Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ,
Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью
В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать
Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН,
Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства. Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т.
Вот что пишет автор:
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего
Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном
Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому
В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные
Рис.6
Рис.7
Рис.8
Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22.
|
| Лабораторный БП 0-30 вольт Драгметаллы в микросхемах Металлоискатель с дискримом Ремонт фонарика с АКБ Восстановление БП ПК ATX Кодировка SMD деталей Справочник по диодам Аналоги стабилитронов |
Схемы зарядных устройств для аккумуляторов и батарей
Зарядное устройство для батареи из двух Ni-MH аккумуляторов АА от USB
Несмотря на то, что сейчас есть очень много портативной аппаратуры, питающейся от встроенных аккумуляторов, остается еще и много аппаратуры, рассчитанной на питание от гальванических элементов типо-размера «ААА» или «АА». Это создает определенные трудности эксплуатации, потому …
1
449
0
Простейшее зарядное устройство для двух Ni-Mh пальчиковых аккумуляторов типа AA
Сейчас уже почти вся портативная электроника питается от встроенных аккумуляторов и заряжается от универсальных зарядных устройств с разъемами типа USB. Но, несмотря на это, большинство портативных радиовещательных приемников по-прежнему питаются от гальванических батарей …
1
354
0
Блок заряда и питания от Li-ion аккумулятора для пульта управления
ИК — пульт дистанционного управления (ИК ПДУ) Lotos модели RM-909E позволяет управлять десятью единицами разных видов бытовой техники, содержит в своей базе сотни групп кодов, которые подходят для нескольких тысяч моделей телевизоров, DVD-проигрывателей и другого мультимедийного оборудования.
0
787
0
Схема устройства питания на основе миниатюрного аккумулятора 3.7В-4.2В от сотового телефона
Еще совсем недавно, да впрочем, и сейчас, есть много аппаратуры, питающейся от гальванических батарей, обычно, это два элемента по 1,5V, то есть 3V. Это и пульты ДУ, и приемники, и игрушки и многое еще чего Конечно, есть альтернатива, — «пальчиковые» аккумуляторы по 1.2V. Но тут две …
4
979
0
Схема зарядного устройства для никель-кадмиевых (Ni-Cd) аккумуляторов
Самодельное зарядное устройство для никель-кадмиевых (Ni-Cd) аккумуляторов, принципиальная схема. Чтобы аккумулятор служил долго нужно обеспечить его оптимальный режим, как зарядки, так и разрядки. Никель-кадмиевым аккумуляторам присущ так называемый «эффект памяти». Заключающийся в том, что …
1
2052
2
Схема зарядного устройства с таймером для АА и ААА аккумуляторов
Зарядные устройства, продающиеся в магазинах обычно очень просты и обеспечивают быстрый режим заряда, при котором аккумулятор стареет значительно быстрее. Более безопасно заряжать аккумулятор номинальным зарядным током (0,2 от паспортной емкости), но это требует много времени, и это время …
1
2114
2
Зарядные устройства для телефона в автомобиле, две схемы
Схема зарядного устройства показана на рисунке 2, это DC-DC преобразователь, дающий стабильное напряжение +5V при токе до 0,5А, и входном напряжении в пределах 7-18V. Посмотрев на схему, может возникнуть вопрос, — зачем такие сложности, когда, казалось бы, можно обойтись одной «кренкой»? Вопрос …
0
1957
0
Как использовать зарядку от телефона +5В для NiCd и NiMH аккумуляторов
Принципиальная схема приставки к сетевому адаптеру мобильного телефона, что позволяет заряжать NiCd и NiMH аккумуляторы. Стоимость «сухих батареек» сейчас уже достаточно высока, и вполне сравнима со стоимостью аккумуляторов. Но аккумуляторы можно заряжать. В большинстве устройств, питающихся от «сухих элементов» напряжением 1,5V …
1
3686
0
Автоматическое зарядное устройство для кислотно-свинцовых батарей
После преждевременного выхода из строя аккумулятора в одном из многих устройств(вероятно, из-за того, что я забыл сделать подзарядку согласно рекомендуемому графику), я начал искать автоматическое зарядное устройство. SLA-батареи обычно называют гелеевыми элементами, так как электролит представляет …
2
3806
0
Зарядное устройство для ноутбука ASUS М5200
Я владелец малогабаритного ноутбука ASUS М5200. По роду деятельности мне приходится много ездить, и ноутбук постоянно со мной. В поездке пользуюсь ноутбуком эпизодически. К сожалению, штатный аккумулятор ноутбука довольно быстро разряжается, причем это происходит в самый неподходящий …
1
2521
0
1 2 3 4 5 . .. 8
Радиодетали, электронные блоки и игрушки из китая:
Практические схемы универсальных зарядных устройств для аккумуляторов
Кто не сталкивался в своей практике с необходимостью зарядки батареи и, разочаровавшись в отсутствии зарядного устройства с необходимыми параметрами, вынужден был приобретать новое ЗУ в магазине, либо собирать вновь нужную схему?
Вот и мне неоднократно приходилось решать проблему зарядки различных аккумуляторных батарей, когда под рукой не оказывалось подходящего ЗУ. Приходилось на скорую руку собирать что-то простое, применительно к конкретному аккумулятору.
Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ — недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.
К этому моменту у меня уже была линейка отработанных схем, осталось лишь воплотить схему в готовое устройство, и попутно поделиться своими решениями. Вдруг камрадам пригодится!
Содержание / Contents
Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее — АБ).
Все представленные схемы имеют следующие основные параметры:
• входное напряжение 15-24 В;
• ток заряда (регулируемый) до 4 А;
• выходное напряжение (регулируемое) 0,7 — 18 В (при Uвх=19В).
Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.
ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.
На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН — вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.
Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.
При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.
При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее — ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.
При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 — соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона Vh2 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.
По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).
Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.
Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.
Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.
Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП — к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения — ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, — при недостаточной глубине гистерезиса, — вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.
Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.
В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.
Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале — в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 — следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму «-» АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.
Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.
Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.
Ещё одно отличие от предыдущего устройства — использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.
Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.
Методика настройки порогов окончания зарядки и токовых режимов такая же, как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.
При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.
Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.
В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).
Схема 3а — как вариант схемы 3.
ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.
Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.
На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.
На схеме 6 — вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно «+» питания.
В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.
ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка — заряд» — для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» — для сброса ЗУ в режим заряда.
3. «Ток — буфер» — для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.
Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».
Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.
Применения калибровочного источника напряжения можно избежать, используя для калибровки собственно ЗУ. В этом случае следует отвязать выход ТШ от ШИ-регулятора, предотвратив его выключение при окончании заряда АБ, определяемым параметрами ТШ. АБ так или иначе будет отключена от ЗУ контактами реле К1. Изменения для этого случая показаны на схеме 8.
В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить. В конструкциях желательно в качестве переменных и подстроечных резисторов использование многооборотных потенциометров во избежании мучений при установке необходимых параметров.
Варианты конструктива приведены на фото. Схемы распаивались на перфорированных макетных платах экспромтом. Вся начинка смонтирована в корпусах от ноутбучных БП.
В конструкциях использовались китайские вольтметры (они же использовались и в качестве амперметров после небольшой доработки).
На корпусах смонтированы гнезда для внешнего подключения АБ, нагрузки, джек для подключения внешнего БП (от ноутбука).
В этом корпусе дополнительно смонтированы зажимы для подключения источника переменного тока (трансформатора). Соответственно, внутри дополнительно смонтирован диодный мост с конденсаторным сглаживающим фильтром.
Спасибо за внимание!
Камрад, рассмотри датагорские рекомендации
🌻 Купон до 1000₽ для новичка на Aliexpress
Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке.
Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.
🌼 Полезные и проверенные железяки, можно брать
Куплено и опробовано читателями или в лаборатории редакции.
Зарядные устройства
Доброе время суток. Сегодня речь пойдет об ЗУ для АКБ. ( автоматическом зарядном устройстве для свинцово-кислотных аккумуляторных батарей) После поездки по городу на своей машине, я поставил ее в гараж и забыл выключить подфарники, и только на третье сутки когда нужно было срочно ехать по делам, я обратил внимание что аккумулятор полностью мертв. И тогда задумался об ЗУ, и тут наткнулся на данную схему. Первоисточник и автор схемы указан в низу статьи.
В этой статье речь пойдет о том, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.
Описание
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A.
Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ — его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.
1. Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
— первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
— второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
— третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач.
— четвёртый этап — «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это — четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.
2. Режим тренировки (десульфатации) — меню «Тренировка». Здесь осуществляется тренировочный цикл:
10 секунд — разряд током 0,01С, 5 секунд — заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд.
3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.
4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0.05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.
Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля — П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.
Значения настроек:
1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию — 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.
Выбор и переделка блока питания.
В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это — практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка».
Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме — значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.
Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3.
На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом — чуть позже.
Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.
Схема и принцип работы.
Схема блока управления показана на рис.4.
Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.
Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.
Детали и конструкция.
Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
Транзисторы T1 и Т2 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.
Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки от радиатора размещаются на одном радиаторе площадью 40 квадратных сантиметров. Зумер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – Wh2602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр.
Программа
Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
Запрограммированы (установлены в 0 это значит там нужно поставить галочки):
CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1
все остальные — незапрограммированы (установлены в 1).
Наладка.
Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично — калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком — либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.
Весь материал одним архивом можно скачать здесь1.87 MB
А вот Фото что получилось у меня.
Вместо лампочки которая стоит в качестве нагрузки можно пременить не сложную схему электроной нагрузки которая отлично работает!
Автор данной разработки: Sergey212
Печатная плата в lay
Обсудить на форуме.
Источник: http://electronics-lab.ru
Зарядное устройство для 9в крона своими руками. Схемы слаботочных зарядных устройств. Принцип работы зарядного устройства
Рассмотрим устройство для зарядки маломощных аккумуляторных батарей на 9 вольт, типа 15F8K. Схема позволяет заряжать батарею постоянным током около 12 мА, а по окончании — автоматически отключается.
В ЗУ есть защита от короткого замыкания в нагрузке. Устройство представляет собой простейший источник тока, включает дополнительно индикатор опорного напряжения на светодиоде и автоматическую схему отключения тока по окончании зарядки, которая выполнена на стабилитроне VD1, компараторе напряжения на ОУ и ключе на транзисторе VT1.
Принципиальная электрическая схема.
Уровень зарядного тока устанавливается резистором R7 по формуле, которую вы можете посмотреть в оригинале статьи на картинке (клик, для увеличения размера).
Принцип работы зарядного устройства
Напряжение на неинвертирующем входе микросхемы больше напряжения на инвертирующем. Выходное напряжение операционного усилителя близко к напряжению питания, транзистор VT1 открыт и через свётодиод течет ток около 10 мА. При зарядке батареи напряжение на ней растет, а значит растет и напряжение на инвертирующем входе. Как только оно превысит напряжение на неинвертирующем входе, компаратор переключится в другое состояние, закроются все транзисторы, погаснет светодиод и прекратится зарядка аккумулятора. Предельное напряжение, при котором прекращается зарядка батареи, устанавливается резистором R2. Во избежание неустойчивой работы компаратора в зоне нечувствительности можно установить резистор, показанный штриховой линией, сопротивлением 100 кОм.
Эта схема хорошо подходит не только для обычной аккумуляторной «Кроны
«, но и других типов аккумуляторов. Только нужно лишь подобрать сопротивление резистора R7 и при необходимости поставить более мощный транзистор VT3.
Готовое ЗУ можно разместить в любой подходящей по размерам пластиковой коробочке. Также прекрасно подходят корпуса от нерабочих зарядок мобильных телефонов. Например одна рабочая, переделанная на повышенное напряжение, зарядка — источник напряжения 15В, а в дрогой будут элементы схемы самого ЗУ и контакты для подключения «Кроны
«. Сборка и испытание устройства: sterc
Обсудить статью ЗАРЯДКА АККУМУЛЯТОРНОЙ КРОНЫ 9В
Большинство радиолюбителей пользуется цифровыми мультиметрами, элементом питания которых являются аккумуляторы или батарейки типа Крона.
При этом, учитывая закон подлости, разряжаются они всегда в самый неподходящий момент, когда от точности измерений зависит работоспособность всего проекта.
Посетив магазин, я решил для себя, что использование аккумулятора Крона более экономично, нежели постоянно покупать и держать в запасе батарейку. Но это только при условии правильной эксплуатации аккумулятора.
Поэтому требовалось простое зарядное устройство. Его можно приобрести во многих магазинах. НО! Как и многие из Вас, я не ищу легких путей. Да и гораздо интереснее и полезнее придумать схему, собрать ее, настроив на качественную работу.
Вот такое зарядное у меня получилось.
Это устройство позволяет заряжать аккумуляторы типа Крона – 2 шт. отдельными каналами с оптимальным зарядным током (1/10 от емкости) и имеет светодиодную индикацию.
Индикация состоит из двух светодиодов. 1-ый обозначает, что аккумулятор разряжен более чем на 50%. 2-ой – свидетельствует о том, что батарея заряжена и ее можно извлекать из устройства.
Кроме того, зарядка разряженного аккумулятора происходит в два этапа: зарядка постоянным током и зарядка постоянным напряжением.
Разберем работу схемы. Схема питается постоянным (выпрямленным) напряжением от 12 до 30 в. Но повышенное напряжение питания вызовет более высокую разность напряжений на LM317, что приведет к ее нагреву и потребности устанавливать радиатор. Поэтому, рекомендую питать схему 12-15 в.
Включение LM317 в режиме стабилизации напряжения позволяет получить постоянное (неизменное) напряжение на выходе микросхемы при изменении напряжения питания.
После LM317 выполнен стабилизатор тока на двух транзисторах. Когда подключаем клеммы к разряженному аккумулятору падение напряжения на резисторе 27 ом значительно превышает порог открытия второго транзистора, что приводит к включению светодиода и частичному закрытию первого транзистора и, тем самым, ограничению тока заряда.
В процессе заряда аккумулятора падение напряжения на резисторе 27 ом в определенный момент закрывает второй транзистор, что приводит к почти полному открытию первого транзистора, а это значит, что почти все входное напряжение поступает эмиттер транзистора, то есть на выход.
Таким образом, обеспечивается безопасный ток заряда для аккумуляторной Кроны.
Операционный усилитель ОР(LM358) выполняет роль компаратора, который отслеживает напряжение на клеммах аккумулятора и сравнивает его с установленным переменным резистором. Как только напряжение превысит установленное, загорится второй светодиод, сигнализирующий о том, аккумулятор заряжен.
Настройку начинаем с установки выходного напряжения. Для этого подключаем вольтметр к выходным клеммам (без нагрузки) и подстроечнымрезистором (в цепи стабилизатора LM317) устанавливаем напряжение равное 9,1-9,2в.
Далее, для настройки срабатывания светодиода, сигнализирующего об окончании зарядки, подключаем вольтметр к выходным клеммам и подключаем аккумулятор Крона. Как только напряжение достигнет 9в, вращая подстроечный резистор (в цепи LM358) добиваемся включения светодиода. Эта операция требует довольно таки много терпения и точности, поэтому я рекомендую использовать многооборотные резисторы.
После настройки, данные резисторы замазываются лаком или воском для исключения возможности сбить ранее осуществленную настройку.
Разводка платы выполнена с учетом имеющихся в наличии деталей.
Среди множества схем сборки зарядных устройств для аккумуляторов типа «Крона» нашлась и относительно простая и доступная. Кстати, 9-вольтовая батарейка, известная в России и странах СНГ как «Крона», имеет стандарт 6F22.
Аккумулятор состоит из 7 никель-металлгидридных батарей стандарта 4A, соединенных последовательно. Рекомендованный для заряда ток составляет не более 20-30 мА.
Зарядное устройство изготавливается путем переделки зарядника для мобильных телефонов китайского производства.
Существуют 2 вида недорогих зарядных устройств родом из Китая. Они импульсные, и в основе обоих лежат автогенераторные схемы, способные выдавать 5 В на выходе.
Первый вид самый распространенный. В нем отсутствует контроль напряжения на выходе, но подобрав стабилитрон, стоящий в таких схемах во входной цепи возле диода 1N4148, можно получить нужное напряжение. Обычно он двух видов — на 4,7 и 5,1 В.
Чтобы зарядить «Крону» необходимо напряжение порядка 10-11 В. Этого можно добиться, заменив стабилитрон на тот, что имеет соответствующее напряжение. Также рекомендуется поменять конденсатор, который расположен на выходе зарядки. Как правило, он на 10 В. Нужно поставить конденсатор на 16-25 В, имеющий емкость 47-220 мкФ.
Вторая разновидность таких схем имеет контроль напряжения на выходе, реализованное посредством установки оптопары и стабилитрона.
Взгляните на принцип переделки второй схемы.
Необходимо убрать все компоненты, имеющиеся после трансформатора, и оставить только узел, контролирующий напряжение на выходе. Этот узел состоит из оптопары, пары резисторов и стабилитрона.
Нужно произвести замену диодного выпрямителя, поскольку производители заявляют ток зарядки в 500 мА, а максимальный ток диода не более 200 мА, хотя пиковый ток около 450 мА. Опасно ведь! В общем, надо установить диод FR107. Таким образом, зарядка будет выдавать необходимое напряжение.
Следующее, что нужно сделать, — это собрать узел стабилизации тока, взяв за основу микросхему LM317. Вообще, можно обойтись одним гасящим резистором вместо того, чтобы собирать узел стабилизации.
Но в этом примере предпочтение отдается надежной стабилизации, ведь аккумулятор типа «Крона» не самый дешевый.
Резистор R1 влияет на ток стабилизации. Программу расчета можно скачать в Прикрепленных файлах, в конце статьи.
Принцип работы этой схемы заключается в следующем:
При подключении «Кроны» загорается светодиод.
На резисторе R2 создается падение напряжения. Постепенно ток в цепи уменьшается, и напряжение, позволяющее гореть светодиоду, в один момент становится недостаточным. Он попросту гаснет.
Это происходит в конце процесса зарядки, когда напряжение на аккумуляторе становится равным напряжению зарядника. Процесс заряда останавливается, и ток снижается почти до нуля.
Микросхему LM317 устанавливать на радиатор не требуется, в отличии от , ведь ток заряда очень мизерный.
Остается прикрепить к корпусу коннектор для аккумулятора, который можно изготовить из неработающей батарейки.
Если использовать преобразователь DC-DC, то получится зарядное устройство для «Кроны» через USB-порт. на подобии этого .
Прикрепленные файлы:
.
Паяем штекер к экранированному аудио кабелю
Универсальная защита для аккумуляторов
Вообще, схем таких зарядных устройств очень много. В данной статье представлен простой и доступный вариант, который поможет сделать с экономией средств и усилий зарядное устройство для Кроны. Предлагаемая схема на основе зарядки для мобильного телефона позволяет сделать устройство своими руками. Автор видео блогер Aka Kasyan .
Кстати, батарейку на 9 вольт называют Кроной только в России и других странах – выходцах из СССР. В мире она известна под названием стандарт 6 f 22. Своим названием Крона обязана простой батарейке того же стандарта, которая выпускалась в СССР.
Все, что нужно для сборки устройства, вы можете найти в этом китайском магазине . Обратите внимание на товары с бесплатной доставкой.
Аккумуляторная крона представляет из себя сборку из последовательно соединенных батарей, достаточно редкого стандарта 4a. В общем случае их количество 7 штук. Как правило это никель-металл-гидридный тип.
Схемы зарядки для аккумуляторной Кроны
Заряжать аккумуляторную крону рекомендуется током не более 20 – 30 миллиампер. Рекомендуется ни в коем случае не повышать ток выше 40 миллиампер. Схема зарядного устройства относительно проста и выполнена на базе китайской зарядки для мобильного телефона. Дешевое китайское зарядное устройство бывает двух основных типов. Оба, как правило, импульсные и реализованные по автогенераторным схемам. На выходе обеспечивается напряжение около 5 вольт.
Первый тип зарядного устройства
Первая разновидность самая популярная. Тут нет контроля выходного напряжения, но оно может быть изменено путем подбора стабилитрона, которые как правило, в таких схемах стоят во входной цепи. Стабилитрон чаще всего на 4,7 – 5,1 вольт. Для зарядки кроны нам необходимо иметь напряжение около 10 вольт. Поэтому стабилитрон заменяем на другой с нужным напряжением. Также советуется заменить электролитический конденсатор на выходе зарядного устройства. Заменяем на 16 – 25 вольт. Емкость от 47 до 220 микрофарад.
Второй тип зарядки
Вторая разновидность – схема для зарядки мобильных телефонов представляет из себя автогенераторную схему, но с контролем выходного напряжения посредством оптопарыи стабилитрона. В таких схемах в качестве контролирующего элемента может быть задействован либо обычный стабилитрон, либо регулируемый, наподобие tl431. В данном случае стоит самый обычный стабилитрон на 4,7 вольта.
На видео показан способ переделки на базе 2 схемы.Предварительно убираем все, что имеется после трансформатора, кроме узла контроля выходного напряжения. Это оптопара, стабилитрон и два резистора. Заменяем также диодный выпрямитель. Имеющийся диод заменяем на fr107 (отличный бюджетный вариант).
Также заменяем выходной электролит с большим напряжением. Подбираем стабилитрон на 10 вольт. В итоге зарядка стала выдавать на выходе нужное для наших целей напряжение.
После переделки зарядного устройства собираем узел стабилизации тока на базе микросхемы lm317.
В принципе, для таких ничтожных токов можно обойтись и без микросхемы. Взамен поставить один гасящий резистор, но предпочтительно хорошая стабилизация. Все-таки аккумуляторная крона совсем не дешевый тип батареи. Ток стабилизации будет зависеть от сопротивления резистора r1, программу расчета для этой микросхемы можно найти в интернете.
Работает эта схема очень просто. Светодиод будет гореть, когда на выходе будет включена нагрузка. В данном случае Крона, поскольку имеется падение напряжения на резисторе r2. По мере заряда батареи ток в цепи будет падать и в один момент падение напряжения на каждом резисторе будет недостаточным. Светодиод о просто потухнет. Это будет в конце процесса заряда, когда напряжение на Кроне равно напряжение на выходе зарядного устройства. Следовательно, дальнейший процесс заряда станет невозможным. Иными словами почти автоматический принцип.
За Крону можно не волноваться, поскольку ток в конце процесса заряда является практически до нуля. Микросхема lm317t устанавливать на радиатор нет смысла из-за мизерного тока заряда. Она вообще не будет нагреваться.
В конце остается прицепить на выход коннектор для Кроны, которые можно сделать из второй нерабочей кроны. И, конечно же, подумать о корпусе для устройства.
Зарядка для Кроны из dc-dc преобразователя
Если взять небольшую плату dc-dc преобразователя, то без проблем можно сделать юсб зарядку для кроны. Модуль преобразователя повысит напряжение юсб порта до нужных 10-11 вольт. А дальше уже по цепи стабилизатор тока на lm317 и, все.
Рассмотрим устройство для зарядки маломощных аккумуляторных батарей
на 9 вольт, типа 15F8K. Схема позволяет заряжать батарею постоянным
током около 12 мА, а по окончании — автоматически отключается.
В ЗУ есть защита от короткого замыкания в нагрузке. Устройство
представляет собой простейший источник тока, включает дополнительно
индикатор опорного напряжения на светодиоде и автоматическую схему
отключения тока по окончании зарядки, которая выполнена на стабилитроне
VD1, компараторе напряжения на ОУ и ключе на транзисторе VT1.
Принципиальная электрическая схема.
Уровень зарядного тока устанавливается резистором R7 по формуле,
которую вы можете посмотреть в оригинале статьи на картинке (клик, для
увеличения размера).
Принцип работы зарядного устройства
Напряжение на неинвертирующем входе микросхемы больше напряжения на
инвертирующем. Выходное напряжение операционного усилителя близко к
напряжению питания, транзистор VT1 открыт и через свётодиод течет ток
около 10 мА. При зарядке батареи напряжение на ней растет, а значит
растет и напряжение на инвертирующем входе. Как только оно превысит
напряжение на неинвертирующем входе, компаратор переключится в другое
состояние, закроются все транзисторы, погаснет светодиод и прекратится
зарядка аккумулятора. Предельное напряжение, при котором прекращается
зарядка батареи, устанавливается резистором R2. Во избежание
неустойчивой работы компаратора в зоне нечувствительности можно
установить резистор, показанный штриховой линией, сопротивлением 100
кОм.
Эта схема хорошо подходит не только для обычной аккумуляторной «Кроны
«,
но и других типов аккумуляторов. Только нужно лишь подобрать
сопротивление резистора R7 и при необходимости поставить более мощный
транзистор VT3.
Готовое ЗУ можно разместить в любой подходящей по размерам пластиковой
коробочке. Также прекрасно подходят корпуса от нерабочих зарядок
мобильных телефонов. Например одна рабочая, переделанная на повышенное
напряжение, зарядка — источник напряжения 15В, а в дрогой будут элементы
схемы самого ЗУ и контакты для подключения «Кроны
«. Сборка и испытание устройства: sterc
Простое зарядное устройство для сотового телефона.
Простое зарядное устройство для сотового телефона.
В данной статье мы рассмотрим 2 варианта схемы зарядного устройства для сотового телефона.
Внешний вид устройства:
Спецификация:
Описание
| Обозначение
| Мин.
| Норма
| Макс.
| Ед. изм.
|
Входные параметры
Напряжение
Частота
Потребление на Х.Х.
|
Vin
fline
|
85
47
|
50/60
|
265
64
0.5
|
VAC
Hz
W
|
Выходные параметры
Выходное напряжение 1
Выходная пульсация 1
Выходной ток 1
Выходная мощность (RMS)
|
Vout1
Vripple1
Iout1
Pout
|
4.75
534
|
5.0
60
600
3.0
|
5.75
666
|
V
mV
mA
W
|
КПД
| n
| 59
| —
| —
| %
|
ЭМИ
Безопасность
| Соответствуют: CISPR22B/EN55022B, IEC950, UL1950 класс II
| —
| |||
Диапазон рабочих температур
| Tamb
| 0
| —
| 50
| C
|
Преимущества этой конструкции:
— Низкая стоимость CV/CC зарядного устройства.
— Потребление на холостом ходу меньше чем 300mW.
— Соответствует требованиям СЕС по КПД и потреблении на холостом ходу.
Схемы
1) Схема зарядного устройства с RCD цепочкой гашения выброса.
2) Схема зарядного устройства с диодом Зенера в цепочке гашения выброса и вспомогательной обмоткой.
Вариант разводки печатной платы.
Перечень элементов:
N
| Кол-во
| Номинал
| Описание
| Обозначение
|
1
| 2
| 4.7 uF
| 4.7 uF, 400 V, Electrolytic, (8 x 11.5)
| C1 C2
|
2
| 1
| 2.2 nF
| 2.2 nF, 1 kV, Disc Ceramic
| C3
|
3
| 1
| 100 nF
| 100 nF, 50 V, Ceramic, X7R, 0805
| C5
|
4
| 1
| 330 uF
| 330 uF, 10 V, Electrolytic, Low ESR, 180 mOhm
| C6
|
5
| 1
| 2.2 nF
| 2.2 nF, 50 V, Ceramic, X7R, 0805
| C9
|
6
| 4
| 1N4005
| 600 V, 1 A, Rectifier, DO-41
| D1 D2 D3 D4
|
7
| 1
| 1N4007G
| 1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41
| D5
|
8
| 1
| SS14
| 40 V, 1 A, Schottky, DO-214AC
| D7
|
9
| 1
| 1 mH
| 1 mH, 0.15 A, Ferrite Core
| L1
|
10
| 1
| MMST3906
| PNP, Small Signal BJT, 40 V, 0.2 A, SOT-323
| Q1
|
11
| 2
| 100 k
| 100 k, 5%, 1/4 W, Metal Film, 1206
| R1 R2
|
12
| 1
| 200
| 200 R, 5%, 1/8 W, Metal Film, 0805
| R3
|
13
| 1
| 68
| 68 R, 5%, 1/8 W, Metal Film, 0805
| R4
|
14
| 1
| 1.2 k
| 1.0k 5%, 1/8 W, Metal Film, 0805
| R6
|
15
| 1
| 820
| 820 R, 5%, 1/8 W, Metal Film, 0805
| R8
|
16
| 1
| 1.7
| 1.7 R, 5%, 1 W, Metal Oxide
| R9
|
17
| 1
| 8.2
| 8.2 R, 2.5 W, Fusible/Flame Proof Wire Wound
| RF1
|
18
| 1
| 4.7
| 4.7 R, 5% Metal film 0805
| R10
|
19
| 1
| 51 k
| 51 k, 5% Metal film 0805
| R11
|
20
| 1
| EE16
| Bobbin, EE16 Horizontal, 10 Pins
| T1
|
21
| 1
| LNK363P
| PI’s device
| U1
|
22
| 1
| PC817D
| Opto coupler, 35 V, CTR 300-600%, 4-DIP
| U2
|
23
| 1
| BZX79-B5V1
| 5.1 V, 500 mW, 2%, DO-35
| VR1
|
Спецификация на трансформатор:
1) Электрическия схема.
2) Электрическая спецификация:
Электрическая прочность | 60Hz 1 минута, с пинов 1-5 на пины 6-10 | 3000 VAC |
Индуктивность первичной обмотки (пин 3 — пин 5) | Все обмотки разомкнуты | 1940uH +/- 5% (132kHz) |
Резонансная частота (пин 3 — пин 5)
| Все обмотки разомкнуты | 700 kHz (min) |
Индукция рассеяния первичной обмотки | Пины 9-8 закорочены | 110 uH (max) |
3) Схема построения
Рабочие характеристики:
Все измерения проводились при комнатной температуре, при частоте питающей сети 60 Hz. Точка, на которой проводились измерения находилась на конце выходного кабеля длиной 6 футов. Сопротивление кабеля по постоянному току равно 0,2 Ом.
1) Зависимость КПД от величины нагрузки.
Примечание: по требованиям СЕС минимальный КПД должен составлять 58,9%. При этом замеры показали:
- При Uin=115VAC КПДср=62,4%
- При Uin=230VAC КПДcp=61,2%
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.
2) Зависимость КПД от уровня входного напряжения.
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
,
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.
3) Потребление источника питания на холостом ходу:
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки трансформатора.
4) Нагрузочная характеристика.
5) Тепловые измерения.
Измерения проводились внутри закрытого короба при полной нагрузке без внешней воздушной конвекции.
Результаты сведены в таблицу:
а) RCD цепочка гашения выброса. Без подключения дополнительной обмотки трансформатора.
—
| 85 VAC
| 265 VAC
|
Температура окр. среды
| 50С
| 50С
|
LNK363P
| 108C при Pout=2,82W (5.22V/540mA)
| 103C при Pout=2,84W (5.23V/542mA)
|
б) Цепочка гашения выброса (диод Зенера), с подключением дополнительной обмотки тран
—
| 85 VAC
| 265 VAC
|
Температура окр. среды
| 50С
| 50С
|
LNK363P
| 96C при Pout=2,82W (5.22V/544mA)
| 89C при Pout=2,82W (5.22V/544mA)
|
Более подробную информацию вы сможете получить, ознакомившись с оригиналом документа.
Автор документа: Департамент по применению компании Power Integrations.
Перевел и скорректировал:
Бандура Геннадий.
Инженер по применению микросхем Power Integrations
компании Макро-Петербург.
Bandura (at) macrogroup.ru
Создайте интеллектуальное зарядное устройство с использованием однотранзисторной схемы
Загрузите эту статью в формате .PDF
Следующая конструкция автоматического зарядного устройства создана с использованием схемы, которая может квалифицироваться как простейший оконный компаратор, когда-либо построенный на одном транзисторе (см. Рисунок). Зарядка начинается, когда напряжение батареи падает выше заданного значения, и прекращается, когда достигается верхнее заданное напряжение.
% {[data-embed-type = «image» data-embed-id = «5df275eff6d5f267ee210c16» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Www Electronicdesign Com Сайты Electronicdesign com Файлы Рисунок 01 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2002/11/www_electronicdesign_com_sites_electronicdesign.com_files_figure_01.png?auto=format&fit=max&w=1440 «data-embed-caption =» «]}%
С помощью источника точного переменного напряжения были установлены верхний и нижний уровни напряжения. Нормально подключенный (NC) вывод реле не подключен к источнику постоянного тока 15 В, что блокирует прохождение этого напряжения на выводы батареи. Это позволит точно установить верхний и нижний уровни.Но в схему был включен зарядный блок на 15 В постоянного тока.
Во-первых, переменное питание фиксируется на 13,3 В постоянного тока — напряжении полностью заряженной батареи — и связано с точкой батареи в цепи. Ползунок VR1 повернут до крайнего конца со стороны, прикрепленной к плюсовой клемме аккумулятора. Ползунок VR2 следует повернуть к концу, который подключен к VR1. Транзистор включается, шунтируя VR1. Затем ползунок VR1 поворачивается к другому концу, то есть концом, соединенным с VR2.
Теперь испытательное напряжение питания установлено на 11,8 В постоянного тока, что является напряжением разряженной батареи. Затем VR2 настраивается так, что он просто снова отключает транзистор. Испытательное напряжение снова повышается до 13,3 В постоянного тока, и VR1 регулируется так, чтобы транзистор включился. Когда установлен верхний и нижний уровни, точка NC подключается к цепи (напряжение зарядки 15 В постоянного тока). Теперь зарядное устройство установлено и готово к работе.
Прочтите комментарий к этой статье Анупа Хегде: Если вы создаете интеллектуальное зарядное устройство с использованием однотранзисторной схемы, остерегайтесь последствий.
Зарядка литий-ионных аккумуляторов
требует точного измерения напряжения
Литий-ионные (Li-Ion) аккумуляторы
набирают популярность в портативных системах из-за их увеличенной емкости при тех же размерах и весе, что и у более старых никель-кадмиевых и никель-металлгидридных аккумуляторов. Например, портативный компьютер с литий-ионным аккумулятором может работать дольше, чем аналогичный компьютер с никель-металлгидридным аккумулятором. Однако разработка системы для литий-ионных аккумуляторов требует особого внимания к схеме зарядки, чтобы обеспечить быструю, безопасную и полную зарядку аккумулятора.
Новая микросхема для зарядки аккумуляторов, ADP3810, разработана специально для управления зарядом литий-ионных аккумуляторов с 1–4 элементами. Доступны четыре высокоточных фиксированных варианта конечного напряжения батареи (4,2 В, 8,4 В, 12,6 В и 16,8 В); они гарантируют конечное напряжение батареи ± 1%, что так важно при зарядке литий-ионных батарей. Сопутствующее устройство, ADP3811, похоже на ADP3810, но его конечное напряжение батареи программируется пользователем для работы с другими типами батарей.Обе микросхемы точно контролируют зарядный ток, чтобы обеспечить быструю зарядку при токах 1 ампер и более. Вдобавок они оба имеют прецизионный источник опорного напряжения 2,0 В и прямой выход привода оптопары для изолированных приложений.
Литий-ионная зарядка: для литий-ионных аккумуляторов обычно требуется алгоритм зарядки с постоянным током и постоянным напряжением (CCCV). Другими словами, литий-ионная батарея должна заряжаться при заданном уровне тока (обычно от 1 до 1,5 ампер) до достижения конечного напряжения.На этом этапе схема зарядного устройства должна переключиться в режим постоянного напряжения и обеспечивать ток, необходимый для удержания батареи при этом конечном напряжении (обычно 4,2 В на элемент). Таким образом, зарядное устройство должно обеспечивать стабильные контуры управления для поддержания постоянное значение тока или напряжения, в зависимости от состояния батареи.
Основная задача при зарядке литий-ионного аккумулятора — реализовать полную емкость аккумулятора без его перезарядки, что может привести к катастрофическому отказу.Возможна небольшая погрешность, всего ± 1%. Избыточная зарядка более чем на + 1% может привести к выходу из строя батареи, а недостаточная зарядка более чем на 1% приводит к снижению емкости. Например, недозаряд литий-ионного аккумулятора всего на 100 мВ (-2,4% для литий-ионного элемента на 4,2 В) приводит к потере емкости примерно на 10%. Поскольку место для ошибки очень мало, требуется высокая точность схемы управления зарядкой. Для достижения этой точности контроллер должен иметь прецизионный источник опорного напряжения, усилитель обратной связи с высоким коэффициентом усиления и малым смещением и точно согласованный резистивный делитель .Суммарные погрешности всех этих компонентов должны приводить к общей погрешности менее ± 1%. ADP3810, объединяющий эти элементы, гарантирует общую точность ± 1%, что делает его отличным выбором для зарядки литий-ионных аккумуляторов.
ADP3810 и ADP3811: На рисунке 1 показана функциональная схема ADP3810 / 3811 в упрощенной схеме зарядного устройства CCCV. Два усилителя «g m » (вход по напряжению, выход по току) являются ключевыми для рабочих характеристик ИС. GM1 определяет и контролирует зарядный ток через шунтирующее сопротивление, R CS и GM2 измеряют и регулируют конечное напряжение батареи.Их выходы соединены в аналоговой конфигурации «ИЛИ», и оба спроектированы таким образом, что их выходы могут подключаться только к общему узлу COMP. Таким образом, либо усилитель тока, либо усилитель напряжения контролирует контур зарядки в любой момент времени. . Узел COMP буферизирован выходным каскадом «g m » (GM3), выходной ток которого напрямую управляет входом управления преобразователем постоянного тока (через оптопару в изолированных приложениях).
Рис. 1. Блок-схема ADP3810 / 3811 в упрощенной схеме зарядки аккумулятора.
ADP3810 включает прецизионные тонкопленочные резисторы для точного деления напряжения батареи и сравнения его с внутренним опорным напряжением 2,0 В. ADP3811 не включает эти резисторы, поэтому разработчик может запрограммировать любое конечное напряжение батареи с помощью пары внешних резисторов в соответствии с приведенной ниже формулой. Буферный усилитель обеспечивает вход с высоким импедансом для программирования зарядного тока с использованием входа VCTRL, а схема блокировки при пониженном напряжении (UVLO) обеспечивает плавный запуск.
Чтобы понять конфигурацию «ИЛИ», предположим, что полностью разряженный аккумулятор вставлен в зарядное устройство.Напряжение аккумулятора значительно ниже конечного напряжения заряда, поэтому на входе VSENSE GM2 (подключенном к аккумулятору) положительный вход GM2 значительно ниже внутреннего опорного напряжения 2,0 В. В этом случае GM2 хочет вывести узел COMP на низкий уровень, но он может только подтянуть, поэтому он не имеет никакого эффекта на узле COMP. Поскольку батарея разряжена, зарядное устройство начинает увеличивать ток заряда, и токовая петля берет на себя управление. Ток заряда создает отрицательное напряжение на резисторе токового шунта (RCS) с сопротивлением 0,25 Ом.Это напряжение измеряется GM1 через резистор 20 кОм (R3). В состоянии равновесия (I CHARGE R CS ) / R 3 = -V CTRL /80 кОм. Таким образом, ток заряда поддерживается на уровне
.
Если ток заряда имеет тенденцию превышать запрограммированный уровень, вход V CS GM1 принудительно отрицательный, что приводит к высокому уровню на выходе GM1. Это, в свою очередь, подтягивает узел COMP, увеличивая ток с выходного каскада, уменьшая привод блока преобразователя постоянного / постоянного тока (который может быть реализован с различными топологиями, такими как возвратный, понижающий или линейный каскад), и, наконец, уменьшение зарядного тока.Эта отрицательная обратная связь завершает контур управления зарядным током.
Когда батарея приближается к своему конечному напряжению, входы GM2 приходят в равновесие. Теперь GM2 подтягивает узел COMP до высокого уровня, и выходной ток увеличивается, в результате чего ток заряда уменьшается, поддерживая V SENSE и V REF равными. Управление зарядным контуром изменено с GM1 на GM2. Поскольку коэффициент усиления двух усилителей очень высок, переходная область от регулирования тока к напряжению очень резкая, как показано на Рисунке 2.Эти данные были измерены на 10-вольтовой версии автономного зарядного устройства, показанного на Рисунке 3.
Рис. 2. Изменение тока / напряжения зарядного устройства ADP3810 CCCV
, полностью автономное литий-ионное зарядное устройство. На рис. 3 показана полная система зарядки с использованием ADP3810 / 3811. В этом автономном зарядном устройстве используется классическая архитектура с обратным ходом для создания компактной и недорогой конструкции. Три основные части этой схемы — это контроллер первичной стороны, силовой полевой транзистор и трансформатор обратного хода, а также контроллер вторичной стороны. В этой конструкции используется ADP3810, напрямую подключенный к батарее, для зарядки двухэлементной литий-ионной батареи. к 8.4 В при программируемом токе заряда от 0,1 до 1 А. Входной диапазон от 70 до 220 В переменного тока для универсальной работы. Используемый здесь широтно-импульсный модулятор первичной стороны соответствует промышленному стандарту 3845, но могут использоваться и другие компоненты ШИМ. Фактические выходные характеристики зарядного устройства контролируются ADP3810 / 3811, что гарантирует конечное напряжение в пределах ± 1%.
Рисунок 3. Полное автономное зарядное устройство для литий-ионных аккумуляторов
Токовый привод управляющего выхода ADP3810 / 3811 напрямую подключается к фотодиоду оптопары без дополнительных схем.Его выходной ток 4 мА может управлять различными оптопарами — здесь используется MOC8103. Ток фототранзистора протекает через R F , устанавливая напряжение на выводе COMP 3845 и, таким образом, управляя рабочим циклом ШИМ. Контролируемый импульсный стабилизатор спроектирован таким образом, что повышенный ток светодиода от оптопары снижает рабочий цикл преобразователя.
В то время как сигнал от ADP3810 / 3811 управляет средним током заряда, первичная сторона должна иметь циклическое ограничение тока переключения.Этот предел тока должен быть спроектирован таким образом, чтобы при отказе или неисправности вторичной цепи или оптопары или во время запуска компоненты первичной силовой цепи (полевой транзистор и трансформатор) не подвергались перенапряжению. Когда напряжение вторичной обмотки V CC превышает 2,7 В, ADP3810 / 3811 берет на себя управление средним током. Предел тока первичной стороны устанавливается резистором считывания тока 1,6 Ом, подключенным между силовым транзистором NMOS, IRFBC30 и землей.
ADP3810 / 3811, ядро вторичной стороны, устанавливает общую точность зарядного устройства.Для выпрямления требуется только один диод (MURD320), и никакой катушки индуктивности фильтра не требуется. Диод также предотвращает обратный запуск зарядного устройства при отключении входного питания. Конденсатор емкостью 1000 мкФ (CF1) поддерживает стабильность при отсутствии батареи . RCS определяет средний ток (см. Выше), и ADP3810 подключается напрямую (или ADP3811 через делитель) к батарее, чтобы определять и контролировать ее напряжение.
С этой схемой реализовано полностью автономное зарядное устройство для литий-ионных аккумуляторов.Топология обратного хода сочетает преобразователь переменного тока в постоянный со схемой зарядного устройства, что дает компактный и недорогой дизайн. Точность этой системы зависит от контроллера вторичной стороны, ADP3810 / 3811. Архитектура устройства также хорошо работает в других схемах зарядки аккумуляторов. Например, стандартное зарядное устройство постоянного тока понижающего типа может быть легко сконструировано путем объединения ADP3810 и ADP1148. Простое линейное зарядное устройство также может быть разработано с использованием только ADP3810 и внешнего транзистора. Во всех случаях присущая ADP3810 точность контролирует зарядное устройство и гарантирует конечное напряжение батареи ± 1%, необходимое для зарядки литий-ионных аккумуляторов.
Fsect5.PDF
% PDF-1.6
%
3 0 obj
>
эндобдж
110 0 объект
[/ CalGray>]
эндобдж
111 0 объект
[/ CalRGB>]
эндобдж
112 0 объект
> поток
application / pdf
Среда, 29 июля 1998 г. 1:02:13 PMAcrobat PDFWriter 3.0 для Windows Microsoft Word 2012-06-12T12: 49: 36-04: 002012-06-12T12: 49: 36-04: 00uuid: fe062ec8-31d6-4119-864b -e6ad7d5e996auuid: fc4bfd33-0f55-4a26-9d8a-d863ac61bdd9
конечный поток
эндобдж
113 0 объект
>
эндобдж
109 0 объект
>
эндобдж
5 0 obj
>
эндобдж
38 0 объект
>
эндобдж
60 0 объект
>
эндобдж
80 0 объект
>
эндобдж
101 0 объект
>
эндобдж
100 0 объект
> / ProcSet 2 0 R >> / Тип / Страница >>
эндобдж
102 0 объект
> поток
Ѡp.д \ 6
@hA
Схема зарядки аккумулятора — Электротехническая стековая биржа
Большая проблема вашей схемы заключается в том, что в большинстве случаев она не регулирует зарядку аккумулятора.
Рис. 1. Путь основного тока от выпрямителя к батарее показан красным.
В вашей цепи нет ограничения по току. Каждый раз, когда выход мостового выпрямителя превышает напряжение батареи, в батарею будет течь большой нерегулируемый ток. Это вряд ли даст вам хорошо контролируемый заряд.
смоделировать эту схему — Схема создана с помощью CircuitLab
Рисунок 2. Базовая «зарядная» часть схемы не имеет токоограничителя.
Решим проблему поэтапно.
- Свинцово-кислотные батареи следует заряжать от источника с ограниченным напряжением. У вас есть батарея 12 В с ячейками 6 x 2 В.
Все, что выше 2,15 В на элемент, будет заряжать свинцово-кислотную батарею, это напряжение основной химии.Это также означает, что ничто, ниже 2,15 В на элемент, не будет производить никакой зарядки (12,9 В для аккумулятора 12 В). Однако большую часть времени используется более высокое напряжение, чем это, потому что оно вызывает реакцию зарядки с более высокой скоростью. Зарядка при минимальном напряжении займет много времени. Когда вы увеличиваете напряжение, чтобы получить более быструю зарядку, напряжение, которого следует избегать, является напряжением выделения газа, которое ограничивает, насколько высоким может быть напряжение до того, как начнутся нежелательные химические реакции. Типичное напряжение зарядки составляет 2.15 В на элемент (12,9 В для 6-элементной батареи 12 В) и 2,35 В на элемент (14,1 В для 6-элементной батареи 12 В). Эти напряжения подходят для полностью заряженного аккумулятора без перезарядки или повреждения. Если аккумулятор заряжен не полностью, вы можете использовать гораздо более высокое напряжение без повреждений, потому что реакция зарядки имеет приоритет над любыми химическими реакциями перезарядки, пока аккумулятор не будет полностью заряжен. Вот почему зарядное устройство может работать при напряжении от 14,4 до 15 вольт во время фазы полной зарядки цикла зарядки.Источник: Powerstream Technology.
Значит, вам нужно отрегулировать напряжение зарядки до 14,1 В. В вашей цепи нет регулятора, поэтому существует опасность перезарядки. В сети есть много схем для этого.
смоделировать эту схему
Рисунок 3. Схема индикатора заряда.
… зеленый светодиодный индикатор при зарядке и красный светодиодный индикатор при полной зарядке. … Я чувствую, что коллектор должен посылать достаточно напряжения только для того, чтобы пропускать ток через эмиттер, если напряжение батареи меньше 13.5 В и как только он достигнет 13,5 В (когда батарея полностью заряжена), это должно иметь возможность сработать на базе, которая позволит загореться красным светодиодом.
Чтобы включить Q1, нам нужно опустить базу ниже эмиттера примерно на 0,7 В. Падения напряжения на D1 может быть достаточно для этого.
D5, красный светодиод, мог включиться только в том случае, если ток протекает через Q1, D4, D3 и D5. Для этого потребуется не менее 2 В для зеленого, 0,7 В для D3 и 1,8 В для красного. 2 + 0,7 + 1,8 = 4,5 В. D1, однако, гарантирует, что у вас никогда не может быть больше 0.7 В. Красный светодиод никогда не загорится.
Схема зарядного устройства для простых гелевых аккумуляторов
Это схема зарядного устройства для гелевых аккумуляторов, использующая LM317. Он может заряжать гелевые батареи любого размера с током зарядки 300 мА, 650 мА и 1,3 А.
Может продлить срок службы гелевой батареи. Потому что это зарядка с более низким напряжением (отрегулируйте напряжение 13,4 В). Таким образом, никаких перегревов.
Пока цепь работает, светодиод показывает зарядку. И напряжение батареи повышается и полный ток по мере настройки.Затем ток уменьшается до нуля. При этом светодиод погаснет.
Что такое гелевый аккумулятор?
Некоторые из вас все еще могут их не знать. Давайте познакомимся с этим немного.
Это также свинцово-кислотные батареи. Но есть группа необслуживаемых батарей. Внутри есть пластина положительного элемента и пластина отрицательного элемента со свинцовым кальцием или свинцовым серебром (дорого).
Нам не нужно заглядывать внутрь. Просто используйте это достаточно.
Батарея этого типа. Кислота внутри батареи была загущена, чтобы уменьшить проблему утечки кислоты из батареи.
Cr: Фото с Amazon Mighty Max Battery
Схема зарядного устройства гелевых аккумуляторов работает
В приведенной выше схеме мы используем LM317 в качестве регулируемого регулятора положительного напряжения 1,5 А. Он преобразует входное постоянное напряжение в стабильное напряжение для зарядки аккумулятора. Мы настраиваем потенциометр 5K-VR1 на выход 13,4 В.
Мы устанавливаем выходной ток с помощью резистора измерения тока (R3) на земле или (-) клемме.
R3 ограничивает ток. Вы можете выбрать его, чтобы установить ток зарядки.
- 300 мА = 2,2 Ом, 1 Вт
- 500 мА = 1 Ом, 1 Вт
- 1300 мА = 0,47 Ом, 1 Вт
Когда ток течет через R3. Это приводит к появлению напряжения на базе и эмиттере транзистора Q1. Он смещен вперед. Таким образом, Q1 проводит ток к LED1 и регулятору IC1.
Красный светодиод 1 показывает, что аккумулятор заряжается. Когда напряжение батареи достигнет, ток упадет до нескольких миллиампер. И это снижает напряжение на Q1 и LED1.Когда ток падает примерно на 5%, светодиод гаснет, и ток падает почти до нуля.
См .: Схема автоматического зарядного устройства
Адаптер переменного тока
Мы используем адаптер переменного тока в качестве источника питания. Как и в схеме выше, комплект разъемов 500 мА постоянного тока для зарядного тока 300 мА. Но мой сын ошибочно рисует схему. Мы сожалеем. Сила тока адаптера переменного тока должна превышать 1500 мА при напряжении от 15 до 18 В.
- Для выхода 300 мА требуется блок разъемов на 500 мА.
- Для выхода 500 мА требуется дополнительный модуль на 650 мА.
- Для выхода 1300 мА требуется блок штекеров на 1500 мА.
Что такое адаптер переменного тока?
Если вы новичок, то можете запутать схему внутри нее.
Если вы не можете купить адаптер переменного тока, используйте нерегулируемый источник питания из имеющихся у вас деталей. Это спасает чем то.
Детали, которые вам понадобятся
IC1 = IC1 = LM317_1.5A Регулируемый стабилизатор положительного напряжения
C1, C2 = 0,1 мкФ 50 В_Керамические конденсаторы
R1 = 470 Ом _ 0,25 Вт Резистор
R2 = 2.2K _ 0,25 Вт Резистор
VR1 = 5K _ потенциометр
R3 = 1 Ом 1 Вт Резистор
Мало того, что мне нравится сохранять старые идеи схем. Это может быть полезно для вашего. См. Ниже:
Цепь зарядного устройства сухой аккумуляторной батареи
Это схема зарядного устройства сухой аккумуляторной батареи. Для этого можно использовать зарядное устройство, чтобы проработать около 12 часов. При подаче на блок питания 9 вольт оборудования, фиксирующего в цепи, используется аккумулятор типоразмера АА.
При использовании размера C или D сопротивление резистора RX должно снизиться до 68 Ом и не должно приводить к тому, что батарея перейдет в последовательное соединение, в то время как напряжение в ячейке батареи ниже 1.6В.
Схема компаратора с (IC741) управляет выходом затвора от импульсного генератора. Мы используем интегральную схему CMOS 4011, которая подает ток смещения на транзистор, который находится в переднем зарядном устройстве, пока напряжение не достигнет 1,6 В.
Схема компаратора сигнализирует о том, что светодиодный индикатор мигает, для защиты заряженного аккумулятора от полного заряда.
В следующий раз, если у друзей есть сухие батареи, которые уже были готовы, не отказывайтесь, попробуйте снова применить новые.
Продолжайте читать:
5 схем зарядки свинцово-кислотных аккумуляторов
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ
Я всегда стараюсь упростить изучение электроники.
Схема зарядного устройства для сотового телефона
Мобильные телефоны обычно заряжаются от регулируемого источника постоянного тока 5 В, поэтому в основном мы собираемся построить регулируемый источник постоянного тока 5 В от 220 переменного тока. Этот источник постоянного тока может использоваться для зарядки мобильных устройств, а также в качестве источника питания для цифровых схем, макетных схем, микросхем, микроконтроллеров и т. Д.
Вы также можете построить 6 В постоянного тока, 9 В, 12 В, 15 В и т. Д., Используя соответствующий трансформатор, конденсатор и регулятор напряжения. Основная концепция остается прежней, вам просто нужно установить радиатор для более высокого напряжения и тока.
Эта схема в основном состоит из понижающего трансформатора, двухполупериодного мостового выпрямителя и микросхемы стабилизатора напряжения 5 В (7805). Мы можем разделить эту схему на четыре части: (1) понижающее напряжение переменного тока (2) выпрямление (3) фильтрация (4) регулирование напряжения.
1. Понижающее напряжение переменного тока
Поскольку мы преобразуем 220 В переменного тока в 5 В постоянного тока, сначала нам понадобится понижающий трансформатор для снижения такого высокого напряжения. Здесь мы использовали понижающий трансформатор 9-0-9 1А, который преобразует 220В переменного тока в 9В переменного тока.В трансформаторе есть первичная и вторичная катушки, которые повышают или понижают напряжение в зависимости от количества витков в катушках.
Выбор подходящего трансформатора очень важен. Номинальный ток зависит от требований к току цепи нагрузки (цепи, которая будет использовать генерирующий постоянный ток). Номинальное напряжение должно быть больше требуемого напряжения. Значит, если нам нужно 5 В постоянного тока, трансформатор должен иметь номинальное значение как минимум 7 В, потому что стабилизатору напряжения IC 7805 нужно как минимум на 2 В больше i.е. 7 В для обеспечения напряжения 5 В.
2. Исправление
Выпрямление — это процесс удаления отрицательной части переменного тока (AC) и, следовательно, создания частичного постоянного тока. Этого можно добиться, используя 4 диода. Диоды позволяют току течь только в одном направлении. В первом полупериоде переменного тока диоды D2 и D3 смещены в прямом направлении, а D1 и D4 смещены в обратном направлении, а во втором полупериоде (отрицательная половина) диоды D1 и D4 смещены в прямом направлении, а D2 и D3 смещены в обратном направлении.Эта комбинация преобразует отрицательный полупериод в положительный.
На рынке доступен двухполупериодный мостовой выпрямитель, который состоит из 4 внутренних диодов. Здесь мы использовали этот компонент.
3. Фильтрация
Выходной сигнал после выпрямления не является правильным постоянным током, это колебательный выход с очень высоким коэффициентом пульсаций. Нам не нужен этот пульсирующий выход, для этого мы используем конденсатор.Конденсатор заряжается до тех пор, пока форма волны не достигнет своего пика, и разряжается в цепи нагрузки, когда форма волны становится низкой. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает надлежащее напряжение в цепи нагрузки, тем самым создавая постоянный ток. Теперь, как следует рассчитать значение этого конденсатора фильтра. Вот формулы:
C = I * т / В
C = рассчитываемая емкость
I = максимальный выходной ток (допустим, 500 мА)
t = 10 мс,
Мы получим волну частотой 100 Гц после преобразования переменного тока 50 Гц в постоянный через двухполупериодный мостовой выпрямитель.Поскольку отрицательная часть импульса преобразуется в положительную, один импульс будет считаться двумя. Таким образом, период времени будет 1/100 = 0,01 секунды = 10 мс
.
В = Пиковое напряжение — напряжение, подаваемое на микросхему регулятора напряжения (+2 больше номинального значения означает 5 + 2 = 7)
9-0-9 — это среднеквадратичное значение преобразований, поэтому пиковое напряжение составляет Vrms * 1,414 = 9 * 1,414 = 12,73 В
Теперь 1,4 В будет понижено на 2 диода (0,7 на диод), поскольку 2 будут смещены вперед для полуволны.
Итак, 12,73 — 1,4 = 11,33 В
Когда конденсатор разряжается в цепи нагрузки, он должен обеспечивать 7805 IC для работы 7805 В, поэтому в итоге V будет:
В = 11.33-7 = 4,33в
Итак, теперь C = I * t / V
C = 500 мА * 10 мс / 4,33 = 0,5 * 0,01 / 4,33 = 1154 мкФ ~ 1000 мкФ
4. Регулирование напряжения
Стабилизатор напряжения IC 7805 используется для обеспечения регулируемого напряжения 5 В постоянного тока. Входное напряжение должно быть на 2 В больше, чем номинальное выходное напряжение для правильной работы ИС, это означает, что требуется не менее 7 В, хотя он может работать в диапазоне входного напряжения 7-20 В. Внутри регуляторов напряжения есть все схемы, обеспечивающие надлежащий регулируемый постоянный ток.К выходу 7805 следует подключить конденсатор емкостью 0,01 мкФ, чтобы устранить шум, возникающий при переходных изменениях напряжения.
Вот полная принципиальная схема зарядного устройства сотового телефона:
Вы должны быть очень осторожны при построении этой схемы, так как здесь задействована сеть переменного тока 220 В.
Схема зарядного устройства литиевой батареи
— Gadgetronicx
Gadgetronicx> Электроника> Принципиальные и электрические схемы> Схемы зарядного устройства> Схема
зарядного устройства для литиевой батареи
Команда Gadgetronicx
20 ноября 2019 г.,
Литиевые батареи
в наши дни широко используются почти повсеместно.К этим батареям нужно было обращаться по-особенному, поскольку зарядка и разрядка литиевой батареи — довольно своеобразный процесс. Для этой цели мы разработали схему зарядного устройства для литиевых аккумуляторов 7,4 В, которая способна эффективно удовлетворять потребности в зарядке.
РАБОТА ЦЕПИ ЗАРЯДНОГО УСТРОЙСТВА ЛИТИЕВОЙ БАТАРЕИ:
Эта схема запускается с питанием 220/110 В переменного тока от обычной розетки. Этот источник переменного тока понижается с помощью понижающего трансформатора, который преобразует этот сигнал 220 В переменного тока в 24 В переменного тока.Этот сигнал переменного тока затем выпрямляется в сигнал постоянного тока. Этот сигнал 24 В переменного тока теперь преобразуется в 24 В постоянного тока.
Этот сигнал 24 В постоянного тока подается в классический регулятор 12 В 7812. Этот источник питания 12 В используется для питания IC LM3420 зарядного устройства для литиевых батарей. LM3420 — это специальный чип для оптимальной зарядки литиевой батареи. Выход этого чипа достигает 8,4 В при зарядке литиевой батареи 7,4 В, так как напряжение зарядки литиевой батареи 7,4 В должно быть около 8,4 В.
ТРИКЛ ЗАРЯДКА:
Уникальность литиевых аккумуляторов в том, что они требуют разного зарядного тока в зависимости от уровня заряда для длительного и эффективного использования.Использование одного и того же зарядного тока в течение всего времени зарядки приведет к снижению уровня зарядки с течением времени. Именно здесь возникает концепция капельного заряда.
Капельная зарядка использует максимальный зарядный ток, когда батарея была в состоянии низкого заряда, например, 30%. Но как только зарядка начнется, напряжение аккумулятора повысится. Для литий-ионного аккумулятора 7,4 В выходное напряжение приближается к 8,4 В. Это будет напряжение зарядки, когда батарея сантиметров достигнет от 80% до 90%.В этот момент LM3420 снижает выходной ток с максимума до точки, при которой он будет эквивалентен току саморазряда батареи. Это концепция непрерывной зарядки, при которой зарядка их меньшим зарядным током в конце цикла зарядки продлит срок службы батареи и сохранит максимальную зарядную емкость батареи.
LM3420 использует этот метод для зарядки литиевой батареи 7,4 В и продления срока службы батареи, сохраняя при этом зарядную емкость батареи.
СПИСОК ЧАСТЕЙ:
- Диод 1N4004
- Резистор 2кОм, 1кОм
- Регулятор напряжения 7812
- Источник тока
- Зарядное устройство LM3420
ПРИМЕЧАНИЕ:
- Эта схема применима с литий-ионными батареями 7,4 В
- Номинальный ток трансформатора должен быть не менее 1 А.