оказывала влияния на установку выходного напряжения преобразователя (зависит от примененного ШИМ контроллера).
А если мы хотим чтобы еще и светодиод светился в режиме ограничения тока, то желательно установить еще и резистор, как показано на схеме (R6), номиналом около 56-470 Ом.

Выше я писал насчет аккумуляторов.
Если верхний резистор делителя переключить с выхода преобразователя на выход платы контроля тока, как это показано на схеме, то плата вполне будет способна заряжать и аккумуляторы. Без этого резистора также можно заряжать, но падение напряжения на резисторе R1 будет оказывать некоторое влияние на напряжение окончания заряда.

В качестве дополнения я снял видео, возможно будет полезно.

На этом у меня все, как всегда буду рад вопросам. Кстати, есть вариант такой же доработки, но уже не преобразователя, а блока питания.

Эту страницу нашли, когда искали:
электронный прерыватель цепи схема, схема помехоустойчивого транзисторного ключа, схема шим стабилизатора тока на df6113., 2596 схема доработки увеличения мощности, стабилизатор тока 60 в 10а, мощный стабилизатор тока для светодиодов, стабилизатор 6 вольт схема, интегральные стабилизаторы напряжения и тока своими руками, стабилизатор тока для блока питания 10а схема, стабилизатор тока на п417, электронная нагрузка схема, стабилизатор тока на 10 а, простейший стабилизатор тока и напряжения, схема самодельного стабилизатора тока 0 10 а 0 36 вольт, триггерная защелка на транзисторах, как сделать термоклнпенсацию стабилиз тока, самодельный стабилизатор по току и напряжению, одновибратор на 1 транзисторе, стабилизатор напряжения 4.2 вольта своими руками, простой диод в качестве стабилизатора тока для светодиода, стабилизатор тока управляемый сделать самому, платка преобразователь напряжения, схема регулятора напряжения на 12 вольт на т 210, схема регулятора напряжения на 12 вольт на т-210, как стабилизировать напряжение и ток в стабилизаторе для светодиодов, стабилизатор тока своими руками, стабилизатор тока схема, для начинающих радиолюбителей, простой стабилизатор

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Схема регулятора напряжения 110 В, 220 В

Обсуждаемая схема регулятора напряжения 110 В, 220 В может использоваться для управления или регулировки всех входов высокого уровня напряжения, таких как 110 В или 220 В, просто путем изменения пары значений резистора. Здесь R6 и R7 могут быть эффективно настроены для получения любого желаемого преобразования выходного напряжения от нуля до 220 В или даже выше, в зависимости от уровня входного питания.

В настоящее время существует множество схем, предназначенных для регуляторов низкого напряжения.Для более высоких напряжений, например для цепей вентилей, проблема уникальна.

Именно поэтому мы решили разработать именно этот простой регулятор, который может управлять этими типами напряжений. Обычно регулятор состоит из трех транзисторов. Четвертый по-прежнему включен для текущей ограничительной цели.

Схема представляет собой стабилизатор с положительным последовательным соединением, в котором используется pnp-транзистор (T2) для поддержания минимального падения напряжения. Процедура создания схемы предельно проста.

Когда выходное напряжение падает, T4 опускает эмиттер T3 ниже. Это сильнее включает T2, что приводит к еще большему повышению выходного напряжения. R4 ограничивает базовый ток T2. C1 и C2 включены для повышения устойчивости цепи. Они соединены последовательно, чтобы напряжение на каждом конденсаторе при включении или при коротком замыкании не обязательно было слишком большим. Для C1-C3 необходимо использовать конденсаторы номиналом не менее 100 В.

D1 защищает T2 от отрицательных напряжений, которые могут появиться при коротком замыкании входа или даже когда большие конденсаторы имеют тенденцию подключаться к выходу. Мы используем пару диодов Зенера 39 V подключил последовательно для опорного напряжения, предлагая 78 V для основы T3. Просто потому, что R6 идентичен R7, выходное напряжение будет в два раза больше, то есть около 155 В.

T4 будет действовать как буфер для потенциального делителя R6 / R7, что означает, что мы можем использовать большие значения для этих резисторов и напряжение просто не зависит от тока базы T2 (этот ток примерно идентичен току эмиттера T3).

Конечно, это не схема с возмещением температуры, однако для этой конкретной цели этого достаточно. Принципиальная схема: Принципиальная схема Сегмент ограничения тока, построенный вокруг Т1, не может быть проще.

Когда выходной ток превышает 30 мА, напряжение вокруг R1 заставляет T1 проводить. T1 после этого ограничивает напряжение база-эмиттер T2. R2 необходим для защиты T1 от невероятно быстрых пиковых напряжений на R1. R3 требуется для запуска регулятора.Без R3 не было бы напряжения на выходе и, следовательно, не было бы тока базы внутри T2.

R3 позволяет T2 работать незначительно, что может быть достаточным для того, чтобы регулятор достиг своего ожидаемого состояния. Во время обычной процедуры при падении напряжения 15 В на Т2 и токе примерно 30 мА вам не нужно дополнительное охлаждение Т2.

Температура перехода теперь может составлять 70 ° C, а это значит, что вы можете растопить пальцы, если не будете очень осторожны! Чем ниже входное напряжение, тем больший ток может выдавать этот регулятор.

Этот ток зависит от SOAR (Safe Operation ARea) T2. При коротком замыкании, а также при входном напряжении 140 В ток составляет примерно 30 мА, и для T2, несомненно, в таких условиях требуется радиатор мощностью не менее 10 К / Вт.

Для улучшения выходного напряжения необходимо использовать большее значение для R6. Если вы хотите, чтобы сделать использование более высокого опорного напряжения, вы должны заменить T4 с MJE350. Если вам когда-либо понадобится всего несколько миллиампер, вам не нужно включать T4 и R4.Делитель потенциала (R6 / R7) может быть подключен прямо к эмиттеру T3.

Снижение пульсаций в предлагаемой схеме регулятора напряжения 110 В, 220 В составляет приблизительно 50 дБ. Ток покоя составляет 2,5 мА, а для меньших токов падение напряжения составляет всего 1,5 В.

Предоставлено: Elektor Electronics Magazine

Схема регулятора напряжения со схемами

За прошедшие годы мы опубликовали на этом веб-сайте несколько схем регуляторов напряжения, которые служат многим целям.В этой статье я составляю краткий список лучших схем стабилизатора напряжения, которые будут полезны всем вам. Термин «регулятор напряжения» носит несколько общий характер — это может быть регулятор AC-AC или регулятор DC-DC. В основном то, что он делает, просто — он регулирует и поддерживает постоянный желаемый уровень напряжения на выходных клеммах. Итак, давайте начнем копать в нашем большом списке 🙂

Регулятор 6 В с использованием 7806

Это простая в сборке схема с использованием микросхемы IC 7806 (которая представляет собой трехконтактный стабилизатор положительного напряжения).Схема спроектирована таким образом, что напряжение сети 230 вольт понижается до 9 вольт с помощью трансформатора, а затем регулируется до 6 вольт на выходе. Эта ИС — стабильная, с внутренним ограничением тока и тепловым отключением. При использовании надлежащего радиатора он может выдавать ток на выходе более 1 А.

Регулируемый импульсный регулятор с использованием LM317

Линейные регуляторы напряжения неэффективны, поскольку они рассеивают много энергии в виде тепла. Чтобы решить такие проблемы с энергоэффективностью, мы можем использовать импульсный стабилизатор, который может сэкономить до 85% мощности по сравнению с линейным регулятором.Здесь у нас есть схема с использованием микросхемы LM317, которая представляет собой импульсный стабилизатор напряжения и может выдавать до 3 ампер тока. Импульсный стабилизатор работает, забирая небольшие биты энергии от источника входного напряжения и затем передавая их на выход с помощью твердотельного переключателя и схемы управления.

Регулятор 9 В с использованием 7809

Итак, вот еще одна простая схема регулятора напряжения, которая использует IC 7809 для регулирования входного напряжения 16 вольт. Сетевое напряжение 230 В понижается с помощью трансформатора, затем преобразуется в 16 В постоянного тока с помощью моста, а затем регулируется с помощью ИС.Как вы знаете, 7809 — это надежная ИС с внутренним ограничением тока, тепловым отключением, безопасной рабочей зоной и т. Д.

Схема регулируемого регулятора напряжения с использованием LM317

Ну, это набор схем регулятора напряжения на микросхеме LM317, которая представляет собой регулируемый регулятор напряжения. LM317 — трехконтактный регулируемый стабилизатор от National Semiconductors, входное напряжение которого может составлять до 40 вольт. Выходное напряжение можно регулировать от 1,2 В до 37 В. Теперь эта статья представляет собой сборник из 4 схем, использующих LM317.

1. Обычный стабилизатор положительного напряжения — выходное напряжение можно регулировать, изменяя потенциометр и резистор. Для вычисления V0ut дано уравнение.

2. Схема регулируемого регулятора напряжения — выходное напряжение может выбираться цифровым способом. Эта схема представляет собой не что иное, как простую модификацию схемы обычного регулятора напряжения с использованием LM317. Здесь вместо потенциометра параллельно подключены 4 резистора, которые активируются только соответствующими транзисторами.Таким образом, каждый транзистор действует как логический уровень и включается или отключается. Выбрав транзисторы и включив их, можно отрегулировать уровень выходного напряжения.

3. 5 ампер стабилизатор постоянного тока / постоянного напряжения — Вы поняли это из названия обряда? По сравнению с приведенными выше схемами эта немного тяжелая и в ней больше компонентов. Он использует операционный усилитель LM310 вместе с LM317.

4. Схема силового повторителя — запуталась что это? Ни что иное, как повторитель напряжения с высокой токовой нагрузкой.

Регулируемый регулятор напряжения 10 ампер с использованием MSK5012

Это простая в изготовлении схема регулятора напряжения постоянного тока с использованием надежной микросхемы MSK5012. Выходное напряжение можно программировать с помощью двух резисторов R1 и R2. Особенностью этой ИС является низкое падение напряжения из-за использования полевого МОП-транзистора в качестве внутреннего элемента последовательного прохода. MS5012 отличается высокой точностью и подавлением пульсаций.

Регулятор 12 В с использованием 7812

Итак, вот действительно мощный 12-вольтный стабилизатор, использующий IC 7812, который может обеспечивать ток до 15 ампер.Стабилизатор 7812 используется для поддержания выходного напряжения на уровне 12 вольт, а три транзистора TIP 2599 используются для повышения тока. Это дорогостоящая схема из-за используемых компонентов высокой мощности. Так что собирайте, только если он вам нужен.

Регулятор 12 В на стабилитроне

Итак, появился первый стабилизатор напряжения, управляемый стабилитроном. Таким образом, эта схема действительно проста и легко собирается с использованием стабилитрона и последовательного транзистора (2N3055). Он может обеспечивать выходной ток до 3 ампер.Когда вы используете стабилитрон в качестве регулятора напряжения, теоретически вы получите на выходе на 0,7 вольт меньше. В данном случае — 11,3 вольт.

от 2 до 37 вольт Регулируемый регулятор напряжения с использованием LM723

Стабилизатор напряжения на микросхеме LM723 — линейный регулятор производства National Semiconductors. Входное напряжение может быть до 40 вольт, а выходное — от 2 до 37 вольт. Без каких-либо настроек ИС может выдавать ток до 150 мА, а дальнейшее улучшение тока может быть достигнуто путем добавления транзистора с последовательным проходом — в нашем случае MJ3001 транзистор Дарлингтона.

13 вольт 5 ампер Регулируемый регулятор напряжения с использованием LM338

Микросхема

LM338 произведена в компании ST Microelectronics. ИС имеет временное ограничение тока, терморегуляцию и доступна в корпусе с 3-мя выводами транзистора. LM338 имеет диапазон выходного напряжения от 1,2 В до 30 В и может выдавать выходной ток более 5 ампер. R1 и R2 настраиваются для программирования желаемого выходного напряжения.

25 В Регулируемый регулятор с использованием LM117

Хм !! Это самая простая принципиальная схема регулятора напряжения на нашем сайте! Только что получил IC LM117 и 4 пассивных компонента.Вы можете регулировать выходное напряжение, изменяя потенциометр. LM117 — это надежная ИС, которая может выдавать стабилизированное напряжение в диапазоне от 1,2 до 37 вольт. Этот блок питания может обеспечивать ток до 0,5 ампер.

Набор импульсных регуляторов

Эта статья предназначена скорее для образовательных целей, чем для ваших практических нужд. Принцип коммутации отличается от линейного регулирования напряжения. Главное преимущество импульсного регулятора — энергоэффективность. Эта статья достаточно хороша, и она познакомит вас с теоретическими аспектами импульсного регулирования, простыми схемами переключения, некоторыми практическими применениями импульсных регуляторов.Ближе к концу вы найдете объяснение линейного регулирования по сравнению с коммутационным регулированием. Я настоятельно рекомендую вам эту статью для повышения ваших знаний.

Регулятор 3 А с использованием LM350

LM350K IC имеет такие функции, как терморегулирование, защита от короткого замыкания и т. Д. Это простая в сборке схема, которая, как было обнаружено, имеет лучшее подавление пульсаций и стабильность по сравнению с элементарным регулятором напряжения, использующим LM350 IC. Выходное напряжение можно регулировать от 1,2 В до 25 вольт путем изменения POT R2.Мы можем получить до 3 ампер тока от этой схемы.

Схема повышающего преобразователя 12 В с использованием LM2698

А вот и первая схема повышающего преобразователя на микросхеме LM2698 (от National Semiconductors). LM2698 — это повышающий преобразователь общего назначения с диапазоном выходных сигналов от 2,2 В до 17 В постоянного тока. В этой конкретной схеме вы можете получить на выходе 12 вольт постоянного тока от 4,5 до 5 вольт постоянного тока в качестве источника входного сигнала.

Схема регулируемого регулятора напряжения с использованием L200

Еще одна простая схема, использующая монолитный интегрированный регулируемый стабилизатор напряжения IC L200.Эта ИС имеет такие функции, как ограничение тока, тепловое отключение, ограничение мощности, защита от перенапряжения на входе и т. Д. Резисторы R1 и R2 должны быть отрегулированы для получения желаемого выходного напряжения. Мы можем получить выходное напряжение от 2,8 до 15 вольт при токе в 1 ампер.

Самая простая схема источника питания

Эта схема источника питания проста в изготовлении и недорого. А для этого требуется всего 5 компонентов.

За свою жизнь я построил много схем, но на самом деле это первый раз, когда я построил схему источника питания с нуля.

Последним проектом, который я хотел создать, был сетевой адаптер с USB-разъемом для зарядки моего iPhone. Но сначала я хотел начать с создания простой схемы, которая преобразует напряжение сети 220 В или 110 В в 5 В.

Поскольку я нахожусь в Австралии, когда пишу это, а напряжение здесь 220 В, я построил его с расчетом на 220 В. Но вместо этого очень легко преобразовать его в 110 В, переключив одно соединение (или один компонент).

Внимание: НЕ подключайте к электросети все, что вы делаете самостоятельно, если вы не на 100% уверены в том, что делаете.Неправильное действие может привести к серьезным повреждениям, даже к смерти. Используйте предоставленную здесь информацию на свой страх и риск.

Если вам нужна совершенно безопасная и чрезвычайно полезная схема источника питания, вам следует проверить это портативное зарядное устройство USB, которое я построил. Он даже включает в себя загружаемое пошаговое руководство о том, как его собрать самостоятельно.

Разработка источника питания

Я хочу построить схему источника питания на базе регулятора напряжения LM7805, потому что это легко найти и просто использовать.Этот компонент даст стабильное выходное напряжение от 5 В до 1,5 А.

Я могу легко понять, как использовать LM7805, посмотрев на его техническое описание.

Из таблицы я нашел эту маленькую схему:

Выбор номиналов конденсатора

На изображении выше показан стабилизатор напряжения с конденсатором 0,33 мкФ на входе и 0,1 мкФ на выходе. Трудно найти хороший источник информации об этих значениях конденсаторов, но, согласно этим вопросам и ответам, в этих значениях нет ничего волшебного.

В сети есть много мнений по поводу этих конденсаторов. Некоторые предлагают конденсаторы 0,1 мкФ, другие — конденсаторы 100 мкФ. Некоторые предлагают использовать одновременно 0,1 мкФ и 100 мкФ.

Значения, которые вы должны использовать, зависят от множества факторов. Например, какой длины будут провода. Но эта статья о том, как построить простую схему блока питания, поэтому не будем усложнять. Наверное, подойдет практически любая емкость конденсатора. Вероятно, он будет работать даже без конденсаторов.

Чтобы сделать выходное напряжение «немного стабильным», я собираюсь использовать на выходе конденсатор емкостью 1 мкФ. Я пропущу входной конденсатор, потому что конденсатор все равно будет в этом положении — просто продолжайте читать.

Преобразование от 220 В

В таблице данных также указано, что для правильной работы требуется от 7 до 25 В. Итак, мне нужно только добавить несколько компонентов, которые преобразуют 220 В (или 110 В) переменного тока в постоянное напряжение, которое остается между 7 и 25 В.

Это относительно просто.Я просто добавлю трансформатор, который преобразует напряжение, например, примерно до 12 В. Затем я подам это переменное напряжение в мостовой выпрямитель, чтобы его выпрямить.

И я использую большой конденсатор на выходе, чтобы постоянно поддерживать напряжение выше необходимых 7В. Эта емкость конденсатора не критична. Я видел много схем блоков питания, в которых используется 470 или 1000 мкФ, поэтому сейчас я попробую с 470 мкФ.

Схема блока питания

Итак, итоговая схема выглядит так:

Список деталей

Часть Значение Описание
Т1 220 В (или 110 В) до 12 В Трансформатор
DB1 Выпрямитель с диодным мостом
C1 470 мкФ (20 В и выше) Конденсатор
C2 1 мкФ (10 В и выше) Конденсатор
U1 7805 Регулятор напряжения

Общая стоимость комплектующих около 12-15 $.Самый дорогой компонент — трансформатор (около 10 долларов).

Поиск компонентов для схемы

Когда я не уверен, как выбрать компоненты для схемы, я обычно хожу в интернет-магазины электроники для любителей и смотрю на их варианты. В этих магазинах обычно есть компоненты, которые должны работать от стандартного блока питания без каких-либо особых требований.

В Австралии Jaycar — хороший вариант.

Быстрый поиск «трансформатора» на Jaycar дает мне несколько вариантов.Входное напряжение должно быть около 220 В, а выходное — около 12 В. После быстрого просмотра их вариантов и цен я остановился на этом:
https://www.jaycar.com.au/12-6v-ct-7va-500ma-centre-tapped-type-2853-transformer/p / MM2013

Трансформатор имеет центральный отвод на выходной стороне, который я могу игнорировать.

Это на 220В. Если вы живете в стране с напряжением 110 В, в магазинах вашей страны, вероятно, найдется подходящая версия. Щелкните здесь, чтобы просмотреть мой список интернет-магазинов.

Тогда мне нужен выпрямитель. Мы можем использовать 4 силовых диода (например, 1N4007) или мостовой выпрямитель (который в основном состоит из четырех диодов, встроенных в один компонент). Самый дешевый вариант, который появляется при поиске мостового выпрямителя на Jaycar, — это:
https://www.jaycar.com.au/w04-1-5a-400v-bridge-rectifier/p/ZR1304

Готовая схема

Это простая схема для пайки на макетной плате. Вот прототип, который я построил:

Напоминание: не подключайте к электросети все, что вы построили самостоятельно, если вы не на 100% уверены в том, что делаете.Используйте предоставленную здесь информацию на свой страх и риск.

Вы его построили?

Вы построили эту схему? Какой у вас опыт? С чем вы боролись? Расскажите в комментариях ниже, как все прошло.

100+ Принципиальная схема блока питания с печатной платой

Вы ищете много принципиальных схем блока питания, не так ли?

Потому что различные электронные проекты должны использовать их в качестве источника энергии.

Но иногда может понадобиться сэкономить время и почерпнуть идеи.

Кроме того, они просты в сборке и дешевы.

Сначала взгляните на:

3 источник питания для электронных устройств

Давайте познакомимся с тремя самыми разными типами источников питания.
Типы 1 # Батарея
Многие схемы потребляют мало энергии. Так что он может питаться от батареек.

Это маленький и простой в использовании в любом месте. Но обычно они низкого напряжения.

Таким образом…

Они лучше всего подходят для работы с малым током.

Но для большой нагрузки. Что нам использовать?

Лучше подойдут аккумуляторные батареи.Для многократного использования много раз, чтобы сэкономить деньги.

Мне нравится, когда мои дети ими пользуются. Потому что для него это безопасно.

Тип 2 # Solar

Мы можем использовать его как солнечную энергию напрямую в нашей цепи.

Но…

Нам нравится использовать это солнечное зарядное устройство для аккумуляторной батареи.

Например…

Мой сын любит делать солнечный свет.

Тип 3 # Линия переменного тока

Мы используем линию переменного тока, в основном это адаптер переменного тока, как источник питания. Они компактнее и проще в использовании, чем аккумулятор.

Их можно применять для различных выходных напряжений и токов.

Когда мы в доме. мы должны использовать их вместо батарей и солнечных батарей, это сэкономит нам деньги.

Осторожно:

Мы должны использовать его осторожно. Безопасность прежде всего! Это много полезного, но также может убить вас!

Почему следует использовать линейный источник питания?

Есть много видов цепей питания. Но все их можно разделить на две группы.

  • Линейный источник питания
  • Импульсный источник питания

Как работает линейный источник питания?

Во-первых, напряжение переменного тока подается на силовой трансформатор для повышения или понижения напряжения.

Затем преобразовано в постоянное напряжение.

И далее, применительно к цепи регулятора системы.

Поддерживает напряжение и ток нагрузки.

Но…

Как работает импульсный источник питания

Без трансформатора — он преобразует мощность переменного тока напрямую в постоянное напряжение без трансформатора.

И…

Высокая частота — это постоянное напряжение преобразуется в высокочастотный сигнал переменного тока.

Затем схема регулятора внутри выдает желаемое напряжение и ток.

Линейные импульсные источники питания постоянного тока

В таблице ниже сравниваются различные параметры линейной и импульсной формы.

Спасибо: CR By Tekpower 30V 5A Power Supply на Amazon

Мне нравится линейный источник питания.

Почему?

Это…

  • простая принципиальная схема
  • тихий
  • высокостабильный, прочный и тяжелый
  • низкий уровень шума, пульсации, задержки и EMI

Какой тип переключения прямо противоположный.ОБНОВЛЕНИЕ
: Теперь я также люблю импульсные источники питания постоянного тока
Читайте также: Как это работает
Вы можете полюбить это со мной.

Изучение источников питания

Я знаю, что вы не хотите терять время, хотите быстро создать цепь питания. Но ждать. Если вы новичок.

Следует хотя бы раз изучить его принципы работы. Чтобы уменьшить количество ошибок и правильно выбрать схему Я хочу легко увидеть вашу жизнь.

8 Верхние схемы питания

На нашем сайте есть очень много схем питания.Мы не можем показать вам все. Таким образом, для экономии вашего времени см. Списки ниже.

1 # Первый источник переменного тока постоянного тока, LM317

Вы можете настроить выходное напряжение от 1,25 В до 30 В при 1,5 А. Мне это нравится. Потому что… Это просто и дешево.

Подробнее: LM317 Блок питания

Например, вы можете использовать его вместо батареи на 1,5 В.

Читайте также: См. Распиновку LM317 и способы использования

2 # Простой фиксированный стабилизатор постоянного тока

Вы часто смотрите на эту схему во многих устройствах.Это довольно старая схема, но очень полезная.

Потому что… Это очень просто с одним транзистором, стабилитроном и резистором. Выходное напряжение зависит от стабилитрона.

Например…

Вам нужно питание 12 В, вы используете стабилитрон 12 В. Ты это можешь. Я верю тебе!

Продолжить чтение »

3 # 78xx регулятор напряжения — круто!

Фиксированный стабилизатор 5 В, 6 В, 9 В, 10 В, 12 В, 1 А от IC 7805,7806,7809,7812

Это популярный фиксированный стабилизатор постоянного тока на 1 А, простой и дешевый.

Например…

Если вам необходимо питание 5V 1A для цифровой схемы. Обычно здесь используется LM7805. Продолжить чтение »

Также: Изучите распиновку схемы 7805 и многое другое.

4 # Простой регулируемый регулятор 3А, LM350

Регулируемый регулятор напряжения LM350

Иногда мне нужно использовать источник переменного напряжения 3А.

Но…

LM317 не может мне легко помочь.

Вскоре мы используем источник переменного тока LM350.

Это лучшая линейная [email protected] Результат 1.От 25 до 25 В.

5 # 0–30 В, регулируемый источник постоянного тока 3 А

Мы редко используем ток 3 А, который позволяет регулировать выходное напряжение от 0 до 30 В.

Это лучший выбор.

Он использует LM723 в качестве известной ИС регулятора.

А вот схема современного дизайна, полная защита, чем у LM350T.
Продолжить чтение »

6 # Переменный источник питания, 0-50 В при 3 А

Если вам нужно использовать выходное напряжение более 30 В или отрегулируйте 0 В до 50 В.

Можно использовать. У них есть ключевые компоненты, LM723, и транзистор 2SC5200 более высокого напряжения.

Также полная защита от перегрузки.

Читать дальше »

7 # Соберите блок питания 12В 2А с помощью молотка

Если торопитесь, а печатной платы нет. Эта идея может быть хорошей. Вы можете легко и дешево собрать адаптер 12В 2А.

С помощью молотка и улитки по деревянной доске. Кроме того, чтобы узнать больше.

8 # 15V Двойное питание для предусилителя

Если вам нужно использовать много схем с OP-AMP.

Например, предусилитель с регулятором тембра и др.Им необходимо использовать источник питания +/- 15 В.

У нас есть для вас 3 схемы схем. Читать дальше >>

Цепей много в категориях: Блоки питания.

Другие схемы линейного питания

Регулятор постоянного напряжения: 1,5 В, 3 В, 6 В, 9 В, 12 В

Низкое напряжение

Источники питания 5 В Цифровые источники питания

9 В

Низкое падение напряжения

Простые и идеи

Регулируемая цепь источника питания

Что такое регулируемый источник питания? Проще говоря, это блок питания, который может регулировать выходное напряжение или ток.Но он по-прежнему имеет те же характеристики, что и фиксированный регулируемый источник питания. Он будет поддерживать стабильное напряжение при любой нагрузке.

Менее 1 А
Выходной ток 2 А
3 А Выходной ток
Высокий ток (5 А вверх)
Высокое напряжение (100 В вверх)

Двухканальный регулятор и несколько напряжений

Бестрансформаторный

Источник постоянного тока

Режим переключения Цепи питания

Это импульсные блоки питания постоянного тока.Быть идеями по созданию проектов или инструментов. Потому что они имеют небольшие размеры и дешевле линейных блоков питания.

На моем сайте появляется много схем. Пока друзья не сказали, что сложно увидеть схемы или проекты, как он хочет.

Особый импульсный источник питания постоянного тока очень полезен. В приведенном ниже списке представлены идеи по созданию отличного блока питания, небольшого размера и экономящего деньги. Для применения или обучения.

Итак, я собираю эти схемы для облегчения доступа к интересующим меня проектам.Кроме того, они могут быть вам полезны.

Примеры схем

Регулятор режима переключения
Преобразователь постоянного тока в постоянный

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь упростить обучение электронике.

Design Источник питания 5 В постоянного тока (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике. Почти каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы закончите свой первый дизайн блока питания, протестируете его, и он будет работать нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологии, он будет проходить вас на каждом этапе проектирования, попытается представить все простым языком, выполнит некоторые математические вычисления i.е. Если в схеме используется конденсатор, вы должны знать, зачем он нужен и как рассчитывается его значение.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой, занимаясь своими делами, этот комплект для самостоятельной сборки блока питания (нажмите здесь) подойдет вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем мы перейдем к проектированию. Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по очереди.

Трансформатор входной

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор, чтобы понизить входящий переменный ток до требуемого нижнего уровня, то есть близкого к 5 В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная цепь

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсаторный. Вы, наверное, слышали, конденсатор — это устройство для накопления заряда. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Стабилизатор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но также и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали некоторые базовые концепции проектирования источников питания. Давайте продолжим с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5 В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты цепи, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания 5 В постоянного тока

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу шаг за шагом.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5 В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

В техническом описании 7805 также предписывается использование конденсатора 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции источника питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для обучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается на основе вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т. Е. 500 мА в нашем исполнении, Vo = выходное напряжение, т. Е. В нашем случае 5 В, f = частота, т. Е. 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц. У вас может быть сеть переменного тока 120 В при 60 Гц.Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — это сопротивление нагрузки

. Rf — коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5. Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания.Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит наши поставки.

Практическое правило при выборе номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано.Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY. Вы хотите спаять и поэкспериментировать со всеми вышеупомянутыми компонентами, а затем проверьте это, комплект блока питания Elenco (Amazon Link), вы найдете это интересным.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), которая научит вас многим классным электронным устройствам с помощью практических занятий. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как проектировать источник питания постоянного тока на 5 Вольт.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

Источник питания

— Мой линейный стабилизатор напряжения очень быстро перегревается

Резюме: ВАМ НУЖЕН РАДИАТОР СЕЙЧАС !!!!! 🙂
[и наличие последовательного резистора тоже не повредит :-)]


Хорошо заданный вопрос Ваш вопрос задан хорошо — намного лучше, чем обычно.
Принципиальная схема и ссылки приветствуются.
Это позволяет намного легче дать хороший ответ с первого раза.
Надеюсь, это один … 🙂

В этом есть смысл (увы): поведение вполне ожидаемое.
Вы перегружаете регулятор.
Вам необходимо добавить радиатор, если вы хотите использовать его таким образом.
Вам очень поможет правильное понимание того, что происходит.

Мощность = Вольт x Ток.

Для линейного регулятора Суммарная мощность = мощность в нагрузке + мощность в регуляторе.

Регулятор V падение = V в — V нагрузка
Здесь V падение в регуляторе = 24-5 = 19V.

Здесь Входная мощность = 24 В x I нагрузка
Мощность в нагрузке = 5 В x I нагрузка
Мощность в регуляторе = (24 В-5 В) x I нагрузка .

При токе нагрузки 100 мА регулятор рассеивает
В падение x I нагрузка (24-5) x 0,1 A = 19 x 0,1 = 1,9 Вт.

Насколько жарко ?: На странице 2 технического описания указано, что тепловое сопротивление от перехода к окружающей среде (= воздуху) составляет 50 градусов Цельсия на ватт. Это означает, что на каждый рассеиваемый ватт вы получаете повышение на 50 градусов по Цельсию. При 100 мА у вас будет около 2 Вт рассеивания или около 2 x 50 = 100 ° C. Вода на ИС радостно закипала.

Самая высокая температура, которую большинство людей может удерживать в течение длительного времени, — 55 ° C.Ваш горячее, чем это. Вы не упомянули кипяток (тест на шипение мокрыми пальцами). Предположим, у вас температура корпуса ~~ 80 ° C. Предположим, что температура воздуха 20 ° C (потому что это просто — несколько градусов в любом случае не имеет большого значения.

T подъем = T корпус -T окружающий = 80 ° C — 20 ° C = 60 ° C.
Рассеивание = T подъем / R th = 60/50 ~ = 1,2 Вт.

При падении напряжения 19 В 1,2 Вт = 1,2 / 19 А = 0,0632 А или около 60 мА.

то есть, если вы потребляете около 50 мА, вы получите диапазон температуры корпуса от 70 ° C до 80 ° C.

Вам нужен радиатор.

Ремонт: на странице 2 технических данных указано, что R thj-case = тепловое сопротивление от соединения к корпусу составляет 5C / Вт = 10% соединения с воздухом.

Если вы используете радиатор, скажем, 10 C / W, то общий R th будет R _jc + R c_amb (добавьте переход корпуса к корпусу для воздуха).
= 5 + 10 = 15 ° C / Ватт.
Для 50 мА вы получите 0,050 А x 19 В = 0,95 Вт или повышение на 15 ° C / Вт x 0,95 ~ = 14 ° C.

Даже при повышении, скажем, 20 ° C и температуре окружающей среды 25 В вы получите температуру радиатора 20 + 25 = 45 ° C.
Радиатор будет горячим, но вы сможете удерживать его без (слишком сильной) боли.

Избегая жары:

Как и выше, тепловыделение линейного регулятора в этой ситуации составляет 1,9 Вт на 100 мА или 19 Вт при 1 А. Это очень жарко. При 1А, чтобы поддерживать температуру ниже температуры кипящей воды (100 ° C) при температуре окружающей среды 25 ° C, вам потребуется общее тепловое сопротивление не более (100 ° C-25 ° C) / 19 Вт = 3,9. ° C / Вт. Поскольку переход к случаю Rthjc уже больше 3.9 при 5 ° C / Вт, в таких условиях температура соединения не может быть ниже 100 ° C. Только переход к корпусу при 19 В и 1 А добавит 19 В x 1 А x 5 ° C / Вт = 95 ° C. Хотя ИС рассчитана на работу при температурах до 150 ° C, это не способствует надежности, и этого следует избегать, если это вообще возможно. В качестве упражнения, чтобы ТОЛЬКО получить температуру ниже 150 ° C, в приведенном выше случае внешний радиатор должен иметь температуру (150-95) ° C / 19 Вт = 2,9 ° C / Вт. Это достижимо, но это радиатор большего размера, чем вы надеетесь использовать. Альтернативой является уменьшение рассеиваемой энергии и, как следствие, повышение температуры.

Способы уменьшения тепловыделения в регуляторе:

(1) Используйте импульсный регулятор, такой как серия простых переключателей NatSemi. Импульсный регулятор производительности даже с КПД всего 70% значительно снизит тепловыделение, поскольку в регуляторе рассеивается только 2 Вт !.
, т.е. потребляемая энергия = 7,1 Вт. Выходная энергия = 70% = 5 Вт. Ток при 5 Вт при 5 В = 1 А.

Другой вариант — это готовая замена трехконтактного регулятора.Следующее изображение и ссылка взяты из части, упомянутой в комментарии Джея Коминека. OKI-78SR 1.5A, 5V замена импульсного стабилизатора для LM7805. 7 В — 36 В дюймов

При 36 В на входе, 5 В на выходе 1,5 А эффективность составляет 80%. Поскольку Pout = 5 В x 1,5 A = 7,5 Вт = 80%, мощность, рассеиваемая в регуляторе, составляет 20% / 80% x 7,5 Вт = 1,9 Вт. Очень терпимо. Радиатор не требуется и может обеспечить выходное напряжение 1,5 А при 85 ° C. [[Ошибка: только что заметил, что кривая ниже соответствует 3,3 В. Часть 5V управляет 85% при 1.5A, так что лучше, чем указано выше.]]

(2) Уменьшить напряжение

(3) Уменьшить текущий

(4) Рассеивание некоторой энергии вне регулятора.

Вариант 1 технически лучший. Если это неприемлемо и если 2 и 3 исправлены, то необходим вариант 4.

Самая простая и (возможно, лучшая) система внешнего рассеивания — это резистор. Последовательный силовой резистор, который падает с 24 В до напряжения, которое регулятор будет принимать при максимальном токе, хорошо справится с этой задачей.Обратите внимание, что вам понадобится конденсатор фильтра на входе регулятора из-за сопротивления, обеспечивающего высокий импеданс источника питания. Скажем о 0,33 мкФ, больше не повредит. Подойдет керамика 1 мкФ. Подойдет даже конденсатор большего размера, например алюминиевый электролизер от 10 до 100 мкФ.

Предположим, что Vin = 24 В. Мин. Напряжение регулятора = 8 В (запас мощности / отпускание. Проверьте данные. Выбранный регистр показывает 8 В при <1 А.) Iin = 1 А.

Требуемое падение при 1А = 24-8 = 16В. Скажите 15V, чтобы быть «безопасным».
R = V / I = 15/1 = 15 Ом.Мощность = I 2 * R = 1 x 15 = 15 Вт.
Резистор на 20 Вт будет крайним.
Лучше резистор 25Вт +.

Вот резистор мощностью 25 Вт 15R по цене 3,30 доллара за 1 шт. В наличии на складе без свинца с таблицей данных здесь. Обратите внимание, что для этого также нужен радиатор !!! Вы МОЖЕТЕ купить резисторы с номинальным номиналом до 100 Вт. То, что вы используете, — ваш выбор, но это подойдет. Обратите внимание, что он рассчитан на 25 Вт для коммерческих или 20 Вт для военных нужд, так что при 15 Вт он «хорошо себя чувствует». Другой вариант — это подходящая длина провода с соответствующим номинальным сопротивлением, установленная соответствующим образом.Скорее всего, производитель резисторов уже делает это лучше, чем вы.

При таком расположении:
Общая мощность = 24 Вт
Мощность резистора = 15 Вт
Мощность нагрузки = 5 Вт
Мощность регулятора = 3 Вт

Подъем перехода регулятора на 5 ° C / Вт x 3 = 15 ° C над корпусом. Вам нужно будет установить радиатор, чтобы поддерживать работу регулятора и радиатора, но теперь это «чисто инженерный вопрос».


Примеры радиатора:

21 градус ° C (или ° K) на ватт

7.8 ° C / Вт

Digikey — множество примеров радиаторов, включая этот радиатор 5,3 C / W

2,5 ° C / Вт

0,48 ° C / Вт !!!
Ширина 119 мм, длина 300 мм, высота 65 мм.
1 фут длиной x 4,7 дюйма шириной x 2,6 дюйма высотой

Хорошая статья по выбору радиатора

Тепловое сопротивление радиатора принудительной конвекции


Уменьшение рассеяния линейного регулятора с последовательным входным резистором:

Как отмечалось выше, использование последовательного резистора для падения напряжения перед линейным регулятором может значительно снизить рассеивание в регуляторе.В то время как для охлаждения регулятора обычно требуются радиаторы, можно недорого приобрести резисторы с воздушным охлаждением, которые способны рассеивать 10 или более ватт без радиатора. Обычно решение проблем с высоким входным напряжением таким образом не является хорошей идеей, но это может иметь место.

В приведенном ниже примере источник питания 5 В на выходе 1 А LM317 работает от 12 В. Добавление резистора может более чем вдвое снизить рассеиваемую мощность в LM317 в наихудших условиях за счет добавления дешевого последовательного входного резистора, установленного на проводе с воздушным охлаждением.

LM317 требует запаса от 2 до 2,5 В при более низких токах или, скажем, 2,75 В при экстремальных нагрузках и температурных условиях. (См. Рис. 3 в таблице данных, скопировано ниже).

LM317 запас или падение напряжения

Rin должен иметь такой размер, чтобы он не падал чрезмерно, когда V_12V находится на минимальном уровне, Vdropout является наихудшим случаем для условий, и допускаются последовательное падение напряжения на диодах и выходное напряжение.

Напряжение на резисторе всегда должно быть меньше =

Так Рин <= (v_12 - Vd - 2.2R = 3,3 Вт, поэтому часть мощностью 5 Вт будет минимально приемлемой, а 10 Вт будет лучше.

Рассеивание в LM317 снижается с> 6 Вт до <3 Вт.

Отличным примером подходящего резистора с воздушным охлаждением, установленного на проволочном выводе, может быть член этого хорошо оформленного семейства резисторов с проволочной обмоткой Yageo с элементами номинальной мощностью от 2 до 40 Вт с воздушным охлаждением. Устройства на 10 Вт есть в наличии в Digikey по цене 0,63 доллара США за 1 штуку.


Номинальные значения температуры окружающей среды и превышение температуры резистора:

Приятно иметь эти два графика из таблицы выше, которые позволяют оценить реальные результаты.

На левом графике показано, что резистор мощностью 10 Вт, работающий при 3 Вт3 = 33% от его номинальной мощности, имеет допустимую температуру окружающей среды до 150 C (фактически около 180 C, если вы нанесете рабочую точку на график, но производитель говорит 150 Допускается C макс.

Второй график показывает, что повышение температуры для резистора 10 Вт, работающего на 3W3, будет примерно на 100 ° C выше температуры окружающей среды. Резистор 5 Вт из того же семейства будет работать при 66% номинальной мощности и будет иметь повышение температуры на 140 ° C выше температуры окружающей среды.(При мощности 40 Вт температура повышается примерно на 75 ° C, но 2 x 10 Вт = менее 50 ° C, а 10 x 2 Вт — только около 25 ° C !!!.

Уменьшение роста температуры с увеличением количества резисторов с одинаковой суммарной номинальной мощностью в каждом случае предположительно связано с действием «квадратичного закона», поскольку площадь охлаждающей поверхности на единицу объема уменьшается с увеличением размера.

http://www.yageo.com/documents/recent/Leaded-R_SQP-NSP_2011.pdf

________________________________________

Добавлено в августе 2015 г. — Пример использования:

Кто-то задал разумный вопрос:

Не более правдоподобное объяснение — относительно высокая емкостная нагрузка (220 мкФ)? Э.грамм. что приводит к нестабильности регулятора, колебаниям приводят к рассеиванию большого количества тепла в регуляторе. В таблице данных все схемы для нормальной работы имеют на выходе только конденсатор емкостью 100 нФ.

Я ответил в комментариях, но они МОГУТ быть удалены со временем, и это стоящее дополнение к теме, поэтому вот комментарии, отредактированные в ответ.

В некоторых случаях колебания и нестабильность регулятора, безусловно, являются проблемой, но в этом случае, как и во многих других, наиболее вероятной причиной является избыточное рассеивание.

Семейство 78xxx очень старое и предшествовало как современным регуляторам с малым падением напряжения, так и регуляторам с последовательным питанием (стиль LM317). Семейство 78xxx по сути безоговорочно стабильно по отношению к Cout. На самом деле они не нуждаются в них для правильной работы, и часто показываемое значение 0,1 мкФ служит резервуаром для обеспечения дополнительной защиты от скачков или всплесков.
В некоторых связанных таблицах данных фактически говорится, что Cout может быть «неограниченно увеличен», но я не вижу здесь такого примечания — но также (как и следовало ожидать) нет примечания, предполагающего нестабильность при высоком Cout.На рис. 33 на странице 31 таблицы данных они показывают использование обратного диода для «защиты от« высоких емкостных нагрузок », то есть конденсаторов с достаточно высокой энергией, чтобы вызвать повреждение при разряде на выходе — то есть, намного больше 0,1 мкФ.

Рассеивание: при 24 Vin и 5 Vout регулятор рассеивает 19 мВт на мА. Rthja составляет 50 C / W для корпуса TO220, поэтому вы получите ОКОЛО 1 ° C повышения на один мА тока.
Таким образом, при рассеянии, скажем, 1 Вт в окружающем воздухе 20 C температура корпуса будет около 65 ° C (и может быть больше в зависимости от того, как корпус ориентирован и расположен).65 ° C несколько выше нижнего предела температуры «сжечь палец».
При 19 мВт / мА для рассеивания 1 Вт потребуется 50 мА. Фактическая нагрузка в приведенном примере неизвестна — он показывает светодиодный индикатор примерно на 8 или 9 мА (если красный) плюс нагрузка используемого внутреннего тока регулятора (менее 10 мА) + «PIC18FXXXX), несколько светодиодов … «Эта сумма может достигать или превышать 50 мА в зависимости от схемы PIC, или МОЖЕТ быть намного меньше. |

Общее данное семейство регуляторов, дифференциальное напряжение, фактическая неопределенность охлаждения, неопределенность температуры окружающей среды, типичное значение C / W и многое другое, кажется, что чистое рассеивание является разумной причиной того, что он видит в этом случае — и того, что испытают многие люди, использующие линейные регуляторы в подобных случаях.Есть шанс, что это нестабильность по причинам менее очевидным, и от таких никогда не следует отказываться без уважительной причины, но я бы начал с рассеивания.

В этом случае последовательный входной резистор (скажем, 5 Вт с воздушным охлаждением) переместит большую часть рассеиваемой энергии в компонент, более подходящий для этого.
И / или скромный радиатор должен творить чудеса.

Общие сведения о работе регулятора напряжения

Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки.Есть два типа регуляторов напряжения: линейные и импульсные.

В линейном регуляторе используется устройство активного (BJT или MOSFET) прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.

Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель. Отфильтрованное выходное напряжение переключателя мощности подается обратно в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.

Каковы некоторые топологии импульсных регуляторов?

Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.

Как влияет на конструкцию регулятора частоты переключения?

Более высокие частоты переключения означают, что в регуляторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.

Какие потери происходят с импульсным регулятором?

Потери возникают из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.

Каковы обычные области применения линейных и импульсных регуляторов?

Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.

Как импульсный регулятор управляет своим выходом?

Для импульсных регуляторов

требуются средства для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов — использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует его время включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом.